材料物理化学第2章习题课共38页
- 格式:ppt
- 大小:576.50 KB
- 文档页数:23
第二章 热力学第二定律本章通过卡诺定理引入了熵的概念及克劳修不等式,定义了亥姆霍兹自由能和吉布斯自由能两个辅助热力学函数,导出了封闭系统中热力学基本公式,对应系数和麦克斯韦关系式以及克拉贝龙方程等一系列重要的热力学公式,简要介绍了熵的统计意义和热力学第三定律。
通过本章内容的学习,可以了解S 、A 、G 等热力学函数改变值在各种过程中的计算,以及如何运用它们判别自发变化的方向,学会运用热力学基本原理演绎平衡系统性质的方法,为学习多组分系统和相平衡系统等后续内容奠定良好的基础。
一、基本内容(一)热力学第二定律的经典表述 开尔文(Kelvin )说法:“不可能从单一热源取出热使之完全变为功,而不引起其他变化”。
此表述也可说成:“第二类永动机不可能造成”。
克劳修斯(Clausius )说法:“不可能把热从低温物体传到高温物体,而不引起其他变化。
” (二)卡诺(Carnot )定理工作在两个给定的热源之间的任何热机,其热机效率I η不可能超过卡诺热机的效率R η。
设从高温热源2T 吸热2Q ,对外做功为W ,向低温热源1T 放热1Q ,则1221I R 222Q Q T T W Q Q T ηη+-=-=≤= 由此式可以得到12120Q Q T T +≤ “=”表示可逆,“<”表示不可逆。
即在指定的低温热源和高温热源之间,一切可逆循环的热温商之和等于零,一切不可逆循环的热温商之和小于零。
(三)熵的概念及其统计意义R δd Q S T =或RδQ S T∆=∑ 熵变是可逆过程中的热温商之和。
熵具有统计意义,它是系统微观状态数Ω(或混乱度)的量度,这一关系可由玻耳兹曼公式给出ln S k =Ω 式中k 为玻耳兹曼常量,2311.38110J K k --=⨯⋅。
(四)克劳修斯不等式BAδ0QS T∆-≥∑或δd 0Q S T -≥此式称为克劳修斯不等式,并作为热力学第二定律的数学表达式。
将此式应用于绝热系统(或隔离系统)时得到0S ∆≥或d 0S ≥此式称为熵增加原理。
第二章热力学第一定律2.1 1mol理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol对于理想气体恒压过程,应用式(2.2.3)W =-p ambΔV =-p(V2-V1) =-(nRT2-nRT1) =-8.314J2.2 1mol水蒸气(H2O,g)在100℃,101.325kPa下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-pambΔV =-p(Vl-Vg) ≈ pVg = nRT = 3.102kJ2.3 在25℃及恒定压力下,电解1mol水(H2O,l),求过程的体积功。
H2O(l) =H2(g) + 1/2O2(g)解: n = 1mol恒温恒压化学变化过程, 应用式(2.2.3)W=-pambΔV =-(p2V2-p1V1)≈-p2V2=-n2RT=-3.718kJ2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a的Q a=2.078kJ,Wa=-4.157kJ;而途径b的Q b=-0.692kJ。
求W b.解: 热力学能变只与始末态有关,与具体途径无关,故ΔU a= ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b∴ W b = Q a + W a-Q b = -1.387kJ2.5 始态为25℃,200 kPa 的5 mol 某理想气体,经途径a ,b 两不同途径到达相同的末态。
途经a 先经绝热膨胀到 -28.47℃,100 kPa ,步骤的功;再恒容加热到压力200 kPa 的末态,步骤的热。
途径b 为恒压加热过程。
求途径b 的及。
解:先确定系统的始、末态3111061902000001529831485m ...P nRT V =××==32101601000005824431485m ...P nRT V V =××=== kJ .kJ )..(Q W U Δa a 85194225575=+=+=-对于途径b ,其功为kJ .J ..V Δp W b 932706190101602000001-)-(--===根据热力学第一定律2.6 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
