某市中考体育测试中,1分钟跳绳为自选项目,某中学九年级共有50名女同学选考1分钟跳
- 格式:docx
- 大小:27.06 KB
- 文档页数:1
一、解答题1. 如图所示,点P 是∠AOB 内部的一点,按要求完成下列各小题.(1)分别画出点P 关于OA 、OB 的对称点分别为P 1、P 2,连接P 1P 2, 分别交OA 、OB 于点M 、N 两点.(2)连接PM ,PN ,若P 1P 2=5cm ,则△PMN 的周长= cm;(3)画射线OP 1与OP 2,若∠AOB=55°,则∠P 1OP 2= °.2. 图1,图均是的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A ,B ,C 均为格点.只用无刻度的直尺,分别在给定的网格中找一格点,按下列要求作图:(1)在图1中,连接,,使;(2)在图2中,连接,,,使.3. 某市去年中考体育测试中,1分钟跳绳为自选项目,该市九年级共有3000名同学选考这个项目,从中随机抽取50名同学进行调查统计.根据测试评分标准,将她们的成绩进行统计后分为四个等级,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分)和扇形统计图.频数分布表等级分值跳绳(次/1分钟)频数A 9~10150~17048~9140~15012B 7~8130~140176~7120~130C 5~6110~12004~590~110D 3~470~9010~30~70(1)求等级A 人数的百分比;(2)求的值;(3)请你估算出该市九年级选考1分钟跳绳项目的同学中,及格的同学有多少人?(6分以上含6分为及格).4. (1)在数轴上分别画出表示下列3个数的点:,,.(2)有理数x,y在数轴上对应点如图所示:试把x,y,0,,这五个数从小到大用“<”号连接.5. 在数学课上,同学们研究图形的拼接问题.比如:两个全等的等腰直角三角形纸片既能拼成一个大的等腰直角三角形(如图1),也能拼成一个正方形(如图2).(1)现有两个相似的直角三角形纸片,各有一个角为,恰好可以拼成另一个含有30°角的直角三角形,那么在原来的两个三角形纸片中,较大的与较小的纸片的相似比为________,请画出拼接的示意图;(2)现有一个矩形恰好由三个各有一个角为的直角三角形纸片拼成,请你画出两种不同拼法的示意图.在拼成这个矩形的三角形中,若每种拼法中最小的三角形的斜边长为,请直接写出每种拼法中最大三角形的斜边长.6. 已知平面内三角形和三角形关于点成中心对称,请找出点,并补全两个三角形.7. 如图,在△ABC中,AD是△ABC的中线,点E是AD的中点,连接BE并延长,交AC于点F.(1)根据题意补全图形.(2)如果AF=1,求CF的长.8. 在学习了反比例函数之后,某同学课外对函数y=的图象和性质进行探究,请你帮助解决下面问题.(1)函数y=中自变量x的取值范围是 ;(2)列表:x…﹣2﹣101245678…y…0﹣1﹣332…请你在所给平面直角坐标系中画出函数的图象;(3)根据图象写出函数的增减性;(4)该函数图象的两个分支关于一个点成中心对称,这个点的坐标是 .9. 如图,在中,,.(1)请用尺规作图的方法作的角平分线,交于点D;(保留作图痕迹,不写作法)(2)在(1)的条件下,求证:.10. 作图题:(1)如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.(2)①利用方格纸画出△ABC关于直线的对称图形△A′B′C′,②判断△ABC的形状并说明理由.11. 如图,已知⊙O,请用无刻度的直尺和圆规按要求画图(不写画法,保留作图痕迹).(1)图1中,若点P为⊙O外一点,请过点P作⊙O的一条切线PM(点M为切点);(2)图2中,若点Q为⊙O外一点,点C为优弧AB上一点,试确定点C,使得CQ平分∠ACB.12. 如图,已知,(1)尺规作图:作的垂直平分线交于点D;(2)连接.若,,求的度数.13. 某市为了增强学生体质,全面实施“学生饮用奶”营养工程.某品牌牛奶供应商提供了原味、草莓味、菠萝味、香橙味、核桃味五种口味的牛奶提供学生饮用.某中学为了了解学生对不同口味牛奶的喜好,对全校订购牛奶的学生进行了随机调查(每盒各种口味牛奶的体积相同),绘制了如图两张不完整的人数统计图:(1)本次被调查的学生有 名;(2)补全上面的条形统计图1;(3)计算喜好“菠萝味”牛奶的学生人数在扇形统计图2中所占圆心角的度数;(4)该校共有1200名学生订购了该品牌的牛奶,牛奶供应商每天只为每名订购牛奶的学生配送一盒牛奶.要使学生每天都喝到自己喜好的口味的牛奶,牛奶供应商每天送往该校的牛奶中,草莓味要比原味多送多少盒?14. 如图,在正方形ABCD中,点E是边BC上一点(不与点B,C重合),过点C作CF⊥AE,交AE的延长线于点F,过点D作DG⊥FC,交FC的延长线于点G,连接FB,FD.(1)依题意补全图形;(2)求∠AFD的度数;(3)用等式表示线段AF,BF,DF之间的数量关系,并证明.15. 【定义新概念】把一个两组对边分别平行的四边形叫做平行四边形.【操作与发现】已知(如图).(1)尺规作图求作四边形,且,.(保留作图痕迹,不写作法,)(2)以上所得四边形是平行四边形,请说明理由.【探索与延伸】如上图,连结,记交点为,观察、分析,在该平行四边形中,辨析以下结论:①平行四边形的两组对角分别相等(,);②平行四边形的两条对角线互相平分(,);③平行四边形中连结两条对角线,图中全等的三角形是2对;④和的面积相等;其中正确的有______(填写序号).16. 一家公司加工一批农产品,有粗加工和精加工两种方式.如果进行粗加工,每天可加工15吨;如果进行精加工,每天可加工5吨.该公司从市场上收购了农产品150吨,并用14天加工完这批农产品.根据题意,甲、乙两名同学分别列出的方程组(部分)如下:甲:乙:(1)根据甲、乙两名同学所列的方程组,请你在方框中补全甲、乙两名同学所列的方程组;(2)求粗加工和精加工这批农产品各多少吨?17. 如图,破残的圆形轮片上,弦AB的垂直平分线交弧AB于C,交弦AB于D.求作此残片所在的圆(不写作法,保留作图痕迹).18. 盐城市纺织染整产业园为国家级绿色纺织生产基地,现有一块矩形布料的两边长分别是 2 米与 3 米,若把这个矩形布料按照如图 1 的方式扩大到面积为原来的2 倍,设原矩形布料的一边加长a米,另一边长加长b米,可得a与b之间的函数关系式.某校“数学兴趣小组”对此函数进一步推广,得到更一般的函数,现对这个函数的图像和性质进行了探究,研究过程如下:(1)如图 2 ,在平面直角坐标系中,请用描点法画出的图像,并完成如下问题:①函数的图像可由函数图像向左平移_______个单位,再向下平移_____个单位得到,其对称中心坐标为____________;②根据该函数图像指出,当x在什么范围内变化时,.(2)若要使面积扩大两倍后的这块布料周长最小,请你帮助该校“数学兴趣小组”设计出符合要求的扩大方案.19. 如图,在平面直角坐标系中有一个,顶点,,.(1)将向右平移个单位长度,再向下平移个单位长度,作出平移后的;(2)画出关于轴对称的,并写出点的坐标.20. 中华文明,源远流长,中华汉字,寓意深广。
2022中考考点必杀500题 专练10(统计与概率大题)(30道)1.(2022·浙江绍兴·一模)健康的体魄是青少年为祖国和人民服务的基本前提,是中华民族旺盛生命力的体现.某初中学校为了提高学生体质健康,制定合理的校园阳光体育锻炼方案,随机抽查了部分学生最近两周参加体育锻炼活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图:请根据图中提供的信息,回答下列问题:(1)抽查的学生中锻炼8天的有______人.(2)本次抽样调查的众数为______,中位数为_______.(3)如果该校约有2000名学生,请你估计全校约有多少名学生参加体育锻炼的天数不少于7天? 【答案】(1)60人 (2)5天,6天(3)估计全校约有800名学生参加体育锻炼的天数不少于7天 【解析】 (1)解:12020600÷=%(人)600254051060⨯---⨯=(1-20%%%%)=600%(人)故抽查的学生中锻炼8天的有60人. (2)解:参加体育锻炼活动5天的人最多,故众数是5; 一共600人,最中间是第300个和301个, 从小到大排序后第300个和301个数都是6天, ∴中位数是6;(3)解:参加体育锻炼的天数不少于7天的人所占百分比是:%%%%,2510540++=⨯%=(人)200040800答:估计全校约有800名学生参加体育锻炼的天数不少于7天.【点睛】本题主要考查了概率统计的知识,包括扇形统计图和条形统计图的联系、众数和中位数的概念和用样本估计总体,牢固掌握以上知识点是做出本题的关键.2.(2022·浙江宁波·二模)第24届冬奥会于2022年2月在北京举行,为推广冰雪运动,发挥冰雪项目的育人功能,教育部近年启动了全国冰雪运动特色学校的䢯选工作.某中学通过将冰雪运动 “早地化” 的方式积极开展了基础滑冰、早地滑雪、早地冰球、早地冰显四个运动项目,要求每一位学生都自主选择一个运动项目,为了了解学生选择冰雪运动项目的情况,随机抽取了部分学生进行调查, 并根据调查结果绘制成如下不完整的条形统计图和扇形统计图.(1)这次随机抽取了_______名学生进行调查,并将条形统计图补充完整.(2)求扇形统计图中 “旱地冰壶” 部分的圆心角度数.(3)如果该校共有2400名学生,请你估计全校学生中喜欢基础滑冰项目有多少人?【答案】(1)50;条形统计图补充完整见解析(2)扇形统计图中 “旱地冰壶” 部分的圆心角度数为108︒(3)估计全校学生中喜欢基础滑冰项目有960人【解析】(1)解:在这次调查中,总人数为10÷20%=50(人),∴喜欢旱地滑雪项目的同学有50﹣20﹣10﹣15=5(人),补全图形如下:(2)旱地冰壶有15人,总人数50人,15÷50×360︒=108︒,∴“旱地冰壶” 部分的圆心角度数为108︒;(3)基础滑冰有20人,总人数50人,202400960⨯=(人),50∴估计全校学生中喜欢基础滑冰项目有960人.【点睛】本题考查条形统计图和扇形统计图的应用,数量掌握统计图的相关数据的关系与应用是解题的关键.3.(2022·湖北十堰·一模)为了解中考体育科目训练情况,从城区九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是______;(2)图1中α∠的度数是______,并把图2条形统计图补充完整;(3)若城区九年级学生有18000人,如果全部参加这次中考体育科目测试,请估计不及格的人数为______; (4)测试老师想从4位同学(分别记为甲、乙、丙、丁)中随机选择两位同学了解平时训练情况,请用列表或画树状图的方法求出选中甲的概率. 【答案】(1)40人 (2)54°;作图见详解 (3)3600人 (4)12 【解析】 (1)12÷30%=40(人)∴本次抽样测试的学生人数是40人, 故答案为:40; (2) 63605440α∠=⨯︒=︒. 故答案为:54°;C 级的人数为4035%14⨯=(人), 故补全条形统计图如下:(3)818000360040⨯=(人)∴估计不及格的人数为3600人,故答案为:3600人;(4)根据题意列表如下:由表可知,共有12种等可能的结果,其中选中甲的有6种,∴P(选中甲) =612=12.【点睛】本题考查条形统计图与扇形统计图相关联,用样本估计总体,列表法或画树状图法求概率.根据条形统计图和扇形统计图得到必要的信息和数据是解题关键.4.(2021·陕西渭南·二模)中华人民共和国第十四届全运会将于2021年9月份在陕西举行,“全民全运同心同行”是本届全运会主题口号.某中学为加深对全运会的了解,组织学生玩抽卡片的游戏,游戏规则如下:a.如图,A、B、C、D四张卡片(形状、大小和质地都相同),正面分别写有“全民全运”“同心同行”“相约西安”“筑梦全运”;b.将这四张卡片背面朝上洗匀,从中随机抽取一张(不放回),接着再随机抽取一张;c.若抽取的两张卡片能组成本届全运会主题口号“全民全运同心同行”,则获得一次成为“文明倡导者”的机会.(1)第一次抽取的卡片上写的是“全民全运”的概率为________;(2)请用列表法或画树状图法求乐乐抽取完两张卡片后,能获得成为“文明倡导者”机会的概率.【答案】(1)1 4(2)1 6【解析】(1)第一次抽取的卡片上写的是“全民全运”的概率为14;故答案为:14;(2)列表如下:由表知,共有12种等可能结果,其中抽取完两张卡片后,能获得成为“文明倡导者”机会的有2种结果,所以抽取完两张卡片后,能获得成为“文明倡导者”机会的概率是21 126.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回试验还是不放回试验.用到的知识点为:概率=所求情况数与总情况数之比.5.(2021·陕西渭南·二模)现代交通的发达虽然给人们带来了无尽的便利,但同时也增加了许多安全隐患.为了提高学生的安全意识,珍爱生命,某学校制作了8条安全出行警句,倡导全校1200名学生进行安全警句背诵系列活动,并在活动之后举办安全知识大赛.为了解本次系列活动的持续效果,学校团委在活动启动之初,随机抽取部分学生调查他们安全警句的背诵情况,根据调查结果绘制成的统计图(部分)如图所示.大赛结束一个月后,再次抽查这部分学生安全警句的背诵情况,并根据调查结果绘制成统计表:请根据调查的信息,完成下列问题:(1)补全条形统计图,表格中m的值为_______;(2)求活动启动之初学生安全警句的背诵条数的平均数及中位数;(3)选择适当的统计量,从两个不同的角度分析两次调查的相关数据,评价该校安全警句背诵系列活动的效果.【答案】(1)10;补图见解析(2)平均数为5,中位数为4.5(3)见解析【解析】(1)解:调查人数为6020120360÷=(人),背诵“4条”的人数为13512045360⨯=(人),补全条形统计图如图所示:大赛结束一个月后,背诵“4条”的人数为120101540252010m=-----=(人),故答案为:10;(2)解:将这120名学生活动启动之初的背诵情况从小到大排列处在中间位置的两个数的平均数为454.52+=,因此中位数是4.5,这120名学生活动启动之初的背诵情况的平均数为:1(153454205166137118)5 120⨯⨯+⨯+⨯+⨯+⨯+⨯=(条),答:活动启动之初学生安全警句的背诵条数的平均数为5,中位数为4.5;(3)解:从中位数上看,活动开展前的中位数是4.5条,活动开展后的中位数是6条,从背诵“6条及以上”人数的变化情况看,活动前是40人,活动后为85人,人数翻了一倍,从而得出活动的开展促进学生背诵能力的提高,活动开展的效果较好.【点睛】本题考查条形统计图、扇形统计图,理解两个统计图中数量之间的关系是正确解答的关键.6.(2021·山东滨州·二模)为了进一步提高中学生的交通安全意识、文明意识,为“创建文明城市”工作的开展营造浓厚的宣传氛围,某区创新宣传方式,组织学生利用“参观体验+知识竞赛”新模式开展安全宣传活动,并取得了良好的效果.赛后区团委随机抽取了部分参赛学生的成绩,整理后按分数分组如下:A.60≤x<70,B.70≤x<80,C.80≤x<90,D.90≤x≤100,并绘制出不完整的统计图.请你根据提供的信息,解决下列问题:(1)补全频数分布直方图和扇形统计图;(2)这次竞赛成绩的中位数落在组(填写字母);(3)某区共有2万名中学生,若竞赛成绩在80分以上(包括80分)为“优”,请你估计该区竞赛成绩为“优”的学生有多少人?(4)D组中成绩为100分的同学有三人(两男一女),现准备从他们中随机选出两位同学参加市竞赛,请用画树状图或列表法求刚好抽到两位男生的概率.【答案】(1)见解析(2)C(3)12000人(4)1 3【解析】(1)解:由C组人数和百分比可得本次调查的学生有:360÷40%=900(人),A组学生有:900﹣270﹣360﹣180=90(人),B组所占的百分比为:270÷900×100%=30%,补全的补全频数分布直方图和扇形统计图如图所示:(2)解:一共900名学生,则中位数是第450和第451名学生的平均数,∴A、B组共有90+180=270人,A、B、C组共有90+180+270=540人,∴第450和第451名学生在C组,∴这次竞赛成绩的中位数落在C组;(3)解:20000×(40%+20%)=12000(人),即估计该区竞赛成绩为“优”的学生有12000人.(4)解:将男生分别标记为A1,A2,女生标记为B1由表可知,共有6种等可能结果,其中刚好抽到两位男生的有2种结果,所以刚好抽到两位男生的概率为21 63 .【点睛】本题考查了频数分布直方图和扇形图的关联求值,中位数的概念,由样本估计总体,列表法求概率等知识;掌握图表所表达的数据意义是解题关键.7.(2022·陕西·武功县教育局教育教学研究室二模)教育部下发的《关于进一步加强中小学生睡眠管理工作的通知》要求,初中生每天睡眠时间应达到9小时,在备战中考的重要阶段,更要注重睡眠,提高学习效率.某校为了了解该校九年级学生每天的睡眠时间,随机调查了该校九年级部分学生,并将调查结果绘制成如下的统计图和统计表,根据图表中的信息,解答下列问题:(1)本次调查数据的中位数落在______组,表中m的值为______,扇形统计图中C组所在扇形的圆心角为______°;(2)求本次调查数据的平均数;(3)若该校共有600名九年级学生,请估计该校每天睡眠时间不少于9h的九年级学生有多少名?【答案】(1)B;10;90(2)8.5h(3)210名【解析】(1)÷=(人)解:被调查的学生人数为:1845%40故本次调查数据的中位数是这组数据从小到大排列后,第20个和第21个数的平均数故本次调查数据的中位数落在B组m=40-18-8-4=10扇形统计图中C 组所在扇形的圆心角为:10360=9040︒⨯︒ 故答案为:B ;10;90;(2) 解:()7.5188.589.3101148.5h 188104⨯+⨯+⨯+⨯=+++, ∴本次调查数据的平均数为8.5h .(3) 解:104600210188104+⨯=+++(名), ∴估计该校每天睡眠时间不少于9h 的九年级学生有210名.【点睛】本题考查了统计图表,中位数,扇形的圆心角,平均数的求法,用样本估计总体,解题的关键是仔细地审题,从图表中获取相关信息.8.(2022·陕西·武功县教育局教育教学研究室二模)此前,网络上出现了“东航失事原因锁定副驾驶”“黑匣子数据已经出来”等传言,严重误导社会公众认知,干扰事故调查工作,民航局表示:将依法追究造谣者法律责任,为了引导广大民众做“不信谣、不传谣、不造谣”的守法公民,某志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区做《抵制网络谣言·共建网络文明》的宜传活动,已知莹莹和晓晓都是该志愿者团队中的队员.(1)莹莹被分配到B 社区的概率为______;(2)请用列表法或画树状图的方法求莹莹和晓晓被分配到同一个社区的概率.【答案】(1)14(2)14【解析】(1)∴志愿者团队准备将队员们随机分配到A 、B 、C 、D 四个社区,∴莹莹被分配到B 社区的概率为14. (2)根据题意列表如下:由表格可知,共有16种等可能的结果,其中莹莹和晓晓被分配到同一个社区的情况有4种,∴P(莹莹和晓晓被分配到同一个社区)41 164==.【点睛】此题考查了根据概率公式求解概率以及树状图或列表法求解概率,解题的关键是掌握概率公式以及树状图或列表法求解概率.9.(2022·江苏·徐州市新城实验学校一模)随着奥密克戎病毒的传播,部分地区采用了在线授课学习方式.某校计划为学生提供以下四类在线学习方式:在线讲授、观看微课、在线答题和在线讨论.为了解学生需求,该校随机对本校部分学生进行了“哪类在线学习方式最感兴趣”的调查,并根据调查结果绘制成如下两幅不完整的统计图.根据图中信息,解答下列问题:(1)本次调查学生共________人,补全条形统计图:(2)扇形统计图中“观看微课”对应的扇形圆心角等于__________°;(3)该校共有学生2600人,请你估计该校对“在线授课”最感兴趣的学生人数.【答案】(1)120;见解析;(2)72(3)对“在线讲授”最感兴趣的学生人数是780人【解析】(1)总人数:4840%120÷=(人),“在线答题”人数:12036244812---=(人),补全条形统计图如图所示:(2)“观看微课”所占圆心角3607224120︒=︒=⨯, 故答案为:72;(3)本校对“在线授课”最感兴趣的人数260078036120⨯==(人), 答:该校对“在线授课”最感兴趣的学生人数为780人.【点睛】此题主要考查关联扇形统计图与条形统计图、用样本估计总体,利用数形结合的思想解答.解题关键是正确读懂统计图的信息以及明确题意.10.(2022·陕西·一模)一个不透明的袋子中装有1个黄球和若干个蓝球,这些球除颜色外重量、大小、表面光滑度等都相同,某课外学习小组做摸球试验:将球搅匀后从中任意摸出1个球,记下颜色后放回;搅匀后再摸一个球,记下颜色后放回;不断重复这个过程,获得数据如下:(1)该学习小组发现,摸到黄球的频率在一个常数附近摆动,这个常数是___________(精确到0.01),由此估出蓝球有___________个;(2)现从该袋中一次摸出2个球,请用树状图或列表的方法列出所有等可能的结果,并求恰好摸到1个黄球,1个蓝球的概率.【答案】(1)0.25;3(2)12【解析】(1)解:(1)随着摸球次数的越来越多,频率越来越靠近0.25,因此接近的常数就是0.25;设蓝球由x 个,由题意得:10.251x =+,解得:3x =, 经检验:3x =是分式方程的解;故答案为:0.25,3;(2)(2)画树状图得:∴共有12种等可能的结果,其中恰好摸到一个黄球,一个蓝球有6种情况,∴摸到一个黄球一个蓝球的概率为:61122=; 故答案为:12.【点睛】本题考查了利用频率估计概率、运用树状图法求概率以及概率公式的应用,估算出摸到黄球的概率成为解答本题的关键.11.(2022·辽宁锦州·一模)某校对九年级学生进行“综合素质”评价,评价结果分优秀,良好,合格,不合格四个等级(分别用A,B,C,D表示),现从中随机抽取若干名学生的“综合素质”的等级作为样本进行数据分析,并绘制下列两幅不完整的统计图.请根据统计图提供的信息,解答下列问题.(1)本次随机抽取的学生有_______名,等级为优秀(A)的学生人数所占的百分比是______;(2)在扇形统计图中,等级为合格(C)的学生所在扇形的圆心角度数是______;(3)将条形统计图补充完整;(4)若该校九年级学生共1200名,请根据以上调查结果估算,等级为良好及良好以上的学生共有多少名?【答案】(1)50,40%(2)57.6︒(3)见解析(4)912名【解析】(1)本次随机抽取的学生有18÷36%=50(名).等级为优秀(A)的学生人数为50188420---=(名),∴其所占的百分比是20100%40% 50⨯=,故答案为:50,40%;(2)等级为合格(C)的学生所在扇形的圆心角度数是836057.650⨯︒=︒,故答案为:57.6︒;(3)由(1)可知等级为优秀(A )的学生人数为20名,即可补全统计图如下:(4)2018120091250+⨯=(名), 答:评价结果为良好及良好等级以上的学生大约共有912名.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,由样本估计总体.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.12.(2022·浙江湖州·一模)为了解某学校疫情期向学生在家体有锻炼情况,从全体学生中机抽取若干名学生进行调查.以下是根据调查数据绘刺的统计图丧的一部分,根据信息回答下列问题.(1)本次调查共抽取__________名学生.(2)抽查结果中,B组有__________人.(3)在抽查得到的数据中,中位数位于__________组(填组别).(4)若这所学校共有学生800人,则估计平均每日锻炼超过25分钟有多少人?【答案】(1)60(2)18(3)C(4)440(1)解:本次调查共12÷20%=60(人),故答案是:60;(2)解:抽查结果中,B组有60-(9+21+12)=18(人),故答案是:18;(3)解∴共有60个数据,其中位数是第30、31个数据的平均数,而第30、31个数据均落在C组,∴在抽查得到的数据中,中位数位于C组,故答案是:C;(4)解:800211260+⨯=440(人),答:平均每日锻炼超过25分钟有440人.【点睛】本题考查频数(率)分布表、扇形统计图、样本估计总体等知识,解题的关键是根据频数分步图和扇形统计图的关联信息求出被调查学生的总数.13.(2022·湖南岳阳·一模)为落实中小学生五项管理中的手机管理,某学校团委组织了“我与手机说再见”为主题的演讲比赛,根据参赛同学的得分情况绘制了如图所示的两幅不完整的统计图(其中A 表示“一等奖”,B 表示“二等奖”,C 表示“三等奖”,D 表示“优秀奖”).请你根据统计图中所提供的信息解答下列问题:(1)获奖总人数为______人,m =______;(2)请将条形统计图补充完整;(3)学校将从获得一等奖的4名同学(其中有一名男生,三名女生)中随机抽取两名参加全市的比赛,请利用树状图或列表法求抽取同学中恰有一名男生和一名女生的概率.【答案】(1)40;30;(2)见解析 (3)12【解析】(1)解:)获奖总人数为820%40÷=(人). 404816%100%30%40m ---=⨯=,即30m =;故答案为40;30; (2) 解:“三等奖”人数为40481612---=(人),条形统计图补充为:(3)解:画树状图为:共有12种等可能的结果,抽取同学中恰有一名男生和一名女生的结果数为6,所以抽取同学中恰有一名男生和一名女生的概率61 122==.【点睛】本题考查了条形统计图和扇形统计图、及用树状图法求概率,树状图法可以不重复不遗漏的列出所有可能的结果,适合两步或两步以上完成的事件.用到的知识点为:概率一所求情况数与总情况数之比.牢固掌握画树状图列出所以可能结果是解题的关键.14.(2022·福建三明·二模)某商场举行促销活动,消费满一定金额的顾客可以通过参与摸球活动获得奖励.具体方法如下:从一个装有2个红球、3个黄球(仅颜色不同)的袋中摸出2个球,根据摸到的红球数确定奖励金额,具体金额设置如下表:现有两种摸球方案:方案一:随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球;方案二:随机摸出一个球,记下颜色后放回,再从中随机摸出一个球.(1)求方案一中,两次都摸到红球的的概率;(2)请你从平均收益的角度帮助顾客分析,选择哪种摸球方案更有利?【答案】(1)1 10(2)从平均收益的角度看,顾客选择方案二更有利【解析】(1)解:对于方案一,列表如下.