物理化学第二章-习题及答案物理化学第二章-习题及答案第一章热力学第一定律填空题1、一定温度、压力下,在容器中进行如下反应:Zn(s)+2HCl(aq)= ZnCl 2(aq)+H 2(g)若按质量守恒定律,则反应系统为系统;若将系统与环境的分界面设在容器中液体的表面上,则反应系统为系统。
2、所谓状态是指系统所有性质的。
而平衡态则是指系统的状态的情况。
系统处于平衡态的四个条件分别是系统内必须达到平衡、平衡、平衡和平衡。
3、下列各公式的适用条件分别为:U=f(T)和H=f(T)适用于;Q v =△U 适用于;Q p =△H 适用于;△U=dT nC 12T T m ,v ?适用于;△H=dT nC 21T T m ,P ?适用于;Qp =QV+△ngRT适用于;PV r=常数适用于。
4、按标准摩尔生成焓与标准摩尔燃烧焓的定义,在C(石墨)、CO(g)和CO2(g)之间,的标准摩尔生成焓正好等于的标准摩尔燃烧焓。
标准摩尔生成焓为零的是,因为它是。
标准摩尔燃烧焓为零的是,因为它是。
5、在节流膨胀过程中,系统的各状态函数中,只有的值不改变。
理想气体经节流膨胀后,它的不改变,即它的节流膨胀系数μ= 。
这是因为它的焓。
6、化学反应热会随反应温度改变而改变的原因是;基尔霍夫公式可直接使用的条件是。
7、在、不做非体积功的条件下,系统焓的增加值系统吸收的热量。
8、由标准状态下元素的完全反应生成1mol 纯物质的焓变叫做物质的。
9、某化学反应在恒压、绝热和只做膨胀功的条件下进行, 系统温度由T 1升高到T 2,则此过程的焓变零;若此反应在恒温(T 1)、恒压和只做膨胀功的条件下进行,则其焓变零。
10、实际气体的μ=0P T H,经节流膨胀后该气体的温度将。
11、公式Q P =ΔH 的适用条件是。
12、若某化学反应,只做体积功且满足等容或等压条件,则反应的热效应只由决定,而与无关。
13、常温下,氢气经节流膨胀ΔT 0;W 0;Q 0;ΔU 0;ΔH 0。
第二章习题解答1. J 3500110ln 19.1519V V ln V p V V ln nRT W 121112max =⨯⨯=== ∆U=∆H=01max 12K J 166.130003500T W V V lnnR S -⋅====∆2. 等温可逆膨胀:1-2K J 14.191V V lnnR S ⋅=∆= 向真空膨胀:由于始态和终态同上,体系的熵变也为19.14 J ⋅K –13. 先求冷热水混合后温度:500⨯C p (T –343)+100⨯ C p (T –303) = 0 T=336.3 K (63.3︒C) 再计算熵变:303Tln C 343T lnC S 21+=∆303T ln 184.4100343T ln 184.4500⨯+⨯==–41.27 + 43.63 = 2.34 J ⋅K–14. Sn 摩尔数mol 106.269.118250n ==nC p,m,Sn (T –473)+1000C p,H2O (T –283)=02.106⨯24.14(T –473)+1000⨯4.184(T –283)=0 T=285.3 K1-O H ,p Sn ,m ,p K J 17.887.3370.25283Tln C 1000473T ln nC S 2⋅=+-=+=∆5. 体系熵变按可逆相变计算:1-m ,V K J 0.1092.37340670T H S ⋅==∆=∆体真空蒸发热:Q=∆H –∆nRT=40670–8.314⨯373.2=37567 J环境熵变:1-K J 7.1002.37337567T Q S ⋅-=-=-=∆体环∆S 总= ∆S 体 + ∆S 环= 8.28 J ⋅K –1 >0 自发进行6. 体系: 设计可逆过程:81.2263273ln 3.75T T ln nC S 12)l (m ,p 1===∆J ⋅K –107.222736025T H S 2-=-=∆=∆凝固 J ⋅K –1 40.1273263ln 6.37T T ln nC S 12)s (m ,p 3-===∆J ⋅K –1 ∆S 体=∆S 1+∆S 2+∆S 3=–20.66 J ⋅K –1 环境:⎰-=--+-=∆+∆=∆5648)263273)(6.373.75(6025dT C H H p 273263J47.2126365648T Q S -=-=-=∆体环 J ⋅K –1总熵:∆S 总=∆S 体+∆S 环=0.81 J ⋅K –1>0 过程自发。
第二章2.1 1mol 理想气体在恒定压力下温度升高1℃,求过程中系统与环境交换的功。
解:理想气体n = 1mol恒压升温p 1, V 1, T 1 p 2, V2, T 2 对于理想气体恒压过程,应用式(2.2.3)W =-p amb ΔV =-p(V 2-V 1) =-(nRT 2-nRT 1) =-8.314J2.2 2.2 1mol 1mol 水蒸气(H 2O,g)在100℃,101.325kPa 下全部凝结成液态水。
求过程的功。
假设:相对于水蒸气的体积,液态水的体积可以忽略不计。
解: n = 1mol H 2O(g) H 2O(l)恒温恒压相变过程,水蒸气可看作理想气体, 应用式(2.2.3)W =-p amb ΔV =-p(V l -V g ) ≈ pVg = nRT = 3.102kJ 2.3 在25℃及恒定压力下,电解1mol 水(H 2O,l),求过程的体积功。
H 2O(l) = H 2(g) + 1/2O 2(g) 解: n = 1mol H 2O(l) H 2(g) + + O 2(g) n 1=1mol 1mol + 0.5mol = n 0.5mol = n 2V 1 = V l V(H 2) + V (O V(O 2) = V2 恒温恒压化学变化过程, 应用式(2.2.3)W=-p amb ΔV =-(p 2V 2-p 1V 1)≈-p 2V 2 =-n 2RT=-3.718kJ100℃,101.325kPa25℃,101.325kPa2.4 系统由相同的始态经过不同途径达到相同的末态。
若途径a 的Q a =2.078kJ ,Wa=-4.157kJ ;而途径b 的Q b =-0.692kJ 。
求W b 解: 热力学能变只与始末态有关,与具体途径无关,故 ΔU a = ΔU b由热力学第一定律可得 Qa + Wa = Q b + W b ∴ W b = Q a + W a -Q b = -1.387kJ2.6 4mol 4mol 某理想气体,温度升高20℃, 求ΔH -ΔU 的值。
第一章几何结晶学基础1-1.晶体、晶胞的定义;空间格子构造的特点;晶体的基本性质。
1-2.参网页上的模型,运用对称要素组合定律,写出四方柱、六方柱、四方四面体、斜方双锥、六八面体、三方柱、复三方三角面体、四六面体的点群符号,并写出其所属的晶系和晶族。
1-3.参阅网页上的模型,请确定单型中的六八面体、复三方偏三角面体、复六方双锥、和聚型中2、3、4号模型在晶体定向中,各晶体的晶轴分别与哪些对称轴重或晶棱方向平行1-4.请写出单型三方柱、四方柱、四方双锥、六方柱、菱面体、斜方双锥各晶面的主要晶面符号。
1-5.请写出下列聚型模型各晶面的晶面符号:1、2、3、4。
两个对称面相互成1)60°、2)90°、3)45°、4)30°,可组合成什么点群1-6.由两根相交的二次轴互成1)90°、2)60°、3)45°、4)30°,可以组合成什么点群试在面心立方格子中画出菱面体格子1-7.一晶面在X、Y、Z轴分别截得2、4、6个轴单位,请写出此晶面符号。
1-8.作图表示立方晶体的(123)、(012)、(421)晶面。
1-9.在六方晶体中标出晶面(0001)、(2110)、(1010)、(1120)、(1210)的位置。
1. 答:晶体最本质的特点是其内部的原子、离子、或原子集团在三维空间以一定周期性重复排列而成, 晶体的空间格子构造有如下特点:结点空间格子中的点,在实际晶体中它们可以代表同种质点占有的位置,因此也称为晶体结构中的等同点位置。
行列结点在一维方向上的排列. 空间格子中任意两个结点连接的方向就是一个行列方向。
面网结点在平面上的分布构成面网。
空间格子中,不在同一行列上的任意三个结点就可联成一个面网。
平行六面体空间格子中的最小单位。
它由六个两两平行且大小相等的面组成。