由上表可知,共有20种等可能的结果,两次都摸到红球的结果数是2.故采用方案一摸球,两次都摸到红球的概率为21 2010=.(2)解:由(1)中表可知,采用方案一,两次都摸到红球的概率为110,摸到一次红球的概率为123205=,没有摸到红球的概率为63 2010=.平均收益为331510209.5 10510⨯+⨯+⨯=元.对于方案二,列表如下.由上表可知,共有25种等可能的结果,两次摸到红球的结果数是4,摸到一次红球的结果数是12,没有摸到红球的结果数是9.所以两次都摸到红球的概率为425,摸到一次红球的概率为1225,没有摸到红球的概率为925.平均收益为9124510209.8 252525⨯+⨯+⨯=元.∴9.89.5>,∴从平均收益的角度看,顾客选择方案二更有利.【点睛】本题考查列表法求概率,概率的实际应用,熟练掌握这些知识点是解题关键.15.(2022·重庆渝中·二模)某校党委为提高党员教师使用“学习强国”的积极性,4月份开展了一分钟答题挑战赛.规定:答对一道记1分.下列数据是分别从初中组和高中组随机抽取的10名党员教师的成绩(单位:分).初中组:6,13,7,9,8,11,9,13,9,6;高中组:6,9,5,12,8,11,8,9,14,8.通过以上数据得到如下不完整的统计表:根据以上信息,回答下列问题: (1)=a ______,b =______,c =______;(2)该校初中组和高中组党员教师人数分别为50人和60人,若答对9道题以上(包括9道)为优秀等级,请估计该校共有多少名党员教师获得优秀等级;(3)已知25.89s =初中组,求2s 高中组,并说明哪个组党员教师的成绩波动性较小. 【答案】(1)9.1,8.5,8; (2)60名;(3)26.6s =高中组,初中组. 【解析】 (1)解:初中组的平均数61379811913969.110a +++++++++==(分);将高中组的数据按照从小到大排列后,处于中间位置的两个数是8和9, ∴898.52+=(分), ∴8.5b =;∴高中组的数据中出现次数最多的数是8, ∴8c =. (2)解:∴初中组和高中组党员教师答对9道题以上(包括9道)的分别有6人和5人, ∴655060601010⨯+⨯=(名) ∴该校共有60名党员教师获得优秀等级. (3) 解:()()()()()()()222222226999259129893119149 6.610s ⎡⎤-+-⨯+-+-+-⨯+-+-⎣⎦==高中组∴25.89s =初中组,∴22s s 初中组高中组<,∴初中组党员教师的成绩波动性较小.【点睛】本题主要考查了平均数、中位数、众数、方差以及用样本估计总体,熟练掌握平均数、中位数、众数、方差的计算方法是解题的关键.16.(2022·安徽合肥·二模)某校为了解疫情期间学生自习课落实“停课不停学、学习不延期”在线学习的效果,校长通过网络学习平台,随机抽查了该校部分学生在一节自习课中的学习情况,发现共有四种学习方式(每人只参与其中一种):A.阅读电子教材,B.听教师录播课程,C.完成在线作业,D.线上讨论交流.并根据调查结果绘制成如下两幅不完整的统计图,根据图中信息解答下列问题:(1)填空:校长本次调查的学生总人数为______,并补全条形统计图;(2)求扇形统计图中“D.线上讨论交流”对应的圆心角的度数;(3)若该校在线学习学生共有4000人,请你估计“B.听教师录播课程”有多少人?【答案】(1)90,见解析(2)48°(3)1600人【解析】(1)解:校长本次调查的学生总人数为=18÷20%=90(人),∴B.听教师录播课程的人数=90-24-18-12=36(人),补全条形统计图如图所示:(2)解:“D.线上讨论交流”对应的扇形圆心角的度数是123604890⨯=︒︒,∴扇形统计图中“D.线上讨论交流”对应的圆心角是48°;(3) 解:364000160090⨯=(人), ∴估计“B .听教师录播课程”约有1600人. 【点睛】本题考查了条形统计图和扇形统计图,利用样本估计总体的方法,解题的关键是从两个统计图中读取信息解题.17.(2022·天津河东·一模)疫情防控,人人有责,一方有难,八方支援,作为一名中华学子,我们虽不能像医护人员一样在一线战斗,但我们仍以自己的方式奉献一份爱心,因此学校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图∴和图∴.请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数________和m 的值________; (2)求统计的捐款金额的平均数、众数和中位数. 【答案】(1)50,28(2)平均数是13.1,众数为10,中位数为12.5 【解析】 (1)95018%=,14100%28%50⨯= 故答案为:50,28 (2)观察条形统计图, ∴ 591016151420725413.150x ⨯+⨯+⨯+⨯+⨯==,∴ 这组数据的平均数是13.1. ∴ 在这组数据中,10出现了16次,出现的次数最多, ∴ 这组数据的众数为10.∴ 将这组数据按从小到大的顺序排列,其中处于中间的两个数分别是10,15, 有101512.52+=, ∴ 这组数据的中位数为12.5. 【点睛】本题考查的是条形统计图和扇形统计图的综合运用,求平均数、众数和中位数,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.18.(2022·河南濮阳·一模)某学校在学生中开展读书活动,学校为了解九年级学生每周平均课外阅读时间的情况,随机抽查了九年级部分同学,对其每周平均课外阅读时间进行统计,绘制了如下的统计图1和图2.请根据相关信息,解答下列问题:(1)图1中的m 值为______;(2)求统计的这组数据的众数、中位数.(3)根据统计的样本数据,估计该校九年级400名学生中,每周平均课外阅读时间大于2h 的学生人数. 【答案】(1)25(2)众数:3h ,中位数:3h。
扇形统计图一.选择题(共10小题)1.如图的两个统计图,女生人数多的学校是()A.甲校 B.乙校C.甲、乙两校女生人数一样多 D.无法确定2.甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A.甲校的女生人数多 B.乙校的女生人数多C.两个学校的女生一样多 D.不能判断3.如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.424.如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组5.某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人6.某数学兴趣小组根据温州气象部门发布的有关数据,制作了PM2.5来源统计图,根据该统计图,下列判断正确的是()A.表示汽车尾气污染的圆心角约为72°B.表示建筑扬尘的约占6%C.汽车尾气污染约为建筑扬尘的5倍D.煤炭以及其他燃料排放占所有PM2.5污染源的7.某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90° D.30°8.某班有60名学生,班长把全班学生对周末出游地的意向绘制成了扇形统计图,其中“想去重庆金佛山滑雪的学生数”的扇形圆心角是60°,则下列说法正确的是()A.想去重庆金佛山滑雪的学生有12人B.想去重庆金佛山滑雪的学生肯定最多C.想去重庆金佛山滑雪的学生占全班学生的D.想去重庆金佛山滑雪的学生占全班学生的60%9.小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况10.某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了)A.60 B.78 C.132 D.9二.填空题(共4小题)11.小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示,若他们共支出了4800元,则在购物上用去了元.12.如图,扇形A表示地球陆地面积占全球面积的百分比,则此扇形A的圆心角为度.13.为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有人.14.如图是初一(2)班英语成绩统计图根据图中的数据可以算出,优秀人数占总人数的;根据图中的数据画出的扇形统计图中,表示成绩中等的人数的扇形所对的圆心角是度.三.解答题(共6小题)15.某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为个;(2)选择长跑训练的人数占全班人数的百分比是,该班共有同学人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.16.为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某市教体局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了600名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是,并补全频数分布直方图;(2)2009年该市中小学生约40万人,按此调查,可以估计2009年全市中小学生每天锻炼超过1h的约有万人;(3)如果计划2011年该市中小学生每天锻炼未超过1h的人数降到7.5万人,求2009年至2011年锻炼未超过1h人数的年平均降低的百分率.17.观察如图所示的扇形统计图,并回答:(1)全世界共有个大洲,的面积最大;(2)这两个洲的面积之和最接近地球总陆地面积的一半;(3)图中各个扇形分别代表了,所有百分比之和是;(4)地球的表面积为5.1亿平方千米,而陆地面积为1.49亿平方千米,仅占整个地球表面积的29.2%.则亚洲的陆地面积约为万平方千米(用科学记数法表示),它占地球的表面积约为.18.我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统的值是,的值是;(2)C等级人数的百分比是;(3)在抽取的这个样本中,请说明哪个分数段的学生最多?(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).19.甲、乙、丙三所学校进行了一次八年级数学联合考试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四种情况之一:A~概念错误;B~计算错误;C~解答基本正确,但不完整;D~解答完全正确.已知甲校八年级有400名学生,根据以上信息,解答下列问题:(1)求三校八年级学生总数;(2)求三校解答完全正确的学生总数占三校八年级学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校八年级数学老师们提一个值得关注的问题,并说明理由.20.某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:某地区八年级地理会考模拟测试成绩统计表)填空:①本次抽样调查共测试了名;②若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为;(2)该地区确定地理会考成绩60分以上(含60分)的为合格,要求合格率不低于97%.现已知本次测试得60分的学生有117人,通过计算说明本次地理会考模拟测试的合格率是否达到要求?参考答案与试题解析一.选择题(共10小题)1.(2016春•罗平县期末)如图的两个统计图,女生人数多的学校是()A.甲校 B.乙校C.甲、乙两校女生人数一样多 D.无法确定【分析】根据题意,结合扇形图的性质,扇形统计图只能得到每部分所占的比例,具体人数不能直接体现,易得答案.【解答】解:根据题意,因不知道甲乙两校学生的总人数,只知道两校女生占的比例,故无法比较两校女生的人数,故选D.【点评】本题考查对扇形图意义的理解,即表现各部分占总体的百分比大小,直观表示各部分占总体的大小.2.(2016春•宜城市期末)甲校的女生占所有学生的50%,乙校的男生占所有学生的60%,那么()A.甲校的女生人数多 B.乙校的女生人数多C.两个学校的女生一样多 D.不能判断【分析】判断男女生的人数要根据学生总数和所占的百分比的大小.【解答】解:因为两个学校的学生数不同,故不能判断哪个学校的男女生人数的多少.故选:D.【点评】本题考查了扇形统计图的知识,难度较小,是一道基础题.3.(2016春•成都期末)如图,某中学制作了300名学生选择棋类、摄影、书法、短跑四门校内课程情况的扇形统计图,从图中可以看出选择短跑的学生人数为()A.33 B.36 C.39 D.42【分析】先求出选择短跑的学生所占的百分比,再乘以总人数即可.【解答】解:根据题意得:300×(1﹣33%﹣26%﹣28%)=39(名).答:选择短跑的学生有39名.故选C.【点评】此题考查了扇形统计图,扇形统计图直接反映部分占总体的百分比大小,关键是求出选择短跑的学生所占的百分比.4.(2015•扬州)如图是某校学生参加课外兴趣小组的人数占总人数比例的统计图,则参加人数最多的课外兴趣小组是()A.音乐组B.美术组C.体育组D.科技组【分析】根据扇形统计图中扇形面积越大,所占的比例越重,相应的人数越多,可得答案.【解答】解:由40%>25%>23%>12%,体育组的人数最多,故选:C.【点评】本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.5.(2015•温州)某校学生参加体育兴趣小组情况的统计图如图所示,若参加人数最少的小组有25人,则参加人数最多的小组有()A.25人B.35人C.40人D.100人【分析】根据参加足球的人数除以参加足球所长的百分比,可得参加兴趣小组的总人数,参加兴趣小组的总人数乘以参加乒乓球所占的百分比,可得答案.【解答】解:参加兴趣小组的总人数25÷25%=100(人),参加乒乓球小组的人数100×(1﹣25%﹣35%)=40(人),故选:C.【点评】本题考查了扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.6.(2015•桐庐县模拟)某数学兴趣小组根据温州气象部门发布的有关数据,制作了PM2.5来源统计图,根据该统计图,下列判断正确的是()A.表示汽车尾气污染的圆心角约为72°B.表示建筑扬尘的约占6%C.汽车尾气污染约为建筑扬尘的5倍D.煤炭以及其他燃料排放占所有PM2.5污染源的【分析】根据扇形图的信息进行计算,然后判断各个选项即可.【解答】解:表示汽车尾气污染的圆心角约为360°×40%=144°,A错误;表示建筑扬尘的约占1﹣40%﹣33%﹣19%=8%,B错误;汽车尾气污染约为建筑扬尘的5倍,C正确;煤炭以及其他燃料排放占所有PM2.5污染源的近,D错误,故选:C.【点评】本题考查的是扇形统计图的知识,正确获取统计图的信息是解题的关键.7.(2015•和平区一模)某中学九年级1班全体同学的综合素质评价“运动与健康”方面的等级统计如图所示,其中评价为“A”所在扇形的圆心角是()A.120°B.108°C.90° D.30°【分析】首先计算出A部分所占百分比,再利用360°乘以百分比可得答案.【解答】解:A所占百分比:100%﹣15%﹣20%﹣35%=30%,圆心角:360°×30%=108°,故选B.【点评】此题主要考查了扇形统计图,关键是掌握圆心角度数=360°×所占百分比.8.(2015秋•重庆校级期末)某班有60名学生,班长把全班学生对周末出游地的意向绘制成了扇形统计图,其中“想去重庆金佛山滑雪的学生数”的扇形圆心角是60°,则下列说法正确的是()A.想去重庆金佛山滑雪的学生有12人B.想去重庆金佛山滑雪的学生肯定最多C.想去重庆金佛山滑雪的学生占全班学生的D.想去重庆金佛山滑雪的学生占全班学生的60%【分析】根据扇形统计图的相关知识,“想去重庆金佛山滑雪的学生数”的扇形圆心角为60°,而一个圆的圆心角是360°,因而,“想去重庆金佛山滑雪的学生数”就是总人数的,据此即可求解.【解答】解:A、想去重庆金佛山滑雪的学生有60×=10人,故选项错误;B、没有其它去处的数据,不能确定为最多,故选项错误;C、想去重庆金佛山滑雪的学生占全班学生的,故选项正确;D、想去重庆金佛山滑雪的学生占全班学生的,故选项错误.故选:C.【点评】本题考查的是条形统计图的综合运用,读懂题意,从题意中得到必要的信息是解决问题的关键.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.9.(2014•舟山)小红同学将自己5月份的各项消费情况制作成扇形统计图(如图),从图中可看出()A.各项消费金额占消费总金额的百分比B.各项消费的金额C.消费的总金额D.各项消费金额的增减变化情况【分析】利用扇形统计图的特点结合各选项利用排除法确定答案即可.【解答】解:A、从图中能够看出各项消费占总消费额的百分比,故A正确;B、从图中不能确定各项的消费金额,故B错误;C、从图中不能看出消费的总金额,故C错误;D、从图中不能看出增减情况,故D错误.故选:A.【点评】本题考查了扇形统计图的知识,扇形统计图能清楚的反应各部分所占的百分比,难度较小.10.(2014•汉阳区二模)某中学就到校的方式问题对初三年级的所有学生进行了一次调查,并将调查结果制作了表格和扇形统计图,请你根据表格信息回答:则初三学生乘公交车的人A.60 B.78 C.132 D.9【分析】先求出调查的学生总数,再用总数乘乘公交车人数的百分比即可得出答案.【解答】解:调查的学生总数是:60÷20%=300(人),则乘公交车的人数为:300×(1﹣20%﹣33%﹣3%)=300×44%=132(人).故选:C.【点评】本题主要考查了扇形统计图及统计表,读懂统计图,从统计图及统计表中得到必要的信息是解决问题的关键.二.填空题(共4小题)11.(2016春•厦门期末)小明一家三口随旅游团外出旅游,旅途的费用支出情况如图所示,若他们共支出了4800元,则在购物上用去了1200 元.【分析】根据统计扇形图我们可知小明一家在购物上用去了总支出的25%,因此让总支出乘以25%就可得到他们在购物上的支出.【解答】解:∵小明一家支出分为三种即路费、食宿和购物,而前两项占了75%,∴购物占总支出的1﹣75%=25%,∴总购物支出为:4800×25%=1200元.故答案为:1200.【点评】本题考查了扇形统计图的应用.12.(2016春•黔南州期末)如图,扇形A表示地球陆地面积占全球面积的百分比,则此扇形A的圆心角为144 度.【分析】利用部分占总体的百分比×360°,即可求出对应的圆心角的度数.【解答】解:根据扇形统计图的定义,各部分占总体的百分比之和为1,各部分圆心角之和为360°,由图可知,其扇形圆心角的度数为40%×360°=144°.故答案为:144.【点评】本题主要考查扇形统计图的定义及扇形圆心角的计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.13.(2015•咸宁)为了解学生课外阅读的喜好,某校从八年级1200名学生中随机抽取50名学生进行问卷调查,整理数据后绘制如图所示的统计图.由此可估计该年级喜爱“科普常识”的学生约有360 人.【分析】根据扇形图求出喜爱科普常识的学生所占的百分比,1200乘百分比得到答案.【解答】解:喜爱科普常识的学生所占的百分比为:1﹣40%﹣20%﹣10%=30%,1200×30%=360,故答案为:360.【点评】本题考查的是扇形统计图的知识,读懂统计图,从统计图中得到必要的信息是解决问题的关键,扇形统计图直接反映部分占总体的百分比大小.14.(2015春•句容市校级期中)如图是初一(2)班英语成绩统计图根据图中的数据可以算出,优秀人数占总人数的24% ;根据图中的数据画出的扇形统计图中,表示成绩中等的人数的扇形所对的圆心角是144度.【分析】总人数为50人,优秀人数为12人,则可求出优秀人数占总人数的百分比;圆心角度数=360°×该部分所占总体的百分比.【解答】解:优秀人数占总人数的百分比为:12÷50=24%;中等的人数的扇形所对的圆心角度数为:360°×(20÷50)=144°.【点评】此题综合考查条形统计图的运用.条形统计图可以清楚地表明各种数量的多少.三.解答题(共6小题)15.(2015•酒泉)某班同学响应“阳光体育运动”号召,利用课外活动积极参加体育锻炼,每位同学从长跑、铅球、立定跳远、篮球定时定点投篮中任选一项进行了训练,训练前后都进行了测试,现将项目选择情况及训练后篮球定时定点投篮进球数进行整理,作出如下统计图表.(1)训练后篮球定时定点投篮人均进球数为 5 个;(2)选择长跑训练的人数占全班人数的百分比是10% ,该班共有同学40 人;(3)根据测试资料,参加篮球定时定点投篮的学生训练后比训练前的人均进球增加了25%,求参加训练之前的人均进球数.【分析】(1)根据平均数的概念计算平均进球数;(2)根据所有人数的比例和为1计算选择长跑训练的人数占全班人数的百分比;由总人数=某种运动的人数÷所占比例计算总人数;(3)通过比较训练前后的成绩,利用增长率的意义即可列方程求解.【解答】解:(1)参加篮球训练的人数是:2+1+4+7+8+2=24(人).训练后篮球定时定点投篮人均进球数==5(个).故答案是:5;(2)由扇形图可以看出:选择长跑训练的人数占全班人数的百分比=1﹣60%﹣10%﹣20%=10%,则全班同学的人数为24÷60%=40(人),故答案是:10%,40;(3)设参加训练之前的人均进球数为x个,则x(1+25%)=5,解得 x=4.即参加训练之前的人均进球数是4个.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.16.(2015•湖州模拟)为了开展阳光体育运动,坚持让中小学生“每天锻炼一小时”,某市教体局做了一个随机调查,调查内容是:每天锻炼是否超过1h及锻炼未超过1h的原因.他们随机调查了600名学生,用所得的数据制成了扇形统计图和频数分布直方图(图1、图2).根据图示,请回答以下问题:(1)“没时间”的人数是300 ,并补全频数分布直方图;(2)2009年该市中小学生约40万人,按此调查,可以估计2009年全市中小学生每天锻炼超过1h的约有10 万人;(3)如果计划2011年该市中小学生每天锻炼未超过1h的人数降到7.5万人,求2009年至2011年锻炼未超过1h人数的年平均降低的百分率.【分析】(1)由于随机调查了600名学生,首先根据扇形统计图可知锻炼未超过1h的中小学生占=75%,从而得出锻炼未超过1h的中小学生人数;又根据题意,将锻炼未超过1h的原因所得的数据制成了频数分布直方图,由频数分布直方图得到不喜欢的人数和其他的人数分别是130和20,由此即可求出“没时间”的人数,然后就可以补全频数分布直方图;(2)计算出锻炼超过1h的人数所占比例,再用40×锻炼超过1h的人数所占比例即可;(3)设2009年至2011年锻炼未超过1h人数的年平均降低的百分率为x,由于计划2011年我区中小学生每天锻炼未超过1h的人数降到7.5万人,由此可以列出方程30(1﹣x)2=7.5,解方程即可求出2008年至2010年锻炼未超过1h人数的年平均降低的百分率.【解答】解:(1)600×75%=450(人),450﹣130﹣20=300(人);(2)40×=10(万人)∴2008年全市初中毕业生每天锻炼超过1小时有10万人.(3)设年平均降低率为x,30(1﹣x)2=7.5,解得:x1=1.5(不合题意舍去),x2=0.5,答:锻炼未超过1h人数的年平均降低率为50%.【点评】此题主要考查了扇形图与频数分布直方图的应用以及一元二次方程的应用,根据已知正确利用增长率得出等式方程是解题关键.17.(2015春•赣榆县校级月考)观察如图所示的扇形统计图,并回答:(1)全世界共有七个大洲,亚洲的面积最大;(2)亚洲和非洲这两个洲的面积之和最接近地球总陆地面积的一半;(3)图中各个扇形分别代表了每个大洲所占的百分比,所有百分比之和是 1 ;(4)地球的表面积为5.1亿平方千米,而陆地面积为1.49亿平方千米,仅占整个地球表面积的29.2%.则亚洲的陆地面积约为 4.3657×103万平方千米(用科学记数法表示),它占地球的表面积约为8.56% .【分析】(1)根据扇形统计图可得,扇形统计图中有七部分,据此即可判断;(2)根据扇形统计图即可直接求解;(3)根据实现男性统计图即可直接求解;(4)利用总面积乘以对应的百分比即可求解.【解答】解:(1)全世界共有七个大洲,亚洲的面积最大;(2)亚洲、非洲这两个洲的面积之和最接近地球总陆地面积的一半;(3)图中各个扇形分别代表了每个大洲所占的百分比,所有百分比之和是1;(4)地球的表面积为5.1亿平方千米,而陆地面积为1.49亿平方千米,仅占整个地球表面积的29.2%.则亚洲的陆地面积约为4.3657×103万平方千米(用科学记数法表示),它占地球的表面积约为8.56%.【点评】本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.18.(2014春•路北区期末)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,的值是14 ,的值是30 ;(2)C等级人数的百分比是10% ;(3)在抽取的这个样本中,请说明哪个分数段的学生最多?(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).【分析】(1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;(2)用n值除以总人数即可求得其所占的百分比;(3)从统计表的数据就可以直接求出结论;(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.【解答】解:(1)观察统计图和统计表知B等级的有30人,占60%,∴总人数为:30÷60%=50人,∴m=50×28%=14人,n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为:×100%=10%;(3)B等级的人数最多;(4)及格率为:×100%=88%.【点评】本题考查了频数分布表的运用,扇形统计图的运用,在解答时看懂统计表与统计图得关系式关键.19.(2013•下关区一模)甲、乙、丙三所学校进行了一次八年级数学联合考试.老师们对其中的一道题进行了分析,把每个学生的解答情况归结为下列四种情况之一:A~概念错误;B~计算错误;C~解答基本正确,但不完整;D~解答完全正确.各校出现这四类种情况的人数分别占本校八年级学生数的百分比如下表.已知甲校八年级有400名学生,根据以上信息,解答下列问题:(1)求三校八年级学生总数;(2)求三校解答完全正确的学生总数占三校八年级学生总数的百分比m(精确到0.01%);(3)请你对表中三校的数据进行对比分析,给丙校八年级数学老师们提一个值得关注的问题,并说明理由.【分析】(1)根据甲校得人数及在扇形中所占的比例即可得出八年级学生总数.(2)根据(1)的结果可求出解答完全正确的学生数,进而可得出解答完全正确的学生数占八年级学生总数的百分比m.(3)根据概念错误所占的比例可提一些这方面的建议.【解答】解:(1)三校八年级学生总数=400÷=1200人;(2)乙校人数=1200×=500人,丙校人数=1200×=300人,∴D总人数=400×36.25%+500×57.6%+300×38%=547,∴解答完全正确的学生数占学生总数的百分比m=≈45.58%.(3)丙校的学生犯计算性的错误所占的比例很大,丙校的老师应加强计算的运用及掌握.【点评】本题考查了扇形统计图及统计表的知识,难度一般,注意掌握在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.20.(2012春•启东市校级期末)某地区随机抽取若干名八年级学生进行地理会考模拟测试,并对测试成绩(x分)进行了统计,具体统计结果见下表:(1)填空:①本次抽样调查共测试了4000 名;②若用扇形统计图表示统计结果,则分数段为90<x≤100的人数所对应扇形的圆心角的度数为108°;。
频数直方图——知识讲解责编:康红梅【学习目标】1. 理解组距、频数、频率、频数统计表的概念;2. 会制作频数统计表,理解频数统计表的意义和作用;3. 体会样本和总体的关系,会用样本的频数分布估计总体的频数分布;4. 掌握画频数直方图的一般步骤,会画频数直方图,理解频数分布直方图的意义和作用. 【要点梳理】要点一、组距、频数、频率与频数统计表1.组距:将数据按从小到大适当地分组,并绘制成统计表,其中每一组的后一个边界值与前一个边界值的差叫做组距.2. 频数:数据分组后落在各小组内的数据个数称为频数.3. 频率:每一组数据频数与数据总数的比叫做这一组数据的频率.4.频数统计表:把各个组别中相应的频数分布用表格的形式表示出来,这种反映数据分布情况的统计表叫做频数统计表,也称频数表.列频数统计表的一般步骤如下:1.选取组距,确定组数.组数通常取大于最大值-最小值组距的最小整数. 当数据在100个以内时,通常可按照数据的多少分成5~12组.2.确定各组的边界值.第一组的起始边界值通常取得比最小数据要小一些.为了使数据不落在边界上,边界值可以比实际数据多取一位小数.取定起始边界值后,就可以根据组距写出各组的边界值.3.列表,填写组别和统计各组频数.要点诠释:(1)各组频数总和等于样本容量,各组数据的频率之和等于1;(2)频数统计表能清楚地反映一组数据的大小分布情况.将一批数据分组,一般数据越多,分的组也越多.要点二、频数直方图1.频数直方图由若干个宽等于组距,面积表示每一组频数的长方形组成的统计图,叫做频数直方图.简称直方图.它直观地呈现了频数的分布特征和变化规律.2.频数直方图的画法(1)列出频数表;(2)画具有相同原点,横、纵两条互相垂直的数轴,分别表示各组别和相应的频数.然后分别以横轴上每一组的两边界点为端点的线段为底边,作高为相应频数的长方形,就得到所求的频数直方图.3. 频数直方图与条形图的联系与区别(1)联系:它们都是用矩形来表示数据分布情况的;当矩形的宽度相等时,都是用矩形的高来表示数据分布情况的;频数直方图是特殊的条形统计图.(2)区别:①由于分组数据具有连续性,频数直方图中各“条形”之间通常是连续排列,中间没有间隙,而条形图中各“条形”是分开排列的,中间有一定的间隙;②条形统计图用横向指标表示考察对象的类别,用纵向指标表示不同对象的数量. 频数直方图横向指标表示考察对象数据的变化范围,用纵向指标表示相应范围内数据的频数.要点诠释:(1)频数直方图是条形统计图的一种;(2)注意直方图与条形图、扇形图、折线图在表示数据方面的优缺点.【典型例题】类型一、组距、组数、频数、频率1. (1)对某班50名学生的数学成绩进行统计,90~99分的人数有10名,这一分数段的频数为_________.(2)有60个数据,其中最小值为140,最大值为186,若取组距为5,则应该分的组数是________.【答案】(1)10; (2)10.【解析】解:(1)利用频数的定义进行解答;(2)利用组数的计算方法求解.【总结升华】组数的确定方法:设数据总数目为n,一般地,当n≤50时,则分为5~8组;的整数部分+1.当50≤n<100.则分为8~12组较为合适,组数等于最大值-最小值组距举一反三:【变式】一个样本中有80个数据,最大值是141,最小值是50,取组距为10,则样本可分成()A.10组 B.9组 C.8组 D.7组【答案】A.2. 我校八年级学生在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,则这50个数据在37~40之间的个数是()A.1 B.2 C.10 D.5【思路点拨】根据频率、频数的关系:频率=频数÷数据总和,可得频数=频率×数据总和.【答案】C.【解析】解:∵在生物实验中抽出50粒种籽进行研究,数据落在37~40之间的频率是0.2,∴这50个数据在37~40之间的个数=50×0.2=10.故选C.【总结升华】本题考查频率、频数、总数的关系:频率=频数÷数据总和.举一反三:【变式】(2016•黄浦区三模)将样本容量为100的样本编制成组号①~⑧的八个组,简况如表所示:组号①②③④⑤⑥⑦⑧频数14 11 12 13 13 12 10那么第⑤组的频率为()A.14 B.15 C.0.14 D.0.15【答案】D.解:根据表格中的数据,得第⑤组的频数为100﹣(14+11+12+13+13+12+10)=15, 其频率为15:100=0.15. 类型二、频数统计表3.某中学为了解学生的课外阅读情况,就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学仅选一类),并根据调查结果制作了尚不完整的频数统计表:(1)表中m=______,n=______;(2)在这次抽样调查中,最喜爱阅读哪类读物的学生最多?最喜爱阅读哪类读物的学生最少?(3)根据以上调查,试估计该校1200名学生中最喜爱阅读科普类读物的学生有多少人? 【思路点拨】(1)由频率统计表可看出艺术类的频数22,频率是0.11,由频率=频数÷数据总数计算,可得到总数;根据频数的总和为200,可求出m 的值; (2)频数统计表中可以直接看出答案;(3)用样本估计整体:用整体×样本的百分比即可. 【答案与解析】 解:(1)学生总数:22÷0.11=200,m=200-22-66-28=84, n=66÷200=0.33,(2)从频数统计表中可以看出:最喜爱阅读文学类读物的学生最多84人,最喜爱阅读艺术类读物的学生最少22人. (3)1200×0.33=396(人). 【总结升华】此题主要考查了读频数统计表的能力,利用图表得出正确的信息是解决问题的关键.类型三、频数直方图4.某地区对八年级的英语教学情况进行期末质量调查,从中抽出的20个班级的英语期末平均成绩如下(单位:分):80 81 83 79 64 76 80 66 70 72 71 68 69 78 67 80 68 72 70 65试列出频数统计表并绘出频数直方图.【思路点拨】按照画频数直方图的步骤进行解答.解答时,应注意每个步骤中需要注意的事项.【答案与解析】解:(1)计算最大值与最小值的差.类别 频数(人数) 频率 文学 m 0.42 艺术 22 0.11 科普 66 n 其它 28 合计 183-64=19.(2)决定组距与组数.若取组距为4,则有194≈5,所以组数为5.(3)列频数统计表.(4)画频数直方图.【总结升华】按步骤进行操作.因选取的组距不同,所列的频数统计表及所画的频数直方图也不一样.在统计时,数据不能出现重复或遗漏的现象.【高清课堂:数据的描述369923 例1】举一反三:【变式】如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图.已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是().A.100,55% B.100,80% C.75,55% D.75,80%【答案】B.5. (2016•安徽模拟)我校为了迎接体育中考,了解学生的体育成绩,从全校500名九年级学生中随机抽取了部分学生进行体育测试,其中“跳绳”成绩制作图如下:成绩段频数频率160≤x<170 5 0.1170≤x<180 10 a180≤x<190 b 0.14190≤x<200 16 c200≤x<210 12 0.24表(1)根据图表解决下列问题:(1)本次共抽取了名学生进行体育测试,表(1)中,a=,b=c=;(2)补全图(2),所抽取学生成绩中中位数在哪个分数段;(3)“跳绳”数在180以上,则此项成绩可得满分.那么,你估计全校九年级有多少学生在此项成绩中获满分?【思路点拨】(1)根据第一组的频数是5,对应的频率是0.1据此即可求得总人数;(2)根据中位数的定义即可求解;(3)利用总人数500乘以对应的比例即可求解.【答案与解析】解:(1)抽测的人数是:5÷0.1=50(人),a==0.2,b=50×0.14=7,c==0.32.故答案是:50,0.2,7,0.32.(2)所抽取学生成绩中中位数在190~200分数段;(3)全校九年级有多少学生在此项成绩中获满分的人数是×500=350(人).答:全校九年级有多少学生在此项成绩中获满分的人数是350人.【总结升华】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.举一反三:【变式】随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):(1)请你把表中的数据填写完整;(2)补全频数直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?【答案】解:(1)36÷200=0.18,200×0.39=78,200-10-36-78-20=56,56÷200=0.28;(2)如图所示:(3)违章车辆数:56+20=76(辆).答:违章车辆有76辆.。
《第25章概率初步》一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x ﹣1上方的概率为()A.B.C.D.13.下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天4.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.15.下列说法中不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.207.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.B.C.D.8.小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A.B.C.D.二、填空题9.有五张分别写有数字0,3,﹣,,﹣1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是______.10.“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是______.11.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是______.12.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为______.13.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为______.14.如图,是两个均匀的数字转盘,转盘停止转动时指针停在不同数字区域的可能性相同.分别转动两个转盘,用转盘A停止转动时指针所指的数字a作横坐标;转盘B停止转动时指针所指的数字b作纵坐标,则点(a,b)在第四象限的概率=______.三、解答题15.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有______种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P 2,请直接写出P 2的值,并比较P 1,P 2的大小.(2+3+2=7)19. “爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表. 组别 原因人数 A 不想改变传统风俗习惯 650 B 增添节日喜庆气氛 300 C 祈福运、求吉利、辟邪害 m D 没有可替代的庆祝方式 150 E 为了孩子的玩耍和快乐 n F其他100请根据图表中提供的信息解答下列问题:(1)填空:m=______,n=______,扇形统计图中D 组所占的百分比为______.(2)若该市人口约为800万,请你估计其中属于B 组的市民有多少人?(用科学记数法表示); (3)若在此次接受调查的市民中随机抽取一人,此人属于A 组的概率是多少?20.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图10所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第______小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?《第25章概率初步》参考答案与试题解析一、选择题1.一只小狗在如图的方砖上走来走去,最终停在阴影方砖上的概率是()A.B.C.D.【考点】几何概率.【专题】探究型.【分析】先求出黑色方格在整个方格中所占面积的比值,再根据其比值即可得出结论.【解答】解:∵图中共有15个方格,其中黑色方格5个,∴黑色方格在整个方格中所占面积的比值==,∴最终停在阴影方砖上的概率为.故选B.【点评】本题考查的是几何概率,熟知概率公式是解答此题的关键.2.如图,在质地和颜色都相同的三张卡片的正面分别写有﹣2,﹣1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=﹣x ﹣1上方的概率为()A.B.C.D.1【考点】列表法与树状图法;一次函数图象上点的坐标特征.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与点(x,y)在直线y=﹣x﹣1上方的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有6种等可能的结果,点(x,y)在直线y=﹣x﹣1上方的有:(﹣2,1),(﹣1,1),(1,﹣1),∴点(x,y)在直线y=﹣x﹣1上方的概率为: =.故选A.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.3.下列事件是不可能事件是()A.明天会下雨B.小明数学成绩是99分C.一个数与它的相反数的和是0D.明年一年共有367天【考点】随机事件.【分析】不可能事件是指在一定条件下,一定不发生的事件.【解答】解:明天会下雨,可能发生也可能不发生,故A是随机事件;小明数学成绩是99分,B为随机事件;一个数与它的相反数的和是0,正确,所以C为必然事件;明年一年共有367天,一定不会发生,为不可能事件;故选D.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.理解概念是解决这类基础题的主要方法.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.4.在四张完全相同的卡片上,分别画有等腰三角形、钝角、线段和直角三角形,现从中任意抽取一张,卡片上的图形一定是轴对称图形的概率是()A.B.C.D.1【考点】概率公式;轴对称图形.【分析】卡片共有四张,轴对称图形有等腰三角形、钝角、线段,根据概率公式即可得到卡片上所画图形恰好是轴对称图形的概率.【解答】解:卡片中,轴对称图形有等腰三角形、钝角、线段,根据概率公式,P(轴对称图形)=.故选:C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5.下列说法中不正确的是()A.“某射击运动员射击一次,正中把靶心”属于随机事件B.“13名同学至少有两名同学的出生月份相同”属于必然事件C.“在标准大气压下,当温度降到﹣1℃时,水结成冰”属于随机事件D.“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件【考点】随机事件.【分析】根据随机事件、必然事件以及不可能事件的定义即可作出判断.【解答】解:A、“某射击运动员射击一次,正中把靶心”属于随机事件,正确;B、“13名同学至少有两名同学的出生月份相同”属于必然事件,正确;C、在标准大气压下,当温度降到﹣1℃时,水结成冰”属于必然事件;D、“某袋中只有5个球,且都是黄球,任意摸出一球是白球”属于不可能事件,正确.故选C.【点评】本题考查了随机事件、必然事件以及不可能事件的定义,必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6.春节前夕,刘丽的奶奶为孩子们准备了一些红包,这些红包的外观相同,已知1个装的是100元,3个装的是50元,剩下的装的是20元.若刘丽从中随机拿出一个,里面装的是20元的红包的概率是,则装有20元红包的个数是()A.4 B.5 C.16 D.20【考点】概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目,②全部情况的总数,二者的比值就是其发生的概率的大小.【解答】解:设有20元的红包x个,根据题意得: =,解得:x=16,故选C.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.7.有五张形状、大小、质地都相同的卡片,上面分别画有下列图形:①线段②正三角形③平行四边形④菱形⑤圆,将卡片背面朝上洗匀,从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是()A.B.C.D.【考点】概率公式;轴对称图形;中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的图形,再根据概率公式即可得出答案.【解答】解:∵①线段②正三角形③平行四边形④菱形⑤圆中是轴对称图形又是中心对称图形的是:①线段④菱形⑤圆,共三个,∴从中抽取一张,正面图形一定满足既是轴对称图形又是中心对称图形的概率是;故选C.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.8.小红有4双完全相同的手套,都是左、右手不能换戴的,其中有两双是妈妈送的,一双是姑姑送的,另一双是同学送的,小红在这4双混放在一起的手套中任取两只,恰好是同学送的那双的概率为()A.B.C.D.【考点】列表法与树状图法.【分析】首先分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;然后根据题意列出表格,再由表格求得所有等可能的结果与恰好是同学送的那双的情况,然后利用概率公式求解即可求得答案.【解答】解:分别用A,a,B,b表示妈妈送的两双,用C,c表示姑姑送的一双,用D,d表示同学送的另一双;列表得:d Ad ab Bd bc Cd cd Dd ﹣D AD aB BD bD CD cD ﹣dDc Ac ac Bc bc Cc ﹣Dc dcC AC aC BC bC ﹣cC DC dCb Ab ab Bb ﹣Cb cb Db dbB AB aB ﹣bB CB cB DB dBa Aa ﹣Ba ba Ca ca Da daA ﹣aA BA bA CA cA DA dAA aB bC cD d∵共有56种等可能的结果,恰好是同学送的那双的有2种情况,∴恰好是同学送的那双的概率为: =.故选C.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.二、填空题9.有五张分别写有数字0,3,﹣,,﹣1的卡片,它们除数字不同外其他均形同,从中任抽一张,那么抽到比0小的数的概率是.【考点】概率公式.【分析】先得到在所给的5个数中比0小的数有2个,即﹣,﹣1,然后根据概率公式求解.【解答】解:因为在数字0,3,﹣,,﹣1中,比0小的数有﹣,﹣1,所以从中任抽一张,那么抽到比0小的数的概率是.故答案为.【点评】本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.10.“智慧小组”有女生2人,男生3人,若从中随机选出两人参加小组展示学习活动,则选取的两人正好为一男一女的概率是.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选出一男一女的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,选出一男一女的有12种情况,∴选出一男一女的概率为: =.故答案为:.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.11.如图,有四张卡片(形状、大小和质地都相同),正面分别写有字母A、B、C、D和一个不同的算式,将这四张卡片背面向上洗匀,从中随机抽取两张卡片,这两张卡片上的算式只有一个正确的概率是.【考点】列表法与树状图法.【分析】首先此题需要两步完成,直接运用树状图法或者采用列表法,再根据列举求出所用可能数,再求出只有一次正确的情况数根据概率公式解答即可.【解答】解:列表如下:第1次A B C D第2次A BA CA DAB AB CB DBC AC BC DCD AD BD CD由表可知一共有12种情况,其中抽取的两张卡片上的算式只有一个正确的有8种,所以两张卡片上的算式只有一个正确的概率=,故答案为:.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件;用到的知识点为:概率=所求情况数与总情况数之比.12.在如图的正方形纸片上做随机扎针实验,则针头扎在阴影区域内的概率为.【考点】几何概率.【分析】先根据矩形的性质求出矩形对角线所分的四个三角形面积相等,再根据旋转的性质求出阴影区域的面积即可.【解答】解:根据矩形的性质易证矩形的对角线把矩形分成的四个三角形均为同底等高的三角形,故其面积相等,根据旋转的性质易证阴影区域的面积=正方形面积4份中的一份,故针头扎在阴影区域的概率为;故答案为:.【点评】此题考查了几何概率,用到的知识点为:概率=相应的面积与总面积之比.13.经过某丁字路口的汽车,可能左拐,也可能右拐,如果这两种可能性一样大,则三辆汽车经过此路口时,全部右拐的概率为.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与三辆车全部继续直行,再利用概率公式即可求得答案;【解答】解:列树状图为:三辆车经过丁字路口的情况有8种,全部向右转的情况数为1种,以全部右转的概率.【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.14.如图,是两个均匀的数字转盘,转盘停止转动时指针停在不同数字区域的可能性相同.分别转动两个转盘,用转盘A停止转动时指针所指的数字a作横坐标;转盘B停止转动时指针所指的数字b作纵坐标,则点(a,b)在第四象限的概率= .【考点】列表法与树状图法.【分析】列表将所有等可能的结果列举出来后利用概率公式求解即可.【解答】解:列表得:0 1 3 ﹣20 0,0 0,1 0,3 0,﹣2﹣1 ﹣1,0 ﹣1,1 ﹣1,3 ﹣1,﹣2﹣3 ﹣3,0 ﹣3,1 ﹣3,3 ﹣3,﹣22 2,0 2,1 2,3 2,﹣2∵共有16种等可能的结果,在第四象限的有4种,∴P(第四象限)==.故答案为:.【点评】考查了列表与树形图的知识,解题的关键是能够正确的通过列表或树形图将所有等可能的结果列举出来,难度不大.三、解答题15.为进一步增强学生体质,据悉,我市从2016年起,中考体育测试将进行改革,实行必测项目和选测项目相结合的方式.必测项目有三项:立定跳远、坐位体前屈、跑步;选测项目:在篮球(记为X1)、排球(记为X2)、足球(记为X3)中任选一项.(1)每位考生将有 3 种选择方案;(2)用画树状图或列表的方法求小颖和小华将选择同种方案的概率.【考点】列表法与树状图法.【分析】(1)根据题意得出每位考生的选择方案种类即可;(2)根据列表法求出所有可能,进而得出概率即可.【解答】解:(1)根据题意得出:每位考生有3种选择方案;故答案为:3;(2)列表法是:X 1X2X3X 1(X1,X1)(X1,X2)(X1,X3)X 2(X2,X1)(X2,X2)(X2,X3)X 3(X3,X1)(X3,X2)(X3,X3)由表中得知:共有9种不同的结果,而小颖和小华将选择同种方案的结果有3种,则:小颖与小华选择同种方案的概率为P==.【点评】本题考查了概率的概念:用列举法展示所有等可能的结果数n,找出某事件所占有的结果数m,则这件事的发生的概率P=.16.用4张相同的小纸条做成甲、乙、丙、丁4支签,放在一个盒子中,搅匀后先从盒子中任意抽出1支签(不放回),再从剩余的3支签中任意抽出1支签.(1)用树状图或列表等方法列出所有可能出现的结果;(2)求抽出的两支签中,1支为甲签、1支为丁签的概率.【考点】列表法与树状图法.【分析】(1)列表或树状图将所有等可能的结果列举出来即可;(2)根据列表得到所有等可能的结果,然后利用概率公式求解即可.【解答】解:(1)画树状图,如图所示:(2)所有等可能的情况有12种,其中1支为甲签、1支为丁签的情况有2种,故P(1支为甲签、1支为丁签)==.【点评】此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.17.一个不透明的盒子中有三张卡片,卡片上面分别标有字母a,b,c,每张卡片除字母不同外其他都相同,小玲先从盒子中随机抽出一张卡片,记下字母后放回并搅匀;再从盒子中随机抽出一张卡片并记下字母,用画树状图(或列表)的方法,求小玲两次抽出的卡片上的字母相同的概率.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有9种等可能的结果数,再找出两次抽出的卡片上的字母相同的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中两次抽出的卡片上的字母相同的结果数为3种,所有小玲两次抽出的卡片上的字母相同的概率==.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.18.一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球. (1)若从中任取一个球,球上的汉字刚好是“黄”的概率为多少?(2)甲从中任取一球,不放回,再从中任取一球,请用树状图的方法,求出甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率P 1;(3)乙从中任取一球,记下汉字后再放回袋中,然后再从中任取一球,记乙取出的两个球上的汉字恰能组成“灵秀”或“黄冈”(汉字不分先后顺序)的概率为P 2,请直接写出P 2的值,并比较P 1,P 2的大小.(2+3+2=7)【考点】列表法与树状图法;概率公式.【分析】(1)由一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于不放回实验; (3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”情况,再利用概率公式即可求得答案,注意属于放回实验. 【解答】解:(1)∵一个不透明的口袋里装有分别标有汉字“灵”、“秀”、“黄”、“冈”的四个小球,除汉字不同之外,小球没有任何区别, ∴任取一球,共有4种不同结果, ∴球上汉字刚好是“黄”的概率为:;(2)画树状图得:∵共有12种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,∴P1==;(3)画树状图得:∵共有16种等可能的结果,甲取出的两个球上的汉字恰能组成“灵秀”或“黄冈”的有4种情况,∴P2==,∴P1>P2.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.19.“爆竹声声一岁除”,除夕和春节期间燃放爆竹是中国人的传统风俗习惯,但这种习惯会造成空气污染,为了了解某市市民春节期间购买、燃放烟花爆竹的原因,该市统计局随机调查了该市部分15周岁以上常住市民,对调查结果整理后,绘制如图尚不完整的统计图表.组别原因人数A 不想改变传统风俗习惯650B 增添节日喜庆气氛300C 祈福运、求吉利、辟邪害mD 没有可替代的庆祝方式150E 为了孩子的玩耍和快乐nF 其他100请根据图表中提供的信息解答下列问题:(1)填空:m= 600 ,n= 200 ,扇形统计图中D组所占的百分比为7.5% .(2)若该市人口约为800万,请你估计其中属于B组的市民有多少人?(用科学记数法表示);(3)若在此次接受调查的市民中随机抽取一人,此人属于A组的概率是多少?。