晶体的基本性质是指一切晶体所共有的性质,这些性质完全来源于晶体的空间格子构造。
第二章习题及答案2.1mol 某理想气体(11m ,mol K J 10.29−−⋅⋅=p C ),从始态(400K 、200kPa )分别经下列不同过程达到指定的终态。
试计算各过程的Q 、W 、∆U 、∆H 、及∆S 。
(1)恒压冷却至300K ;(2)恒容加热至600K ;(3)绝热可逆膨胀至100kPa ;解:(1)==111p nRT V L 63.16m 1063.1610200400314.81333=×=×××−1122V T V T =47.1263.164003001122=×=×=V T T V L 832)63.1647.12102003−=−××=∆=(外V P W kJ)400300()314.810.29(1m ,−×−×=∆=∆T nC U V kJ08.2−=,m 129.10(300400)p H nC T ∆=∆=××−2.92kJ=−kJ830=−∆=W U Q ∫=∆21d T T P T T C S =37.810.29300400−=×∫T dT J∙K -1(2)0=W )400600()314.810.29(1m ,−×−×=∆=∆T nC U V kJ16.4=,m 129.10(600400)p H nC T ∆=∆=××−5.82kJ=kJ16.4=−∆=W U Q ∫=∆21d T T V T T C S =43.8)314.810.29(600400=×−∫T dT J∙K -1(3)40.1314.810.2910.29,,=−==m V m P C C γ,γγγγ−−=122111P T P T 40.1140.1240.1140.1100200400−−=T 3282=T K=Q)400328()314.810.29(1m ,−×−×−=∆−=∆−=T nC U W V kJ50.1=)400328(314.810.291m ,−×××=∆=∆T nC H p kJ4.17−=0==∆TQ S R 12.1mol He(g)在400K 、0.5MPa 下恒温压缩至1MPa ,试计算其Q 、W 、∆U 、∆H 、∆S 、∆A 、∆G 。
物理化学习题与例题第一章习题习题1设有一电炉丝浸于水中,接上电源,通过电流一段时间。
如果按下列几种情况作为系统,试问ΔU,Q,W为正为负还是为零?(1)以电炉丝为系统;(2)以电炉丝和水为系统;(3)以电炉丝、水、电源及其它一切有影响的部分为系统。
习题2设有一装置如图所示,(1)将隔板抽去以后,以空气为系统时,ΔU,Q,W为正为负还是为零?(2)如右方小室亦有空气,不过压力较左方小,将隔板抽去以后,以所有空气为系统时,ΔU,Q,W为正为负还是为零?习题3(1)如果一系统从环境接受了160J的功,内能增加了200J,试问系统将吸收或是放出多少热?(2)一系统在膨胀过程中,对环境做了10 540J的功,同时吸收了27 110J的热,试问系统的内能变化为若干?[答案:(1) 吸收40J;(2) 16 570J] 习题4如右图所示,一系统从状态1沿途径1-a-2变到状态2时,从环境吸收了314.0J的热,同时对环境做了117.0J的功。
试问:(1)当系统沿途径1—b—2变化时,系统对环境做了44.0J的功,这时系统将吸收多少热?(2)如果系统沿途径c由状态2回到状态1,环境对系统做了79.5J的功,则系统将吸收或是放出多少热?[答案:(1)241.0 J;(2)放热276.5J] 习题5在一礼堂中有950人在开会,每个人平均每小时向周围散发出4.2xl05J的热量,如果以礼堂中的空气和椅子……等为系统,则在开会时的开始20分钟内系统内能增加了多少?如果以礼堂中的空气、人和其它所有的东西为系统,则其ΔU=?[答案:1.3×l08J;0] 习题6一蓄电池其端电压为12V,在输出电流为10A下工作2小时,这时蓄电池的内能减少了1 265 000J,试求算此过程中蓄电池将吸收还是放出多少热?[答案:放热401000J] 习题7 体积为4.10dm3的理想气体作定温膨胀,其压力从106Pa降低到105Pa,计算此过程所能作出的最大功为若干?[答案:9441J] 习题8 在25℃下,将50gN2作定温可逆压缩,从105Pa压级到2×106Pa,试计算此过程的功。