沪教新版九年级(下)中考题单元试卷:第28章统计初步(05)一、填空题(共1小题)1.八年级(1)班全体学生参加了学校举办的安全知识竞赛,如图是该班学生竞赛成绩的频数分布直方图(满分为100分,成绩均为整数),若将成绩不低于90分的评为优秀,则该班这次成绩达到优秀的人数占全班人数的百分比是.二、解答题(共29小题)2.小明对自己所在班级的50名学生平均每周参加课外活动的时间进行了调查,由调查结果绘制了频数分布直方图,根据图中信息回答下列问题:(1)求m的值;(2)从参加课外活动时间在6~10小时的5名学生中随机选取2人,请你用列表或画树状图的方法,求其中至少有1人课外活动时间在8~10小时的概率.3.为了进一步了解某校九年级学生的身体素质,体育老师从该年级各班中随机抽取50名学生进行1分钟跳绳次数测试,以测试数据为样本,绘制出如图表.表:组别次数x频数频率第1组80≤x<10040.08第2组100≤x<12060.12第3组120≤x<140180.36第4组140≤x<160a b第5组160≤x<180100.2合计﹣﹣501(1)求表中a和b的值:a=;b=.(2)请将频数分布直方图补充完整:(3)若在1分钟内跳绳次数大于等于120次认定为合格,则从全年级任意抽测一位同学为合格的概率是多少?(4)今年该校九年级有320名学生,请你估算九年级跳绳项目不合格的学生约有多少人?4.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量(单位:吨),并将调查数据进行如下整理:4.7 2.1 3.1 2.35.2 2.8 7.3 4.3 4.86.74.55.16.5 8.9 2.2 4.5 3.2 3.2 4.5 3.53.5 3.5 3.64.9 3.7 3.85.6 5.5 5.96.25.7 3.9 4.0 4.0 7.0 3.7 9.5 4.26.4 3.54.5 4.5 4.65.4 5.66.6 5.8 4.5 6.27.5频数分布表分组划记频数2.0<x≤3.5正正113.5<x≤5.0195.0<x≤6.56.5<x≤8.08.0<x≤9.5合计250(1)把上面频数分布表和频数分布直方图补充完整;(2)从直方图中你能得到什么信息?(写出两条即可);(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?5.某班在一次班会课上,就“遇见路人摔倒后如何处理”的主题进行讨论,并对全班50名学生的处理方式进行统计,得出相关统计表和统计图.组别A B C D处理方式迅速离开马上救助视情况而定只看热闹人数m30n5请根据表图所提供的信息回答下列问题:(1)统计表中的m=,n=;(2)补全频数分布直方图;(3)若该校有2000名学生,请据此估计该校学生采取“马上救助”方式的学生有多少人?6.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?7.青少年“心理健康”问题越来越引起社会的关注,某中学为了了解学校600名学生的心理健康状况,举行了一次“心理健康”知识测试,并随即抽取了部分学生的成绩(得分取正整数,满分为100分)作为样本,绘制了下面未完成的频率分布表和频率分布直方图.请回答下列问题:分组频数频率50.5~60.540.0860.5~70.5140.2870.5~80.51680.5~90.590.5~100.5100.20合计 1.00(1)填写频率分布表中的空格,并补全频率分布直方图;(2)若成绩在70分以上(不含70分)为心理健康状况良好,同时,若心理健康状况良好的人数占总人数的70%以上,就表示该校学生的心理健康状况正常,否则就需要加强心里辅导.请根据上述数据分析该校学生是否需要加强心里辅导,并说明理由.8.为弘扬中华传统文化,某校组织八年级1000名学生参加汉字听写大赛,为了解学生整体听写能力,从中抽取部分学生的成绩(得分取正整数,满分为100分)进行统计分析,请根据尚未完成的下列图表,解答问题:组别分数段频数频率一50.5~60.5160.08二60.5~70.5300.15三70.5~80.5500.25四80.5~90.5m0.40五90.5~100.524n(1)本次抽样调查的样本容量为,此样本中成绩的中位数落在第组内,表中m=,n=;(2)补全频数分布直方图;(3)若成绩超过80分为优秀,则该校八年级学生中汉字听写能力优秀的约有多少人?9.关于体育选考项目统计图项目频数频率A80bB c0.3C200.1D400.2合计a1(1)求出表中a,b,c的值,并将条形统计图补充完整.表中a=,b=,c=.(2)如果有3万人参加体育选考,会有多少人选择篮球?10.如图是某数学兴趣小组参加“奥数”后所得成绩绘制成的频数,频率分布表和频数分布直方图.请你根据图表提供的信息,解答下列问题(成绩取整数,满分为100分)分组0﹣19.519.5﹣39.539.5﹣59.5 59.5﹣79.579.5﹣100合计频数15630b50频率0.02a0.120.600.161(1)频数、频率分布表中a=,b=.(2)补全频数分布直方图.(3)若在80分以上的小组成员中选3人参加下一轮竞赛,小明本次竞赛的成绩为90分,他被选中的概率是多少?(4)从该图中你还能获得哪些数学信息?(填写一条即可)11.为创建“国家园林城市”,某校举行了以“爱我黄石”为主题的图片制作比赛,评委会对200名同学的参赛作品打分发现,参赛者的成绩x均满足50≤x<100,并制作了频数分布直方图,如图.根据以上信息,解答下列问题:(1)请补全频数分布直方图;(2)若依据成绩,采取分层抽样的方法,从参赛同学中抽40人参加图片制作比赛总结大会,则从成绩80≤x<90的选手中应抽多少人?(3)比赛共设一、二、三等奖,若只有25%的参赛同学能拿到一等奖,则一等奖的分数线是多少?12.我市某校在推进新课改的过程中,开设的体育选修课有:A:篮球,B:足球,C:排球,D:羽毛球,E:乒乓球,学生可根据自己的爱好选修一门,学校李老师对某班全班同学的选课情况进行调查统计,制成了两幅不完整的统计图(如图).(1)请你求出该班的总人数,并补全频数分布直方图;(2)该班班委4人中,1人选修篮球,2人选修足球,1人选修排球,李老师要从这4人中人任选2人了解他们对体育选课的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修篮球,1人选修足球的概率.13.为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组25≤x<304第2组30≤x<358第3组35≤x<4016第4组40≤x<45a第5组45≤x<5010请结合图表完成下列各题:(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.14.为了了解“通话时长”(“通话时长”指每次通话时间)的分布情况,小强收集了他家1000个“通话时长”数据,这些数据均不超过18(分钟).他从中随机抽取了若干个数据作为样本,统计结果如下表,并绘制了不完整的频数分布直方图.“通话时长”(x分钟)0<x≤33<x≤66<x≤99<x≤1212<x≤1515<x≤18次数36a812812根据表、图提供的信息,解答下面的问题:(1)a=,样本容量是;(2)求样本中“通话时长”不超过9分钟的频率:;(3)请估计小强家这1000次通话中“通话时长”超过15分钟的次数.15.某公司为了解员工对“六五”普法知识的知晓情况,从本公司随机选取40名员工进行普法知识考查,对考查成绩进行统计(成绩均为整数,满分100分),并依据统计数据绘制了如下尚不完整的统计表.解答下列问题:组别分数段/分频数/人数频率150.5~60.52a260.5~70.560.15370.5~80.5b c480.5~90.5120.30590.5~100.560.15合计40 1.00(1)表中a=,b=,c=;(2)请补全频数分布直方图;(3)该公司共有员工3000人,若考查成绩80分以上(不含80分)为优秀,试估计该公司员工“六五”普法知识知晓程度达到优秀的人数.16.九年级(1)班开展了为期一周的“敬老爱亲”社会活动,并根据学生做家务的时间来评价他们在活动中的表现,老师调查了全班50名学生在这次活动中做家务的时间,并将统计的时间(单位:小时)分成5组:A.0.5≤x<1B.1≤x<1.5C.1.5≤x<2D.2≤x<2.5E.2.5≤x<3;并制成两幅不完整的统计图(如图):请根据图中提供的信息,解答下列问题:(1)这次活动中学生做家务时间的中位数所在的组是;(2)补全频数分布直方图;(3)该班的小明同学这一周做家务2小时,他认为自己做家务的时间比班里一半以上的同学多,你认为小明的判断符合实际吗?请用适当的统计知识说明理由.17.第一次模拟试后,数学科陈老师把一班的数学成绩制成如图的统计图,并给了几个信息:①前两组的频率和是0.14;②第一组的频率是0.02;③自左到右第二、三、四组的频数比为3:9:8,然后布置学生(也请你一起)结合统计图完成下列问题:(1)全班学生是多少人?(2)成绩不少于90分为优秀,那么全班成绩的优秀率是多少?(3)若不少于100分可以得到A+等级,则小明得到A+的概率是多少?18.兰州市某中学对本校初中学生完成家庭作业的时间做了总量控制,规定每天完成家庭作业的时间不超过1.5小时,该校数学课外兴趣小组对本校初中学生回家完成作业的时间做了一次随机抽样调查,并绘制出频数分布表和频数分布直方图(如图)的一部分.时间(小时)频数(人数)频率0≤t<0.540.10.5≤t<1a0.31≤t<1.5100.251.5≤t<28b2≤t<2.560.15合计1(1)在图表中,a=,b=;(2)补全频数分布直方图;(3)请估计该校1400名初中学生中,约有多少学生在1.5小时以内完成了家庭作业.19.某校八年级一班进行为期5天的图案设计比赛,作品上交时限为周一至周五,班委会将参赛逐天进行统计,并绘制成如图所示的频数直方图.已知从左到右各矩形的高度比为2:3:4:6:5.且已知周三组的频数是8.(1)本次比赛共收到件作品.(2)若将各组所占百分比绘制成扇形统计图,那么第五组对应的扇形的圆心角是度.(3)本次活动共评出1个一等奖和2个二等奖,若将这三件作品进行编号并制作成背面完全相同的卡片,并随机抽出两张,请你求出抽到的作品恰好一个一等奖,一个二等奖的概率.20.黔东南州某校为了解七年级学生课外学习情况,随机抽取了部分学生作调查,通过调查将获得的数据按性别绘制成如下的女生频数分布表和如图所示的男生频数分布直方图:学习时间t(分钟)人数占女生人数百分比0≤t<30420%30≤t<60m15%60≤t<90525%90≤t<1206n120≤t<150210% 根据图表解答下列问题:(1)在女生的频数分布表中,m=,n=.(2)此次调查共抽取了多少名学生?(3)此次抽样中,学习时间的中位数在哪个时间段?(4)从学习时间在120~150分钟的5名学生中依次抽取两名学生调查学习效率,恰好抽到男女生各一名的概率是多少?21.为了了解某地初中三年级学生参加消防知识竞赛成绩(均为整数),从中抽取了1%的同学的竞赛成绩,整理后绘制了如下的频数分布直方图,请结合图形解答下列问题:(1)指出这个问题中的总体;(2)求竞赛成绩在84.5﹣89.5这一小组的频率;(3)如果竞赛成绩在90分以上(含90分)的同学可以获得奖励,请估计该地初三年级约有多少人获得奖励.22.某校为了了解学生大课间活动的跳绳情况,随机抽取了50名学生每分钟跳绳的次数进行统计,把统计结果绘制成如表和直方图.次数70≤x<9090≤x<110110≤x<130130≤x<150150≤x<170人数8231621根据所给信息,回答下列问题:(1)本次调查的样本容量是;(2)本次调查中每分钟跳绳次数达到110次以上(含110次)的共有的共有人;(3)根据上表的数据补全直方图;(4)如果跳绳次数达到130次以上的3人中有2名女生和一名男生,学校从这3人中抽取2名学生进行经验交流,求恰好抽中一男一女的概率(要求用列表法或树状图写出分析过程).23.某老师对本班所有学生的数学考试成绩(成绩为整数,满分为100分)作了统计分析,绘制成如下频数、频率分布表和频数分布直方图,请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5频数2a20168频率0.040.080.400.32b (1)求a,b的值;(2)补全频数分布直方图;(3)老师准备从成绩不低于80分的学生中选1人介绍学习经验,那么被选中的学生其成绩不低于90分的概率是多少?24.在济南开展“美丽泉城,创卫我同行”活动中,某校倡议七年级学生利用双休日在各自社区参加义务劳动,为了解同学们劳动情况,学校随机调查了部分同学的劳动时间,并用得到的数据绘制不完整的统计图表,如图所示:劳动时间(时)频数(人数)频率0.5120.121300.31.5x0.4218y合计m1(1)统计表中的m=,x=,y=.(2)被调查同学劳动时间的中位数是时;(3)请将频数分布直方图补充完整;(4)求所有被调查同学的平均劳动时间.25.为增强环境保护意识,争创“文明卫生城市”,某企业对职工进行了一次“生产和居住环境满意度”的调查,按年龄分组,得到下面的各组人数统计表:各组人数统计表组号年龄分组频数(人)频率第一组20≤x<25500.05第二组25≤x<30a0.35第三组30≤x<353000.3第四组35≤x<40200b第五组40≤x≤451000.1(1)求本次调查的样本容量及表中的a、b的值;(2)调查结果得到对生产和居住环境满意的人数的频率分布直方图如图所示.政策规定:本次调查满意人数超过调查人数的一半,则称调查结果为满意.如果第一组满意人数为36,请问此次调查结果是否满意;并指出第五组满意人数的百分比;(3)从第二组和第四组对生产和居住环境满意的职工中分别抽取3人和2人作义务宣传员,在这5人中随机抽取2人介绍经验,求第二组和第四组恰好各有1人被抽中介绍经验的概率.26.为了估计鱼塘中成品鱼(个体质量在0.5kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:质量/kg0.50.60.7 1.0 1.2 1.6 1.9数量/条181518512然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg).27.为提高居民的节水意识,向阳小区开展了“建设节水型社区,保障用水安全”为主题的节水宣传活动,小莹同学积极参与小区的宣传活动,并对小区300户家庭用水情况进行了抽样调查,他在300户家庭中,随机调查了50户家庭5月份的用水量情况,结果如图所示.(1)试估计该小区5月份用水量不高于12t的户数占小区总户数的百分比;(2)把图中每组用水量的值用该组的中间值(如0~6的中间值为3)来替代,估计该小区5月份的用水量.28.某花店计划下个月每天购进80只玫瑰花进行销售,若下个月按30天计算,每售出1只玫瑰花获利润5元,未售出的玫瑰花每只亏损3元.以x(0<x≤80)表示下个月内每天售出的只数,y(单位:元)表示下个月每天销售玫瑰花的利润.根据历史资料,得到同期下个月内市场销售量的频率分布直方图(每个组距包含左边的数,但不包含右边的数)如图所示:(1)求y关于x的函数关系式;(2)根据频率分布直方图,计算下个月内销售利润少于320元的天数;(3)根据历史资料,在70≤x<80这个组内的销售情况如下表:销售量/只707274757779天数123432计算该组内平均每天销售玫瑰花的只数.29.某校举行“汉字听写”比赛,每位学生听写汉字39个.比赛结束后随机抽查部分学生的听写结果,以下是根据抽查结果绘制的图1统计图的一部分.组别听写正确的个数x组中值A0≤x<84B8≤x<1612C16≤x<2420D24≤x<3228E32≤x<4036根据以上信息解决下列问题:(1)本次共随机抽查了名学生,并补全图2条形统计图;(2)若把每组听写正确的个数用这组数据的组中值代替,刚被抽查学生听写正确的个数的平均数是多少?(3)该校共有3000名学生,如果听写正确的个数少于24个定为不合格,请你估计这所学校本次比赛听写不合格的学生人数.30.九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10 0.2410<x≤15160.3215<x≤20100.2020<x≤25425<x≤3020.04(1)把上面的频数分布表和频数分布直方图补充完整;(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?沪教新版九年级(下)中考题单元试卷:第28章统计初步(05)参考答案一、填空题(共1小题)1.30%;二、解答题(共29小题)2.;3.12;0.24;4.;5.5;10;6.三;7.0.32;6;0.12;50;8.200;四;80;0.12;9.200;0.4;60;10.0.1;8;11.;12.;13.;14.24;100;0.68;15.0.05;14;0.35;16.C;17.;18.12;0.2;19.40;90;20.3;30%;21.;22.50;19;23.;24.100;40;0.18;1.5;25.;26.;27.;28.;29.100;30.12;0.08;。
2012年兰州市中考数学试题一、单项选择题(每小题4分,共60分)1.sin60°的相反数是【】A.-12B.-33C.-32D.-222.近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则y与x的函数关系式为【】A.y=400x B.y=14x C.y=100x D.y=1400x3.已知两圆的直径分别为2cm和4cm,圆心距为3cm,则这两个圆的位置关系是【】A.相交B.外切C.外离D.内含4.抛物线y=-2x2+1的对称轴是【】A.直线x=12B.直线x=-12C.y轴D.直线x=25.一个长方体的左视图、俯视图及相关数据如图所示,则其主视图的面积为【】A.6 B.8 C.12 D.246.如果一个扇形的弧长等于它的半径,那么此扇形称为“等边扇形”,则半径为2的“等边扇形”的面积为【】A.πB.1 C.2 D. 2 37.抛物线y=(x+2)2-3可以由抛物线y=x2平移得到,则下列平移过程正确的是【】A.先向左平移2个单位,再向上平移3个单位B.先向左平移2个单位,再向下平移3个单位C.先向右平移2个单位,再向下平移3个单位D.先向右平移2个单位,再向上平移3个单位8.用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是【】A.0.2 B.0.3 C.0.4 D.0.59.在反比例函数y=kx(k<0)的图象上有两点(-1,y1),(-14,y2),则y1-y2的值是【】A.负数B.非正数C.正数D.不能确定10.某学校准备修建一个面积为200m2的矩形花圃,它的长比宽多10m,设花圃的宽为x m,则可列方程为【】A.x(x-10)=200 B.2x+2(x-10)=200C.x(x+10)=200 D.2x+2(x+10)=20011.已知二次函数y=a(x+1)2-b(a≠0)有最小值,则a、b的大小关系为【】A.a>b B.a<b C.a=b D.不能确定12.如图,AB是⊙O的直径,弦BC=2cm,F是弦BC的中点,∠ABC=60°.若动点E以2cm/s 的速度从A点出发沿着A→B→A方向运动,设运动时间为t(s)(0≤t<3),连接EF,当△BEF 是直角三角形时,t(s)的值为【】A.74B.1 C.74或1 D.74或1或9413.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小时,则∠AMN+∠ANM的度数为【】A.130°B.120°C.110°D.100°14.二次函数y=ax2+bx+c(a≠0)的图象如图所示,若|ax2+bx+c|=k(k≠0)有两个不相等的实数根,则k的取值范围是【】A.k<-3 B.k>-3 C.k<3 D.k>315.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是【】A.B.C.D.二、填空题(每小题4分,共20分)16.如图所示,小明和小龙做转陀螺游戏,他们同时分别转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是.17.如图,点A在双曲线y=1x上,点B在双曲线y=3x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.18.如图,两个同心圆,大圆半径为5cm,小圆的半径为3cm,若大圆的弦AB与小圆相交,则弦AB的取值范围是.19.如图,已知⊙O是以坐标原点O为圆心,1为半径的圆,∠AOB=45°,点P在x轴上运动,若过点P且与OA平行的直线与⊙O有公共点,设P(x,0),则x的取值范围是.20.如图,M为双曲线y=3x上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于点D、C两点,若直线y=-x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为.三、解答题(本大题8小题,共70分)21.已知x是一元二次方程x2-2x+1=0的根,求代数式x-33x2-6x÷⎝⎛⎭⎫x+2-5x-2的值.22.在建筑楼梯时,设计者要考虑楼梯的安全程度,如图(1),虚线为楼梯的倾斜度,斜度线与地面的夹角为倾角θ,一般情况下,倾角越小,楼梯的安全程度越高;如图(2)设计者为了提高楼梯的安全程度,要把楼梯的倾角θ1减至θ2,这样楼梯所占用地板的长度由d1增加到d2,已知d1=4m,∠θ1=40°,∠θ2=36°,求楼梯占用地板增加的长度(计算结果精确到0.01m,参考数据:tan40°=0.839,tan36°=0.727).23.如图(1),矩形纸片ABCD,把它沿对角线BD向上折叠,(1)在图(2)中用实线画出折叠后得到的图形(要求尺规作图,保留作图痕迹,不写作法);(2)折叠后重合部分是什么图形?说明理由.24.5月23、24日,兰州市九年级学生进行了中考体育测试,某校抽取了部分学生的一分钟跳绳测试成绩,将测试成绩整理后作出如统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出第一组的频率为0.04,丙同学计算出从左至右第二、三、四组的频数比为4∶17∶15.结合统计图回答下列问题:(1)这次共抽取了多少名学生的一分钟跳绳测试成绩?(2)若跳绳次数不少于130次为优秀,则这次测试成绩的优秀率是多少?(3)如果这次测试成绩中的中位数是120次,那么这次测试中,成绩为120次的学生至少有多少人?25.如图,定义:若双曲线y=kx(k>0)与它的其中一条对称轴y=x相交于A、B两点,则线段AB的长度为双曲线y=kx(k>0)的对径.(1)求双曲线y=1x的对径;(2)若双曲线y=kx(k>0)的对径是102,求k的值;(3)仿照上述定义,定义双曲线y=kx(k<0)的对径.26.如图,Rt △ABC 中,∠ABC =90°,以AB 为直径的⊙O 交AC 于点D ,E 是BC 的中点,连接DE 、OE .(1)判断DE 与⊙O 的位置关系并说明理由;(2)若tan C =52,DE =2,求AD 的长.27.若x 1、x 2是关于一元二次方程ax 2+bx +c (a ≠0)的两个根,则方程的两个根x 1、x 2和系数a 、b 、c 有如下关系:x 1+x 2=- b a ,x 1•x 2= ca.把它称为一元二次方程根与系数关系定理.如果设二次函数y =ax 2+bx +c (a ≠0)的图象与x 轴的两个交点为A (x 1,0),B (x 2,0).利用根与系数关系定理可以得到A 、B 连个交点间的距离为:AB =|x 1-x 2|=212214)(x x x x -+=a c a b 42-⎪⎭⎫⎝⎛-=224a ac b -=||42a ac b -. 参考以上定理和结论,解答下列问题:设二次函数y =ax 2+bx +c (a >0)的图象与x 轴的两个交点A (x 1,0)、B (x 2,0),抛物线的顶点为C ,显然△ABC 为等腰三角形.(1)当△ABC 为直角三角形时,求b 2-4ac 的值; (2)当△ABC 为等边三角形时,求b 2-4ac 的值.28.如图,Rt △ABO 的两直角边OA 、OB 分别在x 轴的负半轴和y 轴的正半轴上,O 为坐标原点,A 、B 两点的坐标分别为(-3,0)、(0,4),抛物线y = 23x 2+bx +c 经过点B ,且顶点在直线x=52上.(1)求抛物线对应的函数关系式;(2)若把△ABO沿x轴向右平移得到△DCE,点A、B、O的对应点分别是D、C、E,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)在(2)的条件下,连接BD,已知对称轴上存在一点P使得△PBD的周长最小,求出P点的坐标;(4)在(2)、(3)的条件下,若点M是线段OB上的一个动点(点M与点O、B不重合),过点M作∥BD交x轴于点N,连接PM、PN,设OM的长为t,△PMN的面积为S,求S和t 的函数关系式,并写出自变量t的取值范围,S是否存在最大值?若存在,求出最大值和此时M点的坐标;若不存在,说明理由.2012年甘肃省兰州市中考数学试卷参考答案与试题解析一、单项选择题(每小题4分,共60分).1.sin60°的相反数是( )A.B.C.D.考点:特殊角的三角函数值。
教学课题直方图教学目标 1.理解频数、频数分布的意义,学会制作频数分布表;2.学会画频数分布直方图和频数折线图, 并能用频数分布直方图解释数据中蕴含的信息,进一步体会统计图表在描述数据中的作用;教学重难点重点:会画频数分布直方图;难点:分层抽样方案的制定, 确定组距和组数;知识点一:频数、频率和频数分布表1.一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量.公式:,由以上公式还可得出两个变形公式:(1)频数=频率×数据总数.(2).注意:(1)所有频数之和一定等于总数;(2)所有频率之和一定等于1.2.数据的频数分布表反映了一组数据中的每个数据出现的频数,从而反映了在一组数据中各数据的分布情况。
要全面地掌握一组数据,必须分析这组数据中各个数据的分布情况.知识点二、频数分布直方图与频数折线图1.在描述和整理数据时,往往可以把数据按照数据的范围进行分组,整理数据后可以得到频数分布表,在平面直角坐标系中,用横轴表示数据范围,纵轴表示各小组的频数,以各组的频数为高画出与这一组对应的矩形,得到频数分布直方图.2.条形图和直方图的异同:直方图是特殊的条形图,条形图和直方图都易于比较各数据之间的差别,能够显示每组中的具体数据和频率分布情况.直方图与条形图不同,条形图是用长方形的高(纵置时)表示各类别(或组别)频数的多少,其宽度是固定的;直方图是用面积表示各组频数的多少(等距分组时可以用长方形的高表示频数),长方形的宽表示各组的组距,各长方形的高和宽都有意义. 此外由于分组数据都有连续性,直方图的各长方形通常是连续排列,中间没有空隙,而条形图是分开排列,长方形之间有空隙.3.频数折线图的制作一般都是在频数分布直方图的基础上得到的,具体步骤是:首先取直方图中每一个长方形上边的中点;然后再在横轴上取两个频数为0的点(直方图最左及最右两边各取一个,它们分别与直方图左右相距半个组距);最后再将这些点用线段依次连接起来,就得到了频数折线图.4.频数分布直方图的画法:(1)找到这一组数据的最大值和最小值;(2)求出最大值与最小值的差;(3)确定组距,分组;(4)列出频数分布表;(5)由频数分布表画出频数分布直方图.5.画频数分布直方图的注意事项:(1)分组时,不能出现数据中同一数据在两个组中的情况,为了避免,通常分组时,比题中要求数据单位多一位. 例如:题中数据要求到整数位,分组时要求数据到0.5即可.(2)组距和组数的确定没有固定的标准,要凭借数据越多,分成的组数也就越多,当数据在100以内时,根据数据的多少通常分成5~12组.一、选择题1. 要了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的( ) A .平均数 B .方差 C .众数 D .频数分布2. 下列说法正确的是 ( ) A .频数是表示所有对象出现的次数 B .频率是表示每个对象出现的次数C .所有频率之和等于1;D .频数和频率都不能够反映每个对象出现的频繁程度3.小敏统计了全班50名同学最喜欢的学科(每个同学只选一门学科).统计结果显示:最喜欢数学和科学的频数分别是13和10.最喜欢语文和英语的人数的频率分别是0.3和0.2,其余的同学最喜欢社会,则下列叙述错误的是 ( ) A 最喜欢语文的人数最多 B .最喜欢社会的人数最少 C 最喜欢数学的人数和最喜欢语文的人数之和超过总人数的一半 D .最喜欢科学的人数比最喜欢英语的人数要少4. 一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.20,则第6组的频数是 ( ) A. 10 B. 11 C. 12 D. 155. 在一次班干部选举中,某同学的得票数没有超过半数,说明他所得票数的频率( ) A .大于0.5 B .等于0.5 C .小于0.5 D .小于或等于0.56. 已知20个数据如下:25 21 29 30 24 25 29 28 27 23 27 26 22 24 28 26 25 23 25 27对这些数据进行分析,其中24.5~26.5这一组的频率是( ) A .0.40 B .0.30 C .0.55 D .0.25 7. 已知样本容量为30,在样本分布直方图中各小长方形的高的比依次为2:4:3:1,则第二小组的频数为( ) A. 4 B. 12 C. 9 D. 88. 在样本的频数分布直方图中,共有11个小长方形,若中间一个小长方形的频率等于其他10个小长方形的频率的和的41,且样本容量是160,则中间一组的频数是( ) A. 32 B. 0.2 C. 40 D. 0.25 9. 某校测量了初三(1)班学生的身高(精确到1cm ),按10cm 为一段进行分组,得到如图频数分布直方图,则下列说法正确的是( )A .该班人数最多的身高段的学生数为7人;B .该班身高低于160.5cm 的学生人数为15人;C .该班身高最高段的学生数为20人;D .该班身高最高段的学生数为7人10 超市为了制定某个时间段收银台开放方案,统计了这个时间段本超市顾客在收银台排队付款的等待时间,图. 如下表和图所示:分组频数频率0.5~50.5 ()①0.150.5~()②20 0.2100.5~150.5 ()③0.25150.5~200.5 30 0.3200.5~250.5 10 0.1250.5~300.5 5 0.05合计100 ()④请结合图形完成下列问题:,则这个矩形的面积是;这次调查的样本容量是.①该校语文组调查了名学生的课外阅读量;②左边第一组的频数=,频率=。
七年级数学期末考试测试题及答案参考关于七年级数学期末考试测试题及答案参考一、选择题(本题共10小题,每小题3分,共30分)1.(3分)下列各数:、、0.101001…(中间0依次递增)、﹣π、是无理数的有( )A. 1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数的定义(无理数是指无限不循环小数)判断即可.解答:解:无理数有,0.101001…(中间0依次递增),﹣π,共3个,2.(3分)(2001 北京)已知:如图AB∥CD,CE平分∠ACD,∠A=110°,则∠ECD等于( )A. 110°B. 70°C. 55°D. 35°考点:平行线的性质;角平分线的定义.专题:计算题.分析:本题主要利用两直线平行,同旁内角互补,再根据角平分线的概念进行做题.解答:解:∵AB∥CD,根据两直线平行,同旁内角互补.得:∴∠ACD=180°﹣∠A=70°.3.(3分)下列调查中,适宜采用全面调查方式的是( )A. 了解我市的空气污染情况B. 了解电视节目《焦点访谈》的收视率C. 了解七(6)班每个同学每天做家庭作业的时间D. 考查某工厂生产的一批手表的防水性能考点:全面调查与抽样调查.分析:由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.解答:解:A、不能全面调查,只能抽查;B、电视台对正在播出的某电视节目收视率的调查因为普查工作量大,适合抽样调查;C、人数不多,容易调查,适合全面调查;4.(3分)一元一次不等式组的解集在数轴上表示为( )A. B. C. D.考点:在数轴上表示不等式的解集;解一元一次不等式组.分析:分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.解答:解:,由①得,x<2,由②得,x≥0,故此不等式组的解集为:0≤x<2,5.(3分)二元一次方程2x+y=8的正整数解有( )A. 2个B. 3个C. 4个D. 5个考点:解二元一次方程.专题:计算题.分析:将x=1,2,3,…,代入方程求出y的值为正整数即可.解答:解:当x=1时,得2+y=8,即y=6;当x=2时,得4+y=8,即y=4;当x=3时,得6+y=8,即y=2;6.(3分)若点P(x,y)满足xy<0,x<0,则P点在( )A. 第二象限B. 第三象限C. 第四象限D. 第二、四象限考点:点的坐标.分析:根据实数的性质得到y>0,然后根据第二象限内点的坐标特征进行判断.解答:解:∵xy<0,x<0,7.(3分)如图,AB∥CD,∠A=125°,∠C=145°,则∠E的度数是( )A. 10°B. 20°C. 35°D. 55°考点:平行线的性质.分析:过E作EF∥AB,根据平行线的性质可求得∠AEF和∠CEF的度数,根据∠E=∠AEF﹣∠CEF即可求得∠E的度数.解答:解:过E作EF∥AB,∵∠A=125°,∠C=145°,∴∠AEF=180°﹣∠A=180°﹣125°=55°,∠CEF=180°﹣∠C=180°﹣145°=35°,8.(3分)已知是方程组的解,则是下列哪个方程的解( )A. 2x﹣y=1B. 5x+2y=﹣4C. 3x+2y=5D. 以上都不是考点:二元一次方程组的解;二元一次方程的解.专题:计算题.分析:将x=2,y=1代入方程组中,求出a与b的值,即可做出判断.解答:解:将方程组得:a=2,b=3,将x=2,y=3代入2x﹣y=1的左边得:4﹣3=1,右边为1,故左边=右边,9.(3分)下列各式不一定成立的是( )A. B. C. D.考点:立方根;算术平方根.分析:根据立方根,平方根的定义判断即可.解答:解:A、a为任何数时,等式都成立,正确,故本选项错误;B、a为任何数时,等式都成立,正确,故本选项错误;C、原式中隐含条件a≥0,等式成立,正确,故本选项错误;10.(3分)若不等式组的整数解共有三个,则a的取值范围是( )A. 5考点:一元一次不等式组的整数解.分析:首先确定不等式组的解集,利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a 的不等式,从而求出a的范围.解答:解:解不等式组得:2∵不等式组的整数解共有3个,二、填空题(本题共8小题,每小题3分,共24分)11.(3分)(2009 恩施州)9的算术平方根是 3 .考点:算术平方根.分析:如果一个非负数x的平方等于a,那么x是a的算术平方根,根据此定义即可求出结果.解答:解:∵32=9,12.(3分)把命题“在同一平面内,垂直于同一条直线的两条直线互相平行”写出“如果…,那么…”的形式是:在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行 .考点:命题与定理.分析:根据命题题设为:在同一平面内,两条直线都垂直于同一条直线;结论为这两条直线互相平行得出即可.解答:解:“在同一平面内,垂直于同一条直线的两条直线互相平行”改写成“如果﹣﹣﹣,那么﹣﹣﹣”的形式为:“在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线互相平行”.13.(3分)将方程2x+y=25写成用含x的代数式表示y的形式,则y= 25﹣2x .考点:解二元一次方程.分析:把方程2x+y=25写成用含x的式子表示y的形式,需要把含有y的项移到方程的左边,其它的项移到另一边即可.此题直接移项即可.14.(3分)不等式x+4>0的最小整数解是﹣3 .考点:一元一次不等式的整数解.分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.解答:解:x+4>0,x>﹣4,则不等式的解集是x>﹣4,15.(3分)某校在“数学小论文”评比活动中,共征集到论文60篇,并对其进行了评比、整理,分成组画出频数分布直方图(如图),已知从左到右5个小长方形的高的比为1:3:7:6:3,那么在这次评比中被评为优秀的论文有(分数大于或等于80分为优秀且分数为整数) 27 篇.考点:频数(率)分布直方图.分析:根据从左到右5个小长方形的高的比为1:3:7:6:3和总篇数,分别求出各个方格的篇数,再根据分数大于或等于80分为优秀且分数为整数,即可得出答案.解答:解:∵从左到右5个小长方形的高的比为1:3:7:6:3,共征集到论文60篇,∴第一个方格的篇数是:×60=3(篇);第二个方格的篇数是:×60=9(篇);第三个方格的篇数是:×60=21(篇);第四个方格的篇数是:×60=18(篇);第五个方格的篇数是:×60=9(篇);∴这次评比中被评为优秀的论文有:9+18=27(篇);16.(3分)我市A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨,求去年A、B两煤矿原计划分别产煤多少万吨设A、B两煤矿原计划分别产煤x万吨,y万吨;请列出方程组 .考点:由实际问题抽象出二元一次方程组.分析:利用“A、B两煤矿去年计划产煤600万吨,结果A煤矿完成去年计划的115%,B煤矿完成去年计划的120%,两煤矿共产煤710万吨”列出二元一次方程组求解即可.解答:解:设A矿原计划产煤x万吨,B矿原计划产煤y万吨,根据题意得:17.(3分)在平面直角坐标系中,已知线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,则端点B的坐标是 (﹣5,4)或(3,4) .考点:坐标与图形性质.分析:根据线段AB∥x轴,则A,B两点纵坐标相等,再利用点B可能在A点右侧或左侧即可得出答案.解答:解:∵线段AB∥x轴,端点A的坐标是(﹣1,4)且AB=4,∴点B可能在A点右侧或左侧,18.(3分)若点P(x,y)的坐标满足x+y=xy,则称点P为“和谐点”,如:和谐点(2,2)满足2+2=2×2.请另写出一个“和谐点”的坐标 (3, ) .考点:点的坐标.专题:新定义.分析:令x=3,利用x+y=xy可计算出对应的y的值,即可得到一个“和谐点”的坐标.解答:解:根据题意得点(3, )满足3+ =3× .三、解答题(本大题共46分)19.(6分)解方程组 .考点:解二元一次方程组.分析:先根据加减消元法求出y的值,再根据代入消元法求出x 的值即可.解答:解:,①×5+②得,2y=6,解得y=3,20.(6分)解不等式:,并判断是否为此不等式的解.考点:解一元一次不等式;估算无理数的大小.分析:首先去分母、去括号、移项合并同类项,然后系数化成1即可求得不等式的解集,然后进行判断即可.解答:解:去分母,得:4(2x+1)>12﹣3(x﹣1)去括号,得:8x+4>12﹣3x+3,移项,得,8x+3x>12+3﹣4,合并同类项,得:11x>11,解不等式要依据不等式的基本性质,在不等式的两边同时加上或减去同一个数或整式不等号的方向不变;在不等式的两边同时乘以或除以同一个正数不等号的方向不变;在不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(6分)学着说点理,填空:如图,AD⊥BC于D,EG⊥BC于G,∠E=∠1,可得AD平分∠BAC.理由如下:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,( 垂直定义 )∴AD∥EG,( 同位角相等,两直线平行 )∴∠1=∠2,( 两直线平行,内错角相等 )∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)∴ ∠2 = ∠3 (等量代换)∴AD平分∠BAC( 角平分线定义 )考点:平行线的判定与性质.专题:推理填空题.分析:根据垂直的定义及平行线的性质与判定定理即可证明本题.解答:解:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,(垂直定义)∴AD∥EG,(同位角相等,两直线平行)∴∠1=∠2,(两直线平行,内错角相等)∠E=∠3,(两直线平行,同位角相等)又∵∠E=∠1(已知)22.(8分)在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的.坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系;(2)请把△ABC先向右移动5个单位,再向下移动3个单位得到△A′B′C′,在图中画出△A′B′C′;(3)求△ABC的面积.考点:作图-平移变换.分析: (1)根据A点坐标,将坐标轴在A点平移到原点即可;(2)利用点的坐标平移性质得出A,′B′,C′坐标即可得出答案;(3)利用矩形面积减去周围三角形面积得出即可.解答:解:(1)∵点A的坐标为(﹣4,5),∴在A点y轴向右平移4个单位,x轴向下平移5个单位得到即可;(2)如图所示:△A′B′C′即为所求;(3)△ABC的面积为:3×4﹣×3×2﹣×1×2﹣×2×4=4.23.(10分)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有若干名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A、B、C、D四等,并绘制成下面的频数分布表(注:5~10的意义为大于等于5分且小于10分,其余类似)和扇形统计图(如图).等级分值跳绳(次/1分钟) 频数A 12.5~15 135~160 mB 10~12.5 110~135 30C 5~10 60~110 nD 0~5 0~60 1(1)m的值是 14 ,n的值是 30 ;(2)C等级人数的百分比是 10% ;(3)在抽取的这个样本中,请说明哪个分数段的学生最多(4)请你帮助老师计算这次1分钟跳绳测试的及格率(10分以上含10分为及格).考点:扇形统计图;频数(率)分布表.分析: (1)首先根据B等级的人数除以其所占的百分比即可求得总人数,然后乘以28%即可求得m的值,总人数减去其他三个小组的频数即可求得n的值;(2)用n值除以总人数即可求得其所占的百分比;(3)从统计表的数据就可以直接求出结论;(4)先计算10分以上的人数,再除以50乘以100%就可以求出结论.解答:解:(1)观察统计图和统计表知B等级的有30人,占60%,∴总人数为:30÷60%=50人,∴m=50×28%=14人,n=50﹣14﹣30﹣1=5;(2)C等级所占的百分比为:×100%=10%;(3)B等级的人数最多;(4)及格率为:×100%=88%.24.(10分)(2016 益阳)为响应市政府“创建国家森林城市”的号召,某小区计划购进A、B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元.(1)若购进A、B两种树苗刚好用去1220元,问购进A、B两种树苗各多少棵(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用.考点:一元一次不等式的应用;一元一次方程的应用.专题:压轴题.分析:(1)假设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,利用购进A、B两种树苗刚好用去1220元,结合单价,得出等式方程求出即可;(2)结合(1)的解和购买B种树苗的数量少于A种树苗的数量,可找出方案.解答:解:(1)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:80x+60(17﹣x )=1220,解得:x=10,∴17﹣x=7,答:购进A种树苗10棵,B种树苗7棵;(2)设购进A种树苗x棵,则购进B种树苗(17﹣x)棵,根据题意得:17﹣x解得:x>,购进A、B两种树苗所需费用为80x+60(17﹣x)=20x+1020,则费用最省需x取最小整数9,此时17﹣x=8,这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A种树苗9棵,B种树苗8棵.这时所需费用为1200元.【关于七年级数学期末考试测试题及答案参考】。
中考数学统计题大题1.我校初2016级举行了初三体育测试,现随机抽取了部分学生的成绩为样本,按A (优秀)、B(良好)、C(及格)、D(不及格)四个等级进行统计,并将统计结果制成如下统计图.如图,请你结合图表所给信息解答下列问题:(1)本次调查共随机抽取了名学生,其中∠1= ;(2)将条形统计图在图中补充完整;(3)初2016级目前举行了四次体育测试.小新同学第一次成绩为25分,第三次测试成绩为36分,若每次体育期末考试小欣体育成绩的增长率相同,求出这个增长率.2.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.3.为了培养学生的阅读习惯,某校开展了“读好书,助成长”系列活动,并准备购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,根据统计图所提供的信息,回答下列问题:(1)本次调查共抽查了名学生,两幅统计图中的m= ,n= .(2)已知该校共有960名学生,请估计该校喜欢阅读“A”类图书的学生约有多少人?(3)如图,扇形统计图中,喜欢D类型图书的学生所占的圆心角是多少度?4.某地为提倡节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费,为更好地决策,自来水公司随机抽取部分用户的用适量数据,并绘制了如下不完整统计图(每组数据包括右端点但不包括左端点),请你根据统计图解决下列问题:(1)此次调查抽取了多少用户的用水量数据?(2)补全频数分布直方图,求扇形统计图中“25吨~30吨”部分的圆心角度数;(3)如果自来水公司将基本用水量定为每户25吨,那么该地20万用户中约有多少用户的用水全部享受基本价格?5.为了解某中学九年级学生中考体育成绩情况,现从中抽取部分学生的体育成绩进行分段(A:50分、B:49~40分、C:39~30分、D:29~0分)统计,统计结果如图所示.根据上面提供的信息,回答下列问题:(1)本次抽查了多少名学生的体育成绩;(2)补全图9.1,求图9.2中D分数段所占的百分比;(3)已知该校九年级共有900名学生,请估计该校九年级学生体育成绩达到40分以上(含40分)的人数.6.某中学对本校学生每天完成作业所用时间的情况进行抽样调查,随机调查了九年级部分学生每天完成作业所用的时间,并把统计结果制作成如图所示的频数分布直方图(时间取整数,图中从左至右依次为第一、二、三、四、五组)和扇形统计图.请结合图中信息解答下列问题.(1)本次调查的学生人数为人;(2)补全频数分布直方图;(3)根据图形提供的信息判断,下列结论正确的是(只填所有正确结论的代号);A.由图(1)知,学生完成作业所用时间的中位数在第三组内B.由图(1)知,学生完成作业所用时间的众数在第三组内C.图(2)中,90~120数据组所在扇形的圆心角为108°D.图(1)中,落在第五组内数据的频率为0.15(4)学生每天完成作业时间不超过120分钟,视为课业负担适中.根据以上调查,估计该校九年级560名学生中,课业负担适中的学生约有多少人?7.为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动,对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计表和统计图(图中信息不完整).已知A、B两组捐款户数的比为1:5.请结合以上信息解答下列问题.(1)a= ,本次调查样本的容量是;(2)补全“捐款户数分组统计表和捐款户数统计图1”;(3)若该社区有1500户住户,请根据以上信息估计,全社区捐款不少于150元的户数是多少?8.从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气.某市记者为了了解”雾霾天气的主要原因“,随机调查了该市部分市民,并对调查结果进行整理.绘制了如下尚不完整的统计图表.请根据图表中提供的信息解答下列问题:(1)填空:m= ,n= .扇形统计图中E组所占的百分比为 %;(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?9.某校计划开设4门选修课:音乐、绘画、体育、舞蹈,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门),对调查结果进行统计后,绘制了如下不完整的两个统计图.根据以上统计图提供的信息,回答下列问题:(1)此次调查抽取的学生人数为a= 人,其中选择“绘画”的学生人数占抽样人数的百分比为b= ;(2)补全条形统计图;(3)若该校有2000名学生,请估计全校选择“绘画”的学生大约有多少人?10.为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是“你平均每天参加体育活动的时间是多少”,共有4个选项:A 1.5小时以上;B 1~1.5小时;C 0.5~1小时;D 0.5小时以下.图1、2是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:(1)本次一共调查了多少名学生?(2)在图1中将选项B的部分补充完整;(3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.11.(10分)居民区内的“广场舞”引起媒体关注,小王想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A.非常赞同;B.赞同但要有时间限制;C.无所谓;D.不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.12.为了解某学校学生的个性特长发展情况,在全校范围内随机抽查了部分学生参加音乐、体育、美术、书法等活动项目(每人只限一项)的情况.并将所得数据进行了统计,结果如图所示.(1)求在这次调查中,一共抽查了多少名学生;(2)求出扇形统计图中参加“音乐”活动项目所对扇形的圆心角的度数;(3)若该校有2400名学生,请估计该校参加“美术”活动项目的人数13.居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A 非常赞同;B 赞同但要有时间限制;C 无所谓;D 不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.14.某校九年级(1)班所有学生参加2015年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:(1)九年级(1)班参加体育测试的学生有人;(2)将条形统计图补充完整;(3)在扇形统计图中,等级B部分所占的百分比是,等级C对应的圆心角的度数为;(4)若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有人.15.某中学为了预测本校应届毕业女生“一分钟跳绳”项目考试情况,从九年级随机抽取部分女生进行该项目测试,并以测试数据为样本,绘制出如图所示的部分频数分布直方图(从左到右依次分为六个小组,每小组含最小值,不含最大值)和扇形统计图.根据统计图提供的信息解答下列问题:(1)补全频数分布直方图,并指出这个样本数据的中位数落在第小组;(2)若测试九年级女生“一分钟跳绳”次数不低于130次的成绩为优秀,本校九年级女生共有260人,请估计该校九年级女生“一分钟跳绳”成绩为优秀的人数;(3)如测试九年级女生“一分钟跳绳”次数不低于170次的成绩为满分,在这个样本中,从成绩为优秀的女生中任选一人,她的成绩为满分的概率是多少?16.雾霾天气严重影响市民的生活质量.在去年寒假期间,某校八年级一班的综合实践小组同学对“雾霾天气的主要成因”随机调查了所在城市部分市民.并对调查结果进行了整理.绘制了如图不完整的统计图表.观察分析并回答下列问题.(1)本次被调查的市民共有多少人?(2)求m、n的值,并计算图2中区域B所对应的扇形圆心角的度数;(3)若该市有100万人口,请估计持有A、B两组主要成因的市民有多少人?17.某市对教师试卷讲评课中学生参与的深度和广度进行评价,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初中生的参与情况,绘制了如下两幅不完整的统计图,请根据图中所给的信息解答下列问题:(1)这次评价中,一共抽查了名学生;(2)请将条形统计图补充完整;(3)如果全市有16万初中学生,那么在试卷讲评课中,“独立思考”的学生约有多少万人?18.为了解中考体育科目训练情况,某县从全县九年级学生中随机抽取了部分学生进行了一次中考体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如下两幅不完整的统计图.请根据统计图中的信息解答下列问题:(1)本次抽样测试的学生人数是,其中不及格人数占样本人数的百分比为;(2)图1中∠α的度数是,并把图2条形统计图补充完整;(3)测试老师想从4位同学(分别记为E、F、G、H,其中E为小明)中随机选择两位同学了解平时训练情况,请用列表或画树形图的方法求出选中小明的概率.19.某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.解答下列问题:(1)这次抽样调查的样本容量是,并补全频数分布直方图;(2)C组学生的频率为,在扇形统计图中D组的圆心角是度;(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?20.为了解某种电动汽车的性能,对这种电动汽车进行了抽检,将一次充电后行驶的里程数分为A,B,C,D四个等级,其中相应等级的里程依次为200千米,210千米,220千米,230千米,获得如下不完整的统计图.根据以上信息,解答下列问题:(1)问这次被抽检的电动汽车共有几辆?并补全条形统计图;(2)估计这种电动汽车一次充电后行驶的平均里程数为多少千米?21.一个不透明的口袋中装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制成如下不完整的条形统计图和扇形统计图.根据以上信息解答下列问题:(1)求实验总次数,并补全条形统计图;(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.22.保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:根据图表解答下列问题:(1)请将图2﹣条形统计图补充完整;(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于度;(3)在抽样数据中,产生的有害垃圾共有吨;(4)调查发现,在可回收物中废纸垃圾约占,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?23.居民区内的“广场舞”引起媒体关注,辽宁都市频道为此进行过专访报道.小平想了解本小区居民对“广场舞”的看法,进行了一次抽样调查,把居民对“广场舞”的看法分为四个层次:A 非常赞同;B 赞同但要有时间限制;C 无所谓;D 不赞同.并将调查结果绘制了图1和图2两幅不完整的统计图.请你根据图中提供的信息解答下列问题:(1)求本次被抽查的居民有多少人?(2)将图1和图2补充完整;(3)求图2中“C”层次所在扇形的圆心角的度数;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B层次)的大约有多少人.24.近年来,中学生的身体素质普遍下降,某校为了提高本校学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,对部分学生的每天体育锻炼时间进行了调查统计.以下是本次调查结果的统计表和统计图.(1)本次被调查的学生数是人;(2)统计表中a的值为;(3)各组人数的众数是;(4)根据调查结果,请你估计该校2400名学生中每天体育锻炼时间不少于1小时的学生人数.25.为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)在这次调查中共调查了多少名学生?(2)求户外活动时间为1.5小时的人数,并补充频数分布直方图;(3)求表示户外活动时间1小时的扇形圆心角的度数;(4)本次调查中学生参加户外活动的平均时间是否符合要求?户外活动时间的众数和中位数是多少?参考答案1.(1)100,72°;(2)见解析;(3)增长率为20%.2.(1)40;(2)10;20;72;(3)P(恰好是1男1女)=.3.(1)120;48;15;(2)336人;(3)喜欢D类型图书的学生所占的圆心角是36度.4.(1)此次调查抽取了100户用户的用水量数据;(2)补全频数分布直方图见解析,扇形统计图中“25吨~30吨”部分的圆心角度数为90°;(3)该地20万用户中约有13.2万户居民的用水全部享受基本价格.5.(1)500人;(2)不全条形图见解析;12%;(3)504人.6.(1)60;(2)补全的频数分布直方图见解析;(3)ACD.(4)九年级学生中,课业负担适中的学生约为336人.7.(1)2,50;(2)见解析;(3)全社区捐款户数不少于150元的户数为540户.8.(1)40,100,15%;(2)30万人(3)9.(1)100;40%;(2)不全条形图见解析;(3)估计全校选择“绘画”的学生大约有800人.10.(1)本次一共调查了200位学生;(2)画图见解析;(3)学校有150人平均每天参加体育锻炼在0.5小时以下.11.(1)、300人;(2)、答案见解析;(3)、72°;(4)、2800人.12.(1)、48;(2)、90°;(3)、300.13.(1)、300人;(2)、答案见解析;(3)、72°;(4)、2800人.14.(1)、50;(2)、答案见解析;(3)、40%;72;(4)、595.15.(1)中位数位于第三组(2)104人(3)0.2.16.(1)200人;(2)108°;(3)估计持有A、B两组主要成因的市民有75万人.17.(1)560;(2)补图参见解析;(3)4.8万人.18.(1)40;20%;(2)54°;(3)12.19.(1)50;(2)0.32;72.(3)360人20.(1)100(辆),见解析(2)217千米.21.(1)200次,见解析;(2)144°;(3)口袋中绿球有2个.22.(1)见解析;(2)36°;(3)3(吨);(4)918(吨).23.(1)本次被抽查的居民有300人;(2)见解析;(3)“C”层次所在扇形的圆心角的度数为72°;(4)估计该小区4000名居民中对“广场舞”的看法表示赞同(包括A层次和B 层次)的大约有2800人.24.(1)120;(2)42;(3)42;(4)1560人.25.(1)50(人);(2)12(人);见解析(3)144°;(4)平均活动时间符合上级要求;户外活动时间的众数和中位数均为1小时.。
青岛版九年级下册数学第6章频率与概率含答案一、单选题(共15题,共计45分)1、下列事件,是必然事件的是()A.明天是阴天B.掷一枚均匀的普通正方形骰子,骰子停止后朝上的点数是奇数C.打开电视,正在播放天气预报D.多边形的外角的和是360°2、在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是()A.随着抛掷次数的增加,正面朝上的频率越来越小B.当抛掷的次数很大时,正面朝上的次数一定占总抛掷次数的C.不同次数的试验,正面朝上的频率可能会不相同D.连续抛掷11次硬币都是正面朝上,第12次抛掷出现正面朝上的概率小于3、一个不透明的盒子中放有4个白色乒乓球和2个黄色乒乓球,所有乒乓球除颜色外完全相同,从中随机摸出1个乒乓球,摸出黄色乒乓球的概率为()A. B. C. D.4、下列事件中,属于必然事件的是 ( )A.随机抛一枚硬币,落地后国徽的一面一定朝上B.打开电视任选一频道,正在播放北京新闻C.一个袋中只装有5个黑球,从中摸出一个球是黑球D.某种彩票的中奖率是10%,则购买该种彩票100张一定中奖5、下列说法正确的是()A.为了检测一批电池使用时间的长短,应该采用全面调查的方法B.方差反映了一组数据的波动大小,方差越大,波动越大C.打开电视正在播放新闻节目是必然事件D.为了了解某县初中学生的身体情况,从八年级学生中随机抽取50名学生作为总体的一个样本6、一个十字路口的交通信号灯每分钟红灯亮30s,绿灯亮25s,黄灯亮5s,当你抬头看信号灯时,是绿灯的概率是()A. B. C. D.7、在做抛硬币试验时,甲、乙两个小组画出折线统计图后发现频率的稳定值分别是50.00%和50.02%,则下列说法错误是()A.乙同学的试验结果是错误的B.这两种试验结果都是正确的C.增加试验次数可以减小稳定值的差异D.同一个试验的稳定值不是唯一的8、下列事件中,随机事件是()A.太阳从东方升起B.掷一枚骰子,出现6点朝上C.袋中有3个红球,从中摸出白球D.若a是正数,则﹣a是负数9、在一个不透明的口袋中装有10个除了颜色外均相同的小球,其中5个红球,3个黑球,2个白球,从中任意摸出一球是红球的概率是()A. B. C. D.10、某校为了了解九年级学生的体能情况,抽调了一部分学生进行一分钟跳绳测试,将测试成绩整理后作出如下统计图.甲同学计算出前两组的频率和是0.12,乙同学计算出跳绳次数不少于100次的同学占96%,丙同学计算出从左至右第二、三、四组的频数比为4:17:15,统计图如图所示,则本次测试共抽调人数为()A.120B.150C.180D.无法确定11、下列事件中,属于必然事件的是()A.抛掷一枚1元硬币落地后,有国徽的一面向上B.打开电视任选一频道,正在播放新闻联播C.到一条线段两端点距离相等的点在该线段的垂直平分线上D.某种彩票的中奖率是10%,则购买该种彩票100张一定中奖12、对“某市明天下雨的概率是75%”这句话,理解正确的是()A.某市明天将有75%的时间下雨B.某市明天将有75%的地区下雨C.某市明天一定下雨D.某市明天下雨的可能性较大13、红红和娜娜按如图所示的规则玩一次“锤子、剪刀、布”游戏,下列命题中错误的是()A.红红不是胜就是输,所以红红胜的概率为B.红红胜或娜娜胜的概率相等C.两人出相同手势的概率为D.娜娜胜的概率和两人出相同手势的概率一样14、义乌国际小商品博览会某志愿小组有五名翻译,其中一名只会翻译阿拉伯语,三名只会翻译英语,还有一名两种语言都会翻译.若从中随机挑选两名组成一组,则该组能够翻译上述两种语言的概率是().A. B. C. D.15、以下说法合理的是()A.小明做了3次掷图钉的实验,发现2次钉尖朝上,由此他说钉尖朝上的概率是B.某彩票的中奖概率是5%,那么买100张彩票一定有5张中奖 C.某射击运动员射击一次只有两种可能的结果:中靶与不中靶,所以他击中靶的概率是 D.小明做了3次掷均匀硬币的实验,其中有一次正面朝上,2次正面朝下,他认为再掷一次,正面朝上的概率还是二、填空题(共10题,共计30分)16、在一副扑g牌(张)中任意抽出一张是红桃的概率是________,任意抽出一张是方块的概率是________.17、从2,-2,-1这三数中任取两个不同数作为点坐标,则该点在第二象限的概率为________.18、为了解某区24000名初中生平均每天的体锻时间,随机调查了该区300名初中生.如图是根据调查结果绘制成的频数分布直方图(每小组数据含最小值,不含最大值),由此可估计该区初中生平均每天的体锻时间不少于1.5小时的人数大约为________人.19、一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是________ .20、一个不透明的袋子中装有黑、白小球各两个,这些小球除颜色外无其他差别,从袋子中随机摸出两个小球,则摸出的小球都是黑球的概率为________.21、学校组织“中华经典诗词大赛”,共设有20个试题,其中有关“诗句理解”的试题10个,有关“诗句作者”的试题6个,有关“诗句默写”的试题4个,小杰从中任选一个试题作答,他选中有关“诗句作者”的试题的概率是________.22、如图,随机地闭合开关S1, S2, S3, S4, S5中的三个,能够使灯泡L 1, L2同时发光的概率________.23、在一个不透明的口袋中,装有4个红球和6个白球,除顔色不同外其余都相同,从口袋中任意摸一个球摸到的是红球的概率为________24、口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是________.25、已知一个样本容量为60,在频数分布直方图中,各小长方形的高比为2:4:1:3,那么第二组的频数是________.三、解答题(共5题,共计25分)26、有3个完全相同的小球,把它们分别标号为1,2,3,放在一个不透明的口袋中,从口袋中随机摸出一个小球,记下标号后放回,再从口袋中随机摸出一个小球,记下标号.用画树状图(或列表)的方法,求两次摸出的小球号码恰好都大于1的概率.27、一个不透明的口袋中有三个完全相同的小球,把他们分别标号为1,2,3.随机摸取一个小球然后放回,再随机摸出一个小球.用列表或画树状图的方法,求两次取出的小球标号相同的概率.28、甲、乙、丙三个盒子中分别装有除颜色外都相同的小球,甲盒中装有两个球,分别为一个红球和一个白球;乙盒中装有三个球,分别为两个绿球和一个红球;丙盒中装有两个球,分别为一个红球和一个黄球,从三个盒子中各随机取出一个小球,求这三个球中至少有一个红球的概率.29、大家都玩过“石头、剪刀、布”的游戏吧?要求参与游戏的人同时做出“石头”、“剪刀”、“布”三种手势中一种,规定:“石头”胜“剪刀”,“剪刀”胜“布”,“布”胜“石头”,若手势相同,则不分胜负.如果两个人做这个游戏,随机出手一次,求两个人获胜的概率各是多少?30、亮亮有3张扑g牌.冬冬有2张扑g牌,扑g牌上的数字如图所示。
八年级数学下册《频数分布及其图形》测试卷学校:__________一、选择题1.(2分)大课间活动在我市各校蓬勃开展.某班大课间活动抽查了20名学生每分钟跳绳次数,获得如下数据(单位:次):50,63,77,83,87,88,89,91,93,100,102,111,117,121, 130, 133,146, 158, 177,188.则跳绳次数在90~110这一组的频率是( ) A .0.1B .0.2C .0.3D .0.72.(2分)已知数据 12,-6,-1.2, , ) A .20%B . 40%C .60%D .80%3.(2分)将一个有80个数据的样本经统计分成6组,如果某一组的频率为0.15,那么该组的频数为 ( ) A .12B .1.8C .13.34D .24.(2分)绘制频数分布直方图时,各个小长方形面积占全体小长方形总面积的百分比刚好等于各相应组的 ( ) A .组距B .平均值C .频数D .频率5.(2分)对于频率分布直方图,下列叙述错误的是( ) A .所有小长方形高的和等于lB .每小组的频数与样本容量的比叫做频率C .横轴和纵轴分别表示样本数据和频数D .组距是指每组两端点数据差的绝对值6.(2分)在对100个数据进行整理的频率分布表中,各组的频数之和、频率之和分别等于 ( ) A .100,1B .100,100C .1,100D .1.17.(2分)样本容量是40,共分6组,第1~4组的频数分别是l0,5,7,6,第5组的频率是0.10,则第6组的频率是( ) A .0.25B .O .30C .O .15D .O .208.(2分)已知样本数据个数为30,且被分成4组,各组数据个数之比为2:4:3:1,则第二小组和第三小组的频率分别为()A.0.4和0.3 B.0.4和9 C.12和0.3 D.12和99.(2分)一个容量为50的样本,最大值是l35,最小值是40,取组距为10,则可以分()A.10组B.9组C.8组D.7组10.(2分)数据3,19,35,26,26,97,96的极差为()A.94 B.77 C.9 D.无法确定11.(2分)了解全市八年级学生身高在某一范围内的学生所占比例的大小,需知道相应样本的()A.平均数B.方差C.众数D.频数分布评卷人得分二、填空题12.(3分)在“We like maths.”这个句子的所有字母中,字母“e”出现的频率约为(结果保留2个有效数字).13.(3分)已知一个样本的最大值是182,最小值是130,样本容量不超过100.若取组距为10,则画频数分布直方图时应把数据分成组.14.(3分)容量是80的一个样本,分组后某一小组的频率是0.15,则样本数据在该组的频数是.15.(3分)在相同条件下,对30辆同一型号的汽车进行耗油1 L所行驶路程的试验,根据测得的数据画出频数分布直方图如图所示.本次试验中,耗油1 L所行驶路程在13.8~14.3 km范围内的汽车共有辆.30辆汽车耗油1 L所行驶路程的频数分布直方图16.(3分)已知一个样本容量为40的样本,把它分成七组,第一组到第五组的频数分别为5,12,8,5,6,第六组的频率为0.05,第七组的频率为.17.(3分)如图所示是某班50名学生身高的频数分布折线图,那么组中值为155cm的学生有人,组中值为l65 cm及165 cm以上的学生占全班学生人数的%.18.(3分)某校为了解八年级学生的体能情况,抽取了一部分学生进行1•分钟跳绳次数测试,将所得数据整理后,画出频数分布直方图中各小组的长方形的面积之比是:•2:4:17:15:9:3.第2•组的频数是12,则第2•组的频率是,这次调查共抽取了名学生.19.(3分)某青年棒球队14名队员的年龄如下表:1年龄(岁)192021221人数(人)3722则出现次数最多的年龄是.20.(3分)在一组数据中,其中的两个数为m,n,已知m 比n大10,最小的数比m小l4,最大的数比n大l7,那么这组数据的极差是.评卷人得分三、解答题21.(6分)某生产车间40名工人的日加工零件数(件)如下:30,26,42,41,36,44,40,37,43,35,37,25,45,29,43,31,36,49,34,47, 33,43,48,42,32,25,30,4奄,29,34,38,46,43,39,35,40,48,33,27,28.(1)根据以上数据分成如下5组:25~30,30~35,35~40,40~45,45~50,绘制频数分布表、频数分布直方图和折线图;(2)求工人的平均日加工零件数(取整数).22.(6分)为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量 , 所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如下):身高(cm)人数(个)1815129630 145.5 149.5 153.5 157.5 161.5 165.5 169.5根据以上图表,回答下列问题:(1)M=_______,m=_______,N=_______,n=__________;(2)补全频数分布直方图.23.(6分)为了了解学生的身高情况,抽测了某校17岁学生中50名男生的身高,数据如下:将数据分成7组,组距为3,填写频数分布表,并回答下列问题:(1)样本数据中,17岁男生身高的众数、中位数分别是多少?(2)依据样本数据,估计该校17岁男生身高不低于165cm,且不高于170cm的学生所占比例;(3)指出该校17岁男生中,身高在哪个范围内的频率最大?若该校17岁男生共500人,那么在这个范围内的人数估计是多少人?分组频数频率1.565~1.5951.625~1.6551.685~1.7151.745~1.775合计24.(6分)对30名同学的跳绳测试成绩整理后制作成绩频数分布折线图如下:(1)分布两端虚设的频数为零的两组的组中值分别是和.(2)组中值为80次的频数是,频率是.25.(6分)如图所示是某班学生一次数学考试成绩的统计图,其中纵轴表示学生数,横轴表示分数,观察图形并填空.(1)全班共有学生人;(2)若该班学生此次数学考试成绩组中值不低于70分的组为合格,则合格率为;(3)如果组中值为90的一组成绩为优良,那么该班学生此次数学考试成绩的优良率为;(4)该班此次考试的平均成绩大概是.26.(6分)2008年西宁市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A,B,C,D四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和扇形统计图(如图1).频数分布表等级分值跳绳(次/1分钟)频数A9~10150~17048~9140~15012B7~8130~140176~7120~130mC5~6110~12004~590~110nD3~470~9010~30~700(1)求m n,的值;(2)在抽取的这个样本中,请说明哪个分数段的学生最多?请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).27.(6分)在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交作品的件数按5天一组分组统计,绘制了频率分布直方图,如上图所示,已知从左至右各长方形的高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比?(2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率较高?图1扇形统计图AC DB64%28.(6分)在世界环境日到来之际,希望中学开展了“环境与人类生存”主题研讨活动,活动之一是对我们的生存环境进行社会调查,并对学生的调查报告进行评比,初三(三)班将本班50篇学生调查报告得分进行整理(成绩均为整数),列出了频数分布表,并画出了频数分布直方图如图所示.根据以上信息,回答下列问题:(1)该班90分以上(含90分)的调查报告共有篇;(2)该班被评为优秀等级(80分及80分以上)的调查报告占%;(3)补全频数分布直方图.29.(6分)未成年人思想道德建设越来越受到社会的关注.某青少年研究所随机调查了大连市某校100名学生寒假中花零花钱的数量(钱数取整数元),以便引导学生树立正确的消费观.根据调查数据制成频数分布表和频数分布直方图(如图).某校l00名学生寒假花零花钱数的频数分布表分组(元)频数频率0.5~50.50.150.5~200.2100.5~150.5~200.5300.3200.5~250.5i00.1250.5~300.550.05合计100某校100名学生寒假花零花钱数的频数分布直方图(1)补全频数分布表;(2)在频数分布直方图中,第三组(从左边起)的频数是;这次调查的样本容量是人;(3)在频数分布直方图上画出频数分布折线图;(4)研究所认为,应对消费l50元以上的学生提出勤俭节约的建议.试估计应对该校1000名学生中约多少名学生提出这项建议?30.(6分)从2001年2月21日0时起,中国电信执行新的电话收费标准,其中本地网营业区内通话费是:前3 min为0.2元(不足3 min的按3 min计算),以后每min加收0.1元(不足l min的按l min计算).3月1日,一位学生调查了A,B,C,D,F五位同学某天打本地网营业区内电话的通话时间情况,原始数据如表一:表一A B C D E第一次通话时间3min3min45s3 min55s3min20s6min第二次通话时间04min3min40s4min50sO第三次通话时间O O5min2min O表二时间段(min)频数累计频数O<t≤33<t≤44<t≤55<t≤6(1)问D同学这天的通话费是多少?(2)设通话时间为t(min),试根据表一填写频数(落在某一时间段上的通话次数)分布表(表二);(3)调整前执行的原电话收费标准是:每3min为0.2元(不足3 min的按3 min计算).问:这五位同学这天的实际平均通话费,与用原电话收费标准算出的平均通话费相比,是增多了,还是减少了?若增多,多多少?若减少,少多少?【参考答案】***试卷处理标记,请不要删除一、选择题1.B2.C3.A4.D5.C6.A7.D8.A9.A10.A11.D二、填空题12.0.1813.614.1215.1216.0.0517.15,6018.0.08,150 19.20岁 20.21三、解答题21.(1)略 (2)37件22.(1)60,6,1,0.3;(2)略.23.⑴169cm ,169cm ;⑵54%;⑶该校17岁男生身高在168.5~171.5cm 范围内频率最大,约为0.34,若该校17岁男生共有500人,估计此身高范围内人数为170人. 24.(1)65次,95次;(2)11,113025.(1)40;(2)85%;(3)40%;(4)70分26.解:(1)根据题意,得50(412171)16m n +=-+++=;171006450m+⨯=%%. 则161732m n m +=⎧⎨+=⎩①②,解之,得151m n =⎧⎨=⎩.(2)7~8分数段的学生最多.及格人数412171548=+++=(人),及格率481009650=⨯=%%.答:这次1分钟跳绳测试的及格率为96%.27.⑴60件;⑵第四组上交作品最多,有18件;⑶第六组获奖率较高. 28.⑴21; ⑵76;⑶略.29.(1)略;(2)25,100;(3)略;(4)450人 30.(1)0.9元;(2)略;(3)减少0.08元。
ABC D E F 第2题图 1.为了进一步了解某校九年级学生的身体素质情况,体育老师对该校九年级(1)班50位学生进行一分钟跳绳次数测试,以测试数据为样本,绘制出部分频数分布表和部分频数分布直方图,图表如下所示:请结合图表完成下列问题:(1)求表中a 的值;(2)请把频数分布直方图补充完整;(3)若在一分钟内跳绳次数少于120次的为测试不合格,则该校九年级(1)班学生进行一分钟跳绳不合格的概率是多少?2.如图,分别以Rt △ABC 的直角边AC 及斜边AB 向外作等边△ACD 、等边△ABE 。
已知∠BAC =30º,EF ⊥AB ,垂足为F ,连结DF 。
(1)试说明AC =EF ;(2)求证:四边形ADFE 是平行四边形。
3.深圳市某楼盘准备以每平方米5000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.(1)求平均每次下调的百分率;(2)某人准备以开盘均价购买一套100平方米的房子.开发商还给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,送两年物业管理费.物业管理费是每平方米每月1.5元.请问哪种方案更优惠?4.如图所示,四边形OABC 是矩形,点A 、C 的坐标分别为(3,0),(0,1),点D 是线段BC 上的动点(与端点B 、C 不重合),过点D 作直线y =-12x +b 交折线OAB 于点E . (1)记△ODE 的面积为S ,求S 与b 的函数关系式;(2)当点E 在线段OA 上时,若矩形OABC 关于直线DE 的对称图形为四边形OA 1B 1C 1,试探究OA 1B 1C 1与矩形OABC 的重叠部分的面积是否发生变化,若不变,求出该重叠部分的面积;若改变,请说明理由.5.如图,平面直角坐标系中有一矩形ABCD (O 为原点),点A 、C 分别在x 轴、y 轴上,且C 点坐标为(0,6);将BCD 沿BD 折叠(D 点在OC 边上),使C 点落在OA 边的E 点上,并将BAE 沿BE 折叠,恰好使点A 落在BD 的点F 上.(1)直接写出∠ABE 、∠CBD 的度数,并求折痕BD 所在直线的函数解析式;(2)过F 点作FG ⊥x 轴,垂足为G ,FG 的中点为H ,若抛物线c bx ax y ++=2经过B 、H 、D 三点,求抛物线的函数解析式;(3)若点P 是矩形内部的点,且点P 在(2)中的抛物线上运动(不含B 、D 点),过点P 作PN ⊥BC 分别交BC 和BD 于点N 、M ,设h=PM-MN ,试求出h 与P 点横坐标x 的函数解析式,并画出该函数的简图,分别写出使PM<NM 、PM=MN 、PM>MN成立的x 的取值范围。
第十章数据的收集、整理与描述一.知识框架第一节统计调查一、知识要点:(一)全面调查:考察全体对象的调查方式叫做全面调查。
1、全面调查的步骤:⑴收集数据⇒⑵整理数据(划记法)⇒⑶描述数据(条形图或扇形图等)(二)抽样调查:1、若调查时因考察对象牵扯面较广,调查范围大,不宜采用全面调查,因此,采用抽样调查. 抽样调查只抽取一部分对象进行调查,然后根据调查数据推断全体对象的情况.2、抽样调查的意义:(1)减少统计的工作量;(2)抽样调查是实际工作中应用非常广泛的一种调查方式,它是总体中抽取样本进行调查,根据样本来估计总体的一种调查.3、判断全面调查和抽样调查的方法在于:(1)全面调查是对考察对象的全面调查,它要求对考察范围内所有个体进行一个不漏的逐个准确统计;而抽样调查则是对总体中的部分个体进行调查,以样本来估计总体的情况.(2)注意区分“总体”和“部分”在表述上的差异. 在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小.(三)总体:要考察的全体对象称为总体。
(四)个体:组成总体的每一个考察对象称为个体。
(五)样本:被抽取的所有个体组成一个样本。
(六)样本容量:样本中个体的数目称为样本容量。
二、题型分析:题型一:基本概念考察例1:2007年某县共有4591人参加中考,为了考查这4591名学生的外语成绩,从中抽取了80名学生成绩进行调查,以下说法不正确的是().A、4591名学生的外语成绩是总体;B、此题是抽样调查;C、样本是80名学生的外语成绩;D、样本是被调查的80名学生.例2:为了了解某校九年级400名学生的体重情况,从中抽查了50名学生的体重进行统计分析,在这个问题中,总体是指()A、400名学生B、被抽取的50名学生C、400名学生的体重D、被抽取的50名学生的体重例3:为了考察某市初中3500名毕业生的数学成绩,从中抽出20本试卷,每本30份,在这个问题中,样本容量是()A、3500B、20C、30D、600题型二:调查方法考察例1:下列调查中,适合用普查(全面调查)方法的是().A、电视机厂要了解一批显像管的使用寿命;B、要了解我市居民的环保意识;C、要了解我市“阳山水蜜桃”的甜度和含水量;D、要了解某校数学教师的年龄状况.例2:下列调查中,适宜采用全面调查(普查)方式的是()A、调查一批新型节能灯泡的使用寿命B、调查长江流域的水污染情况C、调查重庆市初中学生的视力情况D、为保证“神舟7号”的成功发射,对其零部件进行检查题型三:样本合格例1:下列抽样调查中抽取的样本合适吗?为什么?(1)数学老师为了了解全班同学数学学习中存在的困难和问题,请数学成绩优秀的10名同学开座谈会;(2)在上海市调查我国公民的受教育程度;(3)在中学生中调查青少年对网络的态度;(4)调查每班学号为5的倍数的学生,以了解学校全体学生的身高和体重;(5)调查七年级中的两位同学,以了解全校学生的课外辅导用书的拥有量.例2:请指出下列抽样调查中,样本缺乏代表性的是()①在某大城市调查我国的扫盲情况;②在十个城市的十所中学里调查我国学生的视力情况;③在一个鱼塘里随机捕了十条鱼,了解鱼塘里鱼的生长情况;④在某一农村小学里抽查100名学生,调查我国小学生的建康状况.A、①②B、①④C、②④D、②③第二节直方图一、知识要点:(一)条形统计图:用一个单位长度表示一定的数量关系,根据数量的多少画成长短不同的条形,条形的宽度必须保持一致,然后把这些条形排列起来,这样的统计图叫做条形统计图. 1、条形统计图的特点:①能够显示每组中的具体数据; ②易于比较数据之间的差别.2、条形统计图的优缺点:条形统计图的优点是能够显示每组中的具体数据,易于比较数据之间的差别,缺点是无法显示每组数据占总体的百分比.3、注意:(1)条形统计图的纵轴一般从0开始,但为了突出数据之间的差别也可以不从0开始,这样既节省篇幅,又能形成鲜明对比;(2)条形图分纵置个横置两种.(二)频数、频率和频数分布表1、一般我们称落在不同小组中的数据个数为该组的频数,频数与数据总数的比为频率. 频率反映了各组频数的大小在总数中所占的分量. 公式:数据总数频数频率=。
10.1 统计调查一、单选题1.下列采用的调查方式中,合适的是()A.为了解东江湖的水质情况,采用抽样调查的方式B.我市某企业为了解所生产的产品的合格率,采用普查的方式C.某小型企业给在职员工做工作服前进行尺寸大小的调查,采用抽样调查的方式D.某市教育部门为了解该市中小学生的视力情况,采用普查的方式2.要调查下列问题,你觉得应该采用全面普查的是()A.检测某城市的空气质量 B.了解全国中学生的视力和用眼卫生情况C.调查某种台灯的使用寿命 D.调查乘坐飞机的旅客是否携带了危禁物品3.某市今年共有6万名考生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析.以下说法:①这种调查采用了抽样调查的方式;②6万名考生是总体;③样本容量是1 000名;④1000名考生的数学成绩是总体的一个样本.其中正确的有( )A.0个B.1个C. 2个D. 3个4.学校需要了解学生眼睛患上近视的情况,下面抽取样本方式比较合适的是()A. 从全校的每个班级中随机抽取几个学生作调查B. 在低年级学生中随机抽取一个班级作调查C. 在学校门口通过观察统计佩戴眼镜的人数D. 从学校的男同学中随机抽取50名学生作调查5.下列调查中,适宜采用普查方式的是( )A.了解一批圆珠笔的寿命B.检查一枚用于发射卫星的运载火箭的各零部件C.考察人们保护海洋的意识D.了解全国九年级学生的身高现状6.为了了解某校300名初三学生的睡眠时间,从中抽取30名学生进行调查,在这个问题中,下列说法正确的是( )A. 300名学生是总体B. 300是众数C. 30名学生是抽取的一个样本D. 30是样本容量7.某同学想了解两条路交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据方法为( )A.查阅资料B.实验C.问卷调查D.观察~月我国新能源乘用车的月销售情况如图所示,则下列说法错误的是( )8.2018年14A. 1月份销售为2.2万辆B.从2月到3月的月销售增长最快C. 4月份销售比3月份增加了1万辆~月新能源乘用车销售逐月增加D. 149.如图是某校举行“校园开放日”活动当天参与各社团人数的百分比统计图,其中参加“生物奥秘”比“趣味化学”社团的人数多20人,则参加社团的总人数有( )A.100人B.200人C. 400人D. 800人二、填空题10.某冷饮店一天售出各种口味雪糕数量的扇形统计图,如图,其中售出红豆口味的雪糕200支,那么售出水果口味雪糕的数量是支.11.为了调查某市中小学生对“营养午餐”的满意程度,适合采用的调查方式是 .(填“全面调查”或“抽样调查")12.据统计,2017年国庆假日期间,我市共接待游客600万人次,其中各景区接待游客人次占总接待游客人次比例如图所示.预计今年国庆假日期间我市总接待游客人次将比去年增长20%,则预计今年国庆假日期间崂山景区将接待游客约为万人次.三、解答题13.为深化课程改革,某校为学生开设了形式多样的社团课程,为了解部分社团课程在学生中受欢迎的程度,学校随机抽取七年级部分学生进行调查,从A:文学鉴赏,B:科学探究C:文史天地,D:趣味数学四门课程中选出你喜欢的课程(被调查者限选一项),并将调查结果绘制成两个不完整的统计图,如图所示,根据以上信息,解答下列问题:(1)本次调查的总人数是多少?扇形统计图中A 部分的圆心角是多少度? (2)请补全条形统计图.14.某校有3000名学生.为了解全校学生的上学方式,该校数学兴趣小组以问卷调查的形式,随机调查了该校部分学生的主要上学方式(参与问卷调查的学生只能从以下六个种类中选择一类),并将调查结果绘制成如下不完整的统计图.根据以上信息,回答下列问题:(1)参与本次问卷调查的学生共有____人,其中选择B 类的人数有____人.(2)在扇形统计图中,求E类对应的扇形圆心角α的度数,并补全条形统计图.,,,这四类上学方式视为“绿色出行”,请估计该校每天“绿色出行”的学生人数.(3)若将A C D E参考答案1.答案:AA、为了解东江湖的水质情况,采用抽样调查的方式,合适;B、我市某企业为了解所生产的产品的合格率,因调查范围广,工作量大采用普查的方式不合适;C、某小型企业给在职员工做工作服前进行尺寸大小的调查,因调查范围小采用抽样调查的方式不合适;D、某市教育部门为了解该市中小学生的视力情况,因调查范围广,采用普查的方式不合适,故选:A.2.答案:DA.应用抽样调查B.应用抽样调查C.应用抽样调查D.应用全面调查3.答案:C某市今年共有6万名考生参加中考,为了了解这6万名考生的数学成绩,从中抽取了1000名考生的数学成绩进行统计分析,①这种调查采用了抽样调查的方式,正确;②6万名考生的数学成绩是总体,故原题错误;③1000名考生的数学成绩是总体的一个样本,正确;④样本容量是1000,故原题错误.故选:C.4.答案:A解:A、从全校的每个班级中随机抽取几个学生作调查适合抽样调查,故A符合题意;故选:A.抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.本题考查了抽样调查,样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.5.答案:B解:A 、了解一批圆珠笔的寿命,调查具有破坏性,适合抽样调查,故A 错误;B 、检查一枚用于发射卫星的运载火箭的各零部件是精确度要求高的调查,适合普查,故B 正确;C 、考察人们保护海洋的意识,调查范围广适合抽样调查,故C 错误;D 、了解全国九年级学生的身高现状,调查范围广适合抽样调查,故D 错误;故选:B . 6.答案:D总体是某校300名初三学生的睡眠时间,样本是抽取的30名学生的睡眠时间,故样本容量是30.所以A,B,C 都错,D 对.故选D. 7.答案:D想了解交叉路口1分钟内各个方向通行的车辆数量,他应采取的收集数据的方法为观察,故选D. 8.答案:D由图可得,1月份销量为2.2万辆,A 正确,从2月到3月的月销量增长最快,B 正确;4月份销量比3月份增加了4.3 3.31-= (万辆),C 正确;以1-2月新能源乘用车销量减少,2-4月新能源乘用车销量逐月增加,D 错误.故选D. 9.答案:C根据条形统计图中的数据,得()2010%5%400=-= (人),则参加社团的总人数有400人. 10.答案:150观察扇形统计田知,售出红豆口味的雪糕40%,∴售出雪糕总量为20040%500÷= (支).水果口味的占30%,∴水果口味的有50030%150⨯= (支). 11.答案:抽样调查要调查某市中小学生对“营养午餐”的满意程度,所费力、物力和时间较多,所以适合采用的调查方式是抽样调查. 12.答案:108今年国庆假日期间总接待游客人次为()600120%720⨯+=(万人次),所以预计今年国庆假日期间崂山景区将接待游客约为72018%11%66%()108⨯=---(万人次). 13.答案:解:(1)由条形统计图、扇形统计图,知喜欢趣味数学的有48人,占调查总人数的30%所以调查总人数为4830%160÷= (人),扇形统计图中A 部分的圆心角为2436054160⨯︒=︒. (2)喜欢“科学探究”的人数16024324856---= (人).补全条形统计图如图所示.14.答案:(1) 参与本次问卷调查的学生共有:16236%450÷= (人); 选择B 类的人数有:4500.1463⨯=. 故答案为:450、63;(2)E 类所占的百分比为:136%14%20%16%4%10%-----= . E 类对应的扇形圆心角α的度数为:36010%36⨯= . 选择C 类的人数为:45020%90⨯= (人). 补全条形统计图为:(3) 估计该校每天“绿色出行”的学生人数为()3000114%4%2460⨯--=人.10.2直方图一.选择题1.“中国梦,我的梦”这句话中,“国”字出现的频率是( ) A .B .C .D .2.在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,则出现反面朝上的频数、频率分别是( ) A .22,44%B .22,56%C .28,56%D .28,44%3.某校为了了解九年级学生的体能情况,随机抽取了30名学生测试1分钟仰卧起坐的次数,统计结果并绘制成如图所示的频数分布直方图.已知该校九年级共有150名学生,请据此估计,该校九年级1分钟仰卧起坐次数在30﹣35次之间的学生人数大约是( )A.20 B.25 C.50 D.55 4.“WelcometoSeniorHighSchool.”(欢迎进入高中),在这段句子的所有英文字母中,字母O出现的频率是()A.0.2 B.0.4 C.0.6 D.0.85.已知数据10,9,8,7,6,6,9,10,7,9,6,7,10,9,6,8,9,10,6,9,那么频率为0.5的范围是()A.5.5~7.5 B.6.5~8.5 C.7.5~9.5 D.8.5~10.56.为了了解2019年北京市乘坐地铁的每个人的月均花费情况,相关部门随机调查了1000人乘坐地铁的月均花费(单位:元),绘制了如下频数分布直方图,根据图中信息,下面三个推断中,合理的是()①小明乘坐地铁的月均花费是75元,那么在所调查的1000人中一定有超过一半的人月均花费超过小明;②估计平均每人乘坐地铁的月均花费的不低于60元;③如果规定消费达到一定数额可以享受折扣优惠,并且享受折扣优惠的人数控制在20%左右,那么乘坐地铁的月均花费达到120元的人可享受折扣.A.①②B.①③C.②③D.①②③7.学校测量了全校800名男生的身高,并进行了分组,已知身高在1.70~1.75(单位:m)这一组的频率为0.25,则该组共有男生()A.100名B.200名C.250名D.400名8.学校为了了解七年级700名学生上学期参加社会实践活动的时间,随机对该年级50名学生进行了调查.根据收集的数据绘制了下面的频数分布直方图,则以下说法正确的是()A.绘制该频数分布直方图时选取的组距为10分成的组数为5B.这50人中大多数学生参加社会实践活动的时间是12~14hC.这50人中有64%的学生参加社会实践活动时间不少于10hD.可以估计全年级700人中参加社会实践活动时间为6~8h的学生大约为28人9.将50个数据分成五组,编成组号为①~⑤的五个组,频数分布如下表:组号①②③④⑤频数1241610则第3组的频数是()A.8 B.0.8 C.16 D.0.1610.为了了解某校七年级800名学生的跳绳情况(60秒跳绳的次数),随机对该年级50名学生进行了调查.根据收集的数据绘制了如图所示的频数分布直方图(每组数据包括左端值不包括右端值,如最左边第一组的次数x为:60≤x<80),则以下说法正确的是()A.跳绳次数最多的是160次B.大多数学生跳绳次数在140~160范围内C.跳绳次数不少于100次的占80%D.由样本可以估计全年级800人中跳绳次数在60~80次的大约有70人二.填空题11.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38、52、47、46、50、53、61、72、45、58,则10名女生仰卧起坐个数不少于50个的频率为.12.某校对1200名女生的身高进行测量,身高在1.58m﹣1.63m这一小组的频率为0.25,则该组的人数为名.13.将一个有80个数据的样本经统计分成6组,若某一组的频率为0.15,则该组的频数为.14.已知10个数据:0,1,2,6,2,1,2,3,0,3,其中数字“2”出现的频数为.15.小海同学是八(2)班的生活委员,为了解同学们的生日时间,他对本班50名同学的“生日月份”进行逐个调查,并作出如下统计表:月份123456789101112人数3452x5634542则该班同学生日时间在5月份的频率为.三.解答题16.某校九年级在一次体育模拟测试中,随机抽查了部分学生的体育成绩,根据成绩分成如下六组:A.40≤x<45,45≤x<50,C.50≤x<55,D.55≤x<60,E.60≤x<65,F.65≤x≤70.并根据数据制作出如下不完整的统计图.请根据统计图解决下列问题,(1)补全频数分布直方图,并求出m的值;(2)若测试成绩不低于60分为优秀,则本次测试的优秀率是多少?(3)在(2)的条件下,若该校九年级有1800名学生,且都参加了该次模拟测试,则成绩优秀的学生约有多少人?17.某校组织全校2000名学生进行了防火知识竞赛.为了解成绩的分布情况,随机抽取了部分学生的成绩(得分取整数,满分为100分),并绘制了如图所示的频数分布表和频数分布直方图(不完整):抽取部分学生的成绩频率分布表分组频数频率50.5~60.5200.0560.5~70.5a0.1570.5~80.576b80.5~90.51040.2690.5~100.51400.35合计4001根据所给信息,回答下列问题:(1)a=,b=;(2)补全频数分布直方图;(3)学校将对成绩在90.5~100.5分之间的学生进行奖励,请你估算出全校获奖学生的人数.18.某小组为了解本校七年级女生的身高情况,统计了甲、乙两个班女生的身高,并绘制了如图不完整的统计图.(身高单位:cm)请根据图中信息,解答下列问题:(1)两个班共有女生多少人?(2)将频数分布直方图补充完整;(3)求扇形统计图中E部分所对应的扇形圆心角度数;(4)该校七年级共有女生450人,请估计身高在165≤x<175范围的女生人数.19.垃圾分类是对垃圾传统收集处理方式的改变,是对垃圾进行有效处理的一种科学管理方法.为了增强同学们垃圾分类的意识,某校举行一场学生在线参与垃圾分类处理知识测试(满分100分,得分均为整数),学校从全校1200名学生中随机抽取部分学生的成绩,绘制成如图不完整的统计图表.抽取的部分学生测试成绩的频数分布表成绩a(分)频数(人)百分比50≤a<601010%60≤a<7015n70≤a<80m20%80≤a<904040%90≤a≤1001515%由图表中给出的信息回答下列问题:(1)随机抽取的学生总人数为,m=,n=.(2)补全频数分布直方图.(3)如果成绩在80分以上(包括80分)为优秀,求成绩为优秀的人数占被抽取人数的百分比.参考答案与试题解析一.选择题1.【解答】解:∵在“中国梦,我的梦”这6个字中,“国”字有1个,∴“国”字出现的频率是;故选:D.2.【解答】解:∵在一次抛硬币游戏中共抛掷50次,其中正面朝上出现了22次,∴出现反面朝上的频数、频率分别是:50﹣22=28,×100%=56%.故选:C.3.【解答】解:该校九年级1分钟仰卧起坐次数在30﹣35次之间的学生人数大约是150×=25(人),故选:B.4.【解答】解:在“Welcome to Senior High School.”这个句子中:有25个字母,其中有5个O,故字母O出现的频率是5÷25=0.2.故选:A.5.【解答】解:共有20个数据,其中5.5~7.5的频率是8÷20=0.4;6.5~8.5的频率是5÷20=0.25;7.5~9.5的频率是8÷20=0.4;8.5~10.5的频率是10÷20=0.5.6.【解答】解:①∵200+100+80+50+25+25+15+5=500,而75~80元的人数不能确定,∴在所调查的1000人中一定有一半或超过一半的人月均花费超过小明,此结论错误;②根据图中信息,可得大多数人乘坐地铁的月均花费在60~120之间,估计平均每人乘坐地铁的月均花费的范围是60~120,所以估计平均每人乘坐地铁的月均花费的不低于60元,此结论正确;③∵1000×20%=200,而80+50+25+25+15+5=200,∴乘坐地铁的月均花费达到120元的人可以享受折扣.此结论正确;综上,正确的结论为②③,故选:C.7.【解答】解:800×0.25=200人,故选:B.8.【解答】解:A.绘制该频数分布直方图时选取的组距为8﹣6=2,分成的组数为5,故A错误;B.这50人中大多数学生参加社会实践活动的时间是12~14h,18÷50=36%<50%,故B错误;C.这50人中参加社会实践活动时间不少于10h的人数是=84%.故C 错误;D.可以估计全年级700人中参加社会实践活动时间为6~8h的学生大约为=28人,正确.9.【解答】解:根据统计表可知:第③组的频数是:50﹣12﹣4﹣16﹣10=8,故选:A.10.【解答】解:观察直方图可知:跳绳次数最多的是小于160次,故选项A不符合题意,大多数学生跳绳次数在12﹣~140范围内,故选项B不符合题意,跳绳次数不少于100次的占80%,故选项C符合题意,由样本可以估计全年级800人中跳绳次数在60~80次的大约有800×=64人,故选D项不符合题意,故选:C.二.填空题(共5小题)11.【解答】解:仰卧起坐个数不少于50个的有52、50、53、61、72、58共6个,所以,频率==0.6.故答案为:0.6.12.【解答】解:根据题意知,该组的人数为1200×0.25=300(名),故答案为:300.13.【解答】解:频数为80×0.15=12,故答案为:12.14.【解答】解:已知10个数据:0,1,2,6,2,1,2,3,0,3,其中数字“2”出现了3次,故数字“2”出现的频数为:3.故答案为:3.15.【解答】解:x=50﹣(3+4+5+2+5+6+3+4+5+4+2)=7,该班同学生日时间在5月份的频率==0.14.故答案为0.14.三.解答题(共4小题)16.【解答】解:(1)本次抽查的学生有:6÷=50(人),E组学生有:50﹣2﹣6﹣8﹣16﹣4=14(人),补全的频数分布直方图如右图所示,m=360×=115.2,即m的值是115.2;(2)×100%=36%,即本次测试的优秀率是36%;(3)1800×36%=648(人),答:成绩优秀的学生约有648人.17.【解答】解:(1)a=400×0.15=60,b=76÷400=0.19,故答案为:60,0.19;(2)由(1)知,a=60,补全的频数分布直方图如右图所示;(3)2000×0.35=700(人),即全校获奖学生的有700人.18.【解答】解:(1)两个班共有女生:13÷26%=50(人),即两个班共有女生50人;(2)C部分对应的女生有:50×28%=14(人).E部分对应的女生有:50﹣2﹣6﹣14﹣13﹣5=10(人)补充完整的频数分布直方图如右图所示:(3)360°×=72°,即扇形统计图中E部分所对应的扇形圆心角是72°;(4)450×=135(人),即身高在165≤x<175范围的女生有135人.19.【解答】解:(1)随机抽取的学生总人数为:10÷10%=100,m=100×20%=20,n=15÷100×100%=15%,故答案为:100,20,15%;(2)由(1)知,m=20,补全的频数分布直方图如右图所示;(3)40%+15%=55%,即成绩为优秀的人数占被抽取人数的百分比为55%.10.3课题学习从数据谈节水一.选择题1.龙兴两江国际影视城是冯小刚拍摄电影《一九四二》取景地之一,为估计我校5000名学生去过龙兴两江国际影视城的人数,随机抽取我校400名学生,发现其中有50名学生去过该影视城,由此估计我校5000学生中有()名学先去过该影视城.A.600 B.625 C.650 D.6752.在一个不透明的盒子里,装有5个黑球和若干个白球,这些球除颜色外都相同,将其摇匀后从中随机摸出一个球,记下颜色后再把它放回盒子中,不断重复,共摸球400次,其中100次摸到黑球,请估计盒子中白球的个数是()A.10个B.15个C.20个D.25个3.为了了解我校九年级1048名学生的数学摸底考试情况,现从中随机抽取了100名学生数学摸底考试成绩进行统计分析,就这个问题来说,样本是指()A.100B.被抽取的100名学生C.被抽取的100名学生的数学摸底考试成绩D.1048名学生的数学摸底考试成绩4.某学校在开展“节约每一滴水”的活动中,从七年级的400名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示0.51 1.52节水量(单位:t)同学数(人)2341请你估计这400名同学的家庭一个月节约的水总量大约是()A.200t B.400t C.320t D.480t5.一个不透明的袋中有若干个红球,为了估计袋中红球的个数,小林在袋中放入10个与红球形状大小完全相同的白球,每次摇匀后随机从袋中摸出一个球,记下颜色后放回袋中,通过大量重复试验后发现,摸到红球的频率是,则袋中的红球个数约为()A.6 B.16 C.22 D.246.从某公司3000名职工随机抽取30名职工,每个职工周阅读时间(单位:min)情况如下表61~7071~8081~9091~100101~110周阅读时间(单位:min)人数369102则该公司所有职工中,周阅读时间超过一个半小时的职工人数约为()A.1200 B.1500 C.1800 D.21007.为估计鱼塘中的鱼的数量,可以先从鱼塘中随机打捞50条鱼,在每条鱼身上做上记号后,把这些鱼放归鱼塘,经过一段时间,等这些鱼完全混合于鱼群后,再从鱼塘中随机打捞50条鱼,只有2条鱼是前面做好记号的,那么可以估计这个鱼塘鱼的数量约为()A.5000条B.2500条C.1750条D.1250条8.某研究机构经过抽样调查,发现当地1500个老年人的养老模式主要有A,B,C,D,E五种,统计结果如图,那么下列说法不正确的是()Array A.选择A型养老的频率是B.可以估计当地30000个老年人中有8000人选择C型养老C.样本容量是1500D.总体是当地1500个老年人的养老模式9.某校在开展“节约每一滴水”的活动中,从八年级的100名同学中任选20名同学汇总了各自家庭一个月的节水情况,将有关数据(每人上报节水量都是整数)整理如表节水量x/t0.5~x~1.5 1.5~x~2.5 2.5~x~3.5 3.5~x~4.5人数6284请你估计这100名同学的家庭一个月节约用水的总量大约是()A.180t B.230t C.250t D.300t10.某校为了了解七年级女同学的800米跑步情况,随机抽取部分女同学进行800米跑测试,按照成绩分为优秀、良好、合格、不合格四个等级,绘制了如图所示统计图.该校七年级有400名女生,则估计800米跑不合格的约有()A.2人B.16人C.20人D.40人二.填空题11.生物学家在估计某一地区的野鹿只数时,常采用“捉放捉”的方法,即先捕捉野鹿n只,分别给它们做上记号,然后放归;一段时间后,重新捕捉一些野鹿作为样本.如果多次这样捕捉到的野鹿中平均m只野鹿中有a只野鹿带有记号,则可估计该地区有只野鹿(用含m、n、a的代数式表示).12.学校为了考察我校八年级同学的视力情况,从八年级的14个班共740名学生中,每班抽取了5名进行分析,在这个问题中,样本的容量是.13.为了估计水塘中的鱼数,老张从鱼塘中捕获200条鱼,在每条鱼身上做好记号后把这些鱼放归鱼塘.过一段时间,他再从鱼塘中随机打捞200条鱼,发现其中25条鱼有记号.则鱼塘中总鱼数大约为条.14.为了鼓励学生课外阅读,学校公布了“阅读奖励”方案,并设置了“赞成、反对、无所谓”三种意见,现从学校所有2400名学生中随机征求了100名学生的意见,其中持“反对”和“无所谓”意见的共有30名学生,估计全校持“赞成”意见的学生人数约为.15.某校组织了主题为“经典诵读”的小视频征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据结果绘制了如下两幅不完整的统计图.若该校共征集到800份作品,请估计等级为A的作品约有份.三.解答题16.某校七年级共有学生600名,为了了解这些学生的视力情况,抽查了40名学生进行测量,在这个事件中:(1)总体、个体样本各是什么?(2)这个抽样调查具有代表性吗?(3)若具有代表性,且数据在0.9~1.2范围内的比例为40%,则可估计,该校七年级学生视力在0.9~1.2范围内的人数约为多少?17.为了解某小区居民7月份的用水情况,任意抽查了20户家庭的月用水量,结果如表:月用水量/m31012131415161718户数35233211如果该小区有200户家庭,估计该小区居民7月份的用水总量.18.某班随机抽査5名同学,请他们分别记录自己家中一周内丢弃的塑料袋的数量,结果如下(单位:个):33,25,28,26,23.如果该班有45名学生,估计一周内该班全体同学家中丢弃的塑料袋数量.19.6月5日是“世界环境日”,某校“绿色”小组进入明光社区进行一次有关“白色污染”方面的抽样调查,调查结果如下:03456每户居民平均每天丢弃废塑料袋/个户数2928165如果该社区有500户居民,请你估计该社区居民每天要丢弃多少个废塑料袋?参考答案与试题解析一.选择题1.【解答】解:根据题意,5000名学生中去过该景点的学生有:5000×=625(人),故选:B.2.【解答】解:∵共试验400次,其中有100次摸到黑球,∴白球所占的比例为1﹣=0.75,设盒子中共有白球x个,则=0.75,解得:x=15.故选:B.3.【解答】解:样本是指被抽取的100名学生的数学摸底考试成绩,故选:C.4.【解答】解:=1.2(t),400×1.2=480(t),答:估计这400名同学的家庭一个月节约的水总量大约是480 t;故选:D.5.【解答】解:设袋中的红球的个数为x,根据题意,得:=,解得:x=6,经检验:x=6是原分式方程的解,∴袋中红球的个数为6,故选:A.6.【解答】解:由题可得,3000×=1200(人),∴该公司所有职工中,周阅读时间超过一个半小时的职工人数约为1200人,故选:A.7.【解答】解:由题意可得:50÷=1250(条).故选:D.8.【解答】解:A、选择A型养老的频率是=,此选项说法正确;B、可以估计当地30000个老年人中选择C型养老的人数为30000×=4000人,此选项说法错误;C、样本容量是1500,此选项说法正确;D、总体是当地1500个老年人的养老模式,此选项说法正确;故选:B.9.【解答】解:利用组中值求平均数可得:选出20名同学家的平均一个月节约用水量=×(1×6+2×2+3×8+4×4)=2.5,∴估计这100名同学的家庭一个月节约用水的总量大约是=2.5×100=250t,故选:C.10.【解答】解:400×=20(人).答:估计800米跑不合格的约有20人.故选:C.二.填空题(共5小题)11.【解答】解:根据题意,得n÷=(只).故答案为:.12.【解答】解:从八年级的14个班共740名学生中,每班抽取了5名进行分析,在这个问题中,样本的容量是14×5=70,故答案为:70.13.【解答】解:∵池塘中有记号的鱼所占的百分比为:×100%=12.5%,∴池塘中共有鱼200÷12.5%=1600.故答案为:1600.14.【解答】解:∵100名学生中持“反对”和“无所谓”意见的共有30名学生,∴持“赞成”意见的学生人数=100﹣30=70名,∴全校持“赞成”意见的学生人数约=2400×=1680(名).故答案为:1680.15.【解答】解:根据题意得:30÷25%=120(份),则抽取了120份作品;根据题意得:800×=240(份),则估计等级为A的作品约有240份.故答案为:240.。
一、解答题1. 为了引导学生积极参与体育运动,增强身体素质,某校开展一分钟跳绳活动,随机抽取了名学生一分钟跳绳的次数进行调查统计,按照以下标准划分为四个等级:等级不合格合格良好优秀次数100~12120~14140~16160~18并根据统计结果绘制了如下两幅统计图(不完整):请结合上述信息完成下列问题:(1)_______,_______;(2)请将扇形统计图补充完整;(3)若该校有2800名学生,根据抽样调查结果,请估计该校学生一分钟跳绳次数达到良好及以上的人数.2. 在如图所示的方格中,每个小正方形的边长都是1,与是以点为位似中心的位似图形,它们的顶点都在小正方形的顶点上.(1)在图中标出位似中心的位置(请保留画图痕迹);(2)以点为位似中心,在直线的左侧画出的另一个位似,使它与的位似比为,并直接写出与的面积之比是_____.3. 如图,在平面直角坐标系内,三个顶点的坐标分别为,,(正方形网格中,每个小正方形的边长都是1个单位长度).(1)以坐标原点O为旋转中心,将逆时针旋转,得到,在图中画出则点的坐标为______________;(2)直接写出(1)中线段扫过的面积.4. 阅读下列材料:2016年人均阅读16本书!2017年4月23日“世界读书日”之前,国际网络电商亚马逊发布了“亚马逊中国2017全民阅读报告”.报告显示,大部分读者已养成一定的阅读习惯,阅读总量在10本以上的占56%,而去年阅读总量在10本以上的占48%.京东图书也发布了2016年度图书阅读报告.根据京东图书文娱业务部数据统计,2016年销售纸书人均16册,总量叠在一起相当于15000个帝国大厦的高.(1)在亚马逊这项调查中,以每年有效问卷1.4万份来计,2017年阅读量十本以上的人数比去年增加了人;(2)小雨作为学校的图书管理员,根据初二年级每位同学本学期的借书记录,对各个班借阅的情况作出了统计,并绘制统计图表如下:①全年级140名同学中有科技社团成员40名,他们人均阅读科普类书籍1.5本,年级其他同学人均阅读科普类书籍1.08本,请你计算全年级人均阅读科普类书籍的数量,再通过计算补全统计表;②在①的条件下,若要推荐初二某个班级为本学期阅读先进集体,你会推荐哪个班,请写出你的理由.5. 如图,在平面直角坐标系中,的顶点,,.(1)的面积是;(2)已知与关于轴对称,与关于轴对称,请在坐标系中画出和.6.(1)如图1,正方形网格图中,每个小正方形的边长都是1,画出将向右平移5个单位后的;再画出关于直线对称的图形;(2)在(1)中,若点为直线上的一点,求的最小值:(3)如图2,中,为上的一点,在上求作一点,使得(保留作图痕迹,不要求写作法).7. 为了解九年级女生的身高(单位:cm)情况,某中学对部分九年级女生身高进行了一次测量,所得数据整理后列出了频数分布表,并画了部分频数分布直方图(图、表如图):分组频数频率145.5-149.530.05149.5-153.59n153.5-157.5m0.25157.5-161.5180.30161.5-165.590.15165.5-169.560.10合计M N根据以上图表,回答问题.(1)M=______,m=______,N=______,n=______;(2)补全频数分布直方图;(3)若九年级有600名学生,则身高在161.5-165.5范围约为多少人?8. 如图,在平面直角坐标系中,点,点,点,以点为中心,把逆时针旋转后得到.(1)写出点、的坐标,并画出旋转后的图形;(2)求点经过的路径弧的长(结果保留).9. 如面是小东设计的“作平行四边形一边中点”的尺规作图过程.已知:平行四边形.求作:点,使点为边的中点.作法:如图,①作射线;②以点为圆心,长为半径画弧,交的延长线于点;③连接交于点.所以点就是所求作的点.根据小东设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接,.四边形是平行四边形,. ,四边形是平行四边形 (填推理的依据). (填推理的依据).点为所求作的边的中点.10. 5月31日是“世界戒烟日”,为了更好地宣传吸烟的危害.某中学七年级一班数学兴趣小组设计了如下调查问卷,在万达广场随机调查了部分吸烟人群,并将调查结果绘制成统计图.(如图所示)根据以上信息,解答下列问题:(1)本次接受调查的总人数是,并把条形统计图补充完整;(2)在扇形统计图中,C选项的人数所占百分比是,E选项所在扇形的圆心角的度数是.(3)若某社区约有烟民38万人,试估计对吸烟有害持“无所谓”态度的人数,你对这部分人群有何建议?11. 如图,在四边形中,于点.(1)尺规作图:在边上截取,过点作对角线的垂线,交于点G.(要求:保留作图痕迹,不写做法)(2)连接,证明.将下面的过程补充完整.证明:(1)_______________,四边形是平行四边形,(2)_______________(3)_______________在和中12. (1)请在网格中画出如图所示的几何体的主视图、左视图、俯视图;(2)已知每个小正方体的棱长为1,求该几何体的表面积.13. 如图,先在数轴上画出表示2.5的相反数的点B,再把点A向左移动1.5个单位,得到点C,求点B,C表示的数,以及B,C两点间的距离.14. 在直角坐标系中,画出以A(1,-2),B(1,3),C(-3,2)为顶点的三角形,把各顶点的坐标都乘2,画出新的三角形A1B1C1;再把原三角形各顶点的坐标都乘,画出新的三角形A2B2C2.15. 作图题:如图,在边长为l的正方形网格中,△ABC的三个顶点和点D 都在小方格的顶点上,请按要求作图.(1)平移△ABC,使点A平移到点D;(2)求△ABC的面积.16. 问题探究:尺规作图:作一个角等于已知角.如图,已知:.求作:,使.作法:(1)如图,以点______为圆心,任意长为半径画弧,交、于点、;(2)作射线,以点为圆心,______长为半径画弧,交于点;(3)以点为圆心,______长为半径画弧,与第(2)步中所画的弧相交于点;(4)经过点画射线,则.连接、,根据以上作法证得(④______填理论依据“”、“”、“”或“”)根据以上作图和求证过程完成以上填空:______;______;______;_____.实践应用:已知:如图,是的边上一点.求作:射线,使,交于E,(不写作法,但要保留作图痕迹)17. 如图,点C为线段AB上一点,AC与CB的长度之比为3:4,D为线段AC的中点.(1)若AB=14,求BD的长(2)画出线段BD的中点E,若CE=a,求AB的长(用含a的代数式表示).18. 为落实“双减”政策,切实减轻学生学业负担,丰富学生课余生活,某校积极开展“五育并举”课外兴趣小组活动,计划成立“爱心传递”、“音乐舞蹈”、“体育运动”、“美工制作”和“劳动体验”五个兴趣小组,要求每位学生都只选其中一个小组.为此,随机抽查了本校各年级部分学生选择兴趣小组的意向,并将抽查结果绘制成如下统计图(不完整).根据统计图中的信息,解答下列问题:(1)求本次被抽查学生的总人数和扇形统计图中表示“美工制作”的扇形的圆心角度数:(2)将条形统计图补充完整;(3)该校共有1200名学生,根据抽查结果,试估计全校选择“爱心传递”兴趣小组的学生人数.19. 如图,在平面直角坐标系中,的顶点坐标分别为,,.(1)的面积是________;(2)请在图中画出与关于x 轴对称的;(3)在(2)的条件下,若是内部任意一点,则点M在内部的对应点的坐标为________.20. 如图,在平面直角坐标系中,△ABC 的顶点为A (2,1),B (1,3),C (4,1),若△A 1B 1C 1与△ABC 是以坐标原点O 为位似中心的位似图形,点A 、B 、C 的对应点分别为、、,且的坐标为(4,2).(1)请在所给平面直角坐标系第一象限内画出;(2)分别写出点、的坐标.21. 2021年秋季教育部明确提出,要减轻义务教育阶段学生的作业负担,学生的校外培训负担.依据政策要求,初中书面作业平均完成时间不超过90分钟,学生每天的完成作业时长不能超过2小时.某中学为了积极推进教育部的新政策实施,对本校学生的作业情况进行了抽样调查,统计结果(不完整)如图所示.(1)求本次抽样调查的学生总人数,并补全条形统计图;(温馨提示:请画在答题卷相对应的图上)(2)求本次调查的学生每天完成作业所需时间的中位数和众数;(3)若该中学共有学生3000人,请根据调查结果估计该校学生每天完成作业所需时间不少于2小时的人数.22. 已知点P (x ,y )是第一象限内的一个动点,且满足x+y=4.请先在所给的平面直角坐标系中画出函数y=2x+1的图象,该图象与x 轴交于二、解答题点A,然后解答下列问题:(1)利用所画图象,求当-1≤y≤3时x 的取值范围;(2)若点P 正好也在直线y=2x+1上,求点P 的坐标;(3)设△OPA 的面积为S ,求S 关于点P 的横坐标x 的函数解析式.23. 如图,在每个小正方形边长为1的方格纸中,△ABC 的顶点都在方格纸格点上.将△ABC 向左平移2格,再向上平移4格.(1)请在图中画出平移后的△A ′B ′C ′;(2)再在图中画出△A ′B ′C ′的高C ′D ′,并求出四边形A ′ACC ′的面积.24. 请使用圆规和直尺以线段a 的长度为单位长度画出数轴,并在数轴上标出表示数点.25. 某学习小组在研究函数y=x 3﹣2x 的图象与性质时,已列表、描点并画出了图象的一部分.x …﹣4﹣3.5﹣3﹣2﹣101233.54…y…﹣﹣﹣﹣﹣…(1)请补全函数图象;(2)方程x 3﹣2x=﹣2实数根的个数为 ;(3)观察图象,写出该函数的两条性质.26. 某小区为了绿化环境,计划购买甲,乙两种花卉共100株,甲种花卉每株15元,乙种花卉每株9元,若购买甲、乙两种花卉的总费用不超过1200元,最多能购买甲种花卉多少株?27. 某新型农场正值草莓丰收季节,安排6位员工进行草莓采摘工作.规定每位员工每天采摘数量以为标准,超出部分记作正数,不足部分记作负数,下面是6位员工某一天采摘草莓的实际情况:,,,,,(1)这6位员工草莓采摘实际总质量能达到标准总质量吗?(2)该农场工资标准是:每人每天的基本工资是200元.若没达到标准数量,每少扣2元;若超出标准数量,每多奖励3元,该农场这天共需支付的工资总额是多少元?28. 某公园有一个圆形场地的中心是喷泉,从点A向四周喷水,喷出的水柱为抛物线,且形状相同.如图,以水平方向为轴,点为原点建立平面直角坐标系,点A在轴上,轴上的点,为水柱的落水点.长度为,长度为,水柱在与圆形场地中心的水平距离为处达到最高点.(1)求水柱所在抛物线(第一象限部分)的函数表达式和水柱能达到的最大高度.(2)若需要在上的点处竖立旗杆,m,,旗杆顶部是否会碰到水柱?(3)若打算在喷泉内部竖立若干高度为的旗杆(旗杆顶部不能碰到水柱),施工人员在适合竖立旗杆的地面位置上全都涂上颜色作上标记.请直接写出需要用颜色标记的面积.29. 江津青花椒闻名重庆,小宇把自家种的青花椒放到网上销售,计划每天销售千克,但实际每天的销售景与计划销售量相比有增减,超过计划量记为正,不足计划量记为负,下表是小宇第一周青花椒的销售情况:星期一二三四五六日青花椒销售超过或不足计划情况(单位:千克)(1)小宇第一周销售青花椒最多的一天比最少的一天多销售千克;(2)小宇第一周实际销售青花椒的总量是多少千克?(3)若小宇按元/千克进行青花椒销售,平均运费为5元/千克,每天需支出销售费用元,则小宇第一周销售青花椒除去运费与销售费用后一共收入多少元?30. 丹东玫瑰香葡萄从树上摘下后不保鲜最多只能存放一周,如果放在冷藏室,可以延长保鲜时间,但每天仍有一定数量的葡萄变质,假设保鲜期内的重量基本保持不变,现有一位个体户,按市场价格收购了这种葡萄200千克放在冷藏室内,此时市场价为每千克2元,据测算,此后每千克鲜葡萄的市场价格每天可以上涨元,但是,存放一天需各种费用20元,平均每天还有1千克葡萄变质丢弃.(1)求个体户将这批葡萄存放10天后出售,可获得利润是多少元?(2)为了使鲜葡萄的销售金额为760元,又为了尽早清空冷藏室,则需要在几天后一次性出售完?(3)求个体户将这批葡萄存放多少天后出售,可获得利润是405元?31. 无锡市政府为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面上的实物图,图②是其示意图,其中、都与地面l平行,车轮半径为,,,坐垫E与点B的距离为.(1)求坐垫E到地面的距离;(2)根据经验,当坐垫E到的距离调整为人体腿长的时,坐骑比较舒适.小明的腿长约为,现将坐垫E调整至坐骑舒适高度位置,求的长.(结果精确到,参考数据:,,)32. “冰墩墩”和“雪容融”作为第24届北京冬奥会和残奥会的吉祥物深受大家喜爱,某文旅店订购“冰墩墩”花费6000元,订购“雪容融”花费3200元,其中“冰墩墩”的订购单价比“雪容融”的订购单价多20元,并且订购“冰墩墩”的数量是“雪容融”的1.25倍.(1)求文旅店订购“冰墩墩”和“雪容融”的数量分别是多少个;(请列分式方程作答)(2)该文旅店以100元和80元的单价销售“冰墩墩”和“雪容融”,在“冰墩墩”售出,“雪容融”售出后,文旅店为了尽快回笼资金,决定对剩余的“冰墩墩”每个打a折销售,对剩余的“雪容融”每个降价2a元销售,很快全部售完,若要保证文旅店总利润不低于6060元,求a的最小值.33. 在全民健身环城越野赛中,甲乙两位选手都完成了比赛,甲的行程(千米)随时间(小时)变化的图象(全程)如图所示;乙的行程(千米)随时间(小时)的函数解析式为().(1)在图中画出乙的行程(千米)随时间(小时)的函数图象;(2)环城越野赛的全程是________千米;(3)甲前0.5小时的速度是________千米/小时;(4)甲和乙出发1小时后相遇,相遇时甲的速度是________千米/小时.34. 武商超市购进甲、乙两种商品的信息如表:商品类别进价(元/ )售价(元/ )甲种商品a78乙种商品b如图所示已知该超市购进甲种商品和乙种商品共需2200元;购进甲种商品和乙种商品共需2000元.已知甲、乙两种商品共进货,其中乙种商品购进,乙种商品购进量不低于且不超过.(1)求a、b的值;(2)设销售甲、乙两种商品所获总利润为W元,当甲种商品的购进量不超过乙种商品购进量的2倍时,且300商品全部销售完,求W与x的函数关系式,并求W的最大值及此时甲、乙两种商品的购进量;(3)超市在实际销售时发现,甲、乙两种商品备受消费者青睐,所以销售的快.为了回馈顾客,缩短商品销售周期,超市每次各购进甲、乙两种商品,甲种商品回馈顾客,乙种商品回馈顾客,当销售完这300商品时,超市所获总利润不低于2940元,求m的最大值.35. 小彬在今年的篮球联赛中表现优异.下表是他在这场联赛中,分别与甲队和乙队各四场比赛中的技术统计.对阵甲队对阵乙队场次得分篮板失误得分篮板失误第一场2110225172第二场2910231150第三场2414316124第四场261052282平均值a11223.5132(1)小彬在对阵甲队时的平均每场得分a的值是______分;(2)小彬在这8场比赛的篮板统计数据中,众数是______,中位数是______;(3)如果规定“综合得分”为:平均每场得分平均每场篮板平均每场失误,且综合得分越高表现越好.利用这种方式,我们可以计算得出小彬在对阵乙队时的“综合得分”是37.1分.请你比较小彬在对阵哪一个队时表现更好,并说明理由.36. 进入冬季后,漳州的空气质量下降,多次出现雾霾天气.某商场根据市代理销售一种防尘口罩,进货价为20元/包,经市场销售发现:销售单价为30元/包时,每周可售出200包,每涨价1元,就少售出5包.若供货厂家规定市场价不得低于30元/包,且商场每周完成不少于150包的销售任务.(1)试确定周销售量(包)与售价(元/包)之间的函数关系式;(2)试确定商场每周销售这种防尘口罩所获得的利润(元)与售价(元/包)之间的函数关系式,并直接写出售价的取值范围;(3)设商场每周销售这种防尘口罩所获得的利润为(元),请探究所获得的利润能达到3200元吗?若能,请求出此时的售价的值;若不能,请说明理由.37. 如图1,沙滩排球比赛中,裁判垂直站在记录台上.如图2是从正面看到的示意图,记录台底部O与垂直地面的球网支架底座E,F在同一水平线上,记录台与左侧球网距离为,裁判观察矩形球网上点A的俯角为,已知球网高度为.图1 图2(1)求裁判员眼睛距离地面的高度;(2)某次运动员扣球后,球恰好从球网上边缘的点Q处穿过,此时裁判员的视线正好看不到球网边界C处(即P,Q,C共线),若球网长度,球网下边缘离地面的距离为,求排球落点处Q离球网边界的距离.(结果精确到)(本题参考数值,,.)38. 某商店销售某种电扇,每台进货价为150元.经市场调研,当每台售价为230元时,平均每天能售出8台:当每台售价每降10元时,平均每天就能多售出4台.若商店要想使这种电扇的销售利润平均每天达到1000元,则每台电扇的定价应为多少元?39. 学校下午放学时校门口的“堵塞”情况已成为社会热点问题,某校对本校下午放学校门口“堵塞”情况做了一个调查发现:每天放学时间2分钟后校门外学生流量变化大致可以用“拥挤指数”()与放学后时间(分钟)的函数关系描述.如图,2~12分钟呈二次函数状态,且在第12分钟达到该函数最大值100,此后变化大致为反比例函数的图象趋势.若“拥挤指数”,校门外呈现“拥挤状态”,需要护学岗执勤人员维护秩序、疏导交通.(1)求该二次函数的解析式和k的值;(2)“拥挤状态”持续的时间是否超过15分钟?请说明理由.40. 千年古镇赵化开发的鑫城小区的内坝是一块长为米,宽为米的长方形地,物业部门计划将内坝进行绿化(如图阴影部分),中间部分将修建一仿古小景点(如图中间的长方形),则绿化的面积是多少平方米?并求出当,时的绿化面积.41. 某农贸市场经销一种销售成本为每千克元的水产品.据市场分析,若按每千克元销售,1个月能售出;销售单价每涨1元,月销售量就减少,设销售单价为x元,月销售利润为y元,当销售单价为多少元时,月销售利润最大?42. 戴口罩是阻断呼吸道病毒传播的重要措施之一,某商家对一款成本价为每盒50元的医用口罩进行销售,如果按每盒70元销售,每天可卖出20盒.通过市场调查发现,每盒口罩售价每降低1元,则日销售量增加2盒.(1)若商家要使日利润达400元,又想尽快销售完该款口罩,问每盒售价应定为多少元?(2)当每盒售价定为多少元时,商家可以获得最大日利润?并求出最大日利润.43. 某超市销售,两种商品,已知销售一件种商品可获利润元,销售一件种商品可获利润元.该超市计划销售,两种商品共件,其中种商品销售件,且,为了获得最大利润,则,两种商品应各销售多少件?可获得最大利润为多少元?44. 2023年春节,各地暂停的庙会重新焕发了生机.某摊贩的货品中有A,B两款兔玩偶受到消费者的喜爱,A款玩偶和B款玩偶进货单价之和为50元,该摊贩购进A款玩偶100个,B款玩偶50个共花费3500元.(1)A款玩偶和B款玩偶的进货单价分别是多少元?(2)摊主发现A款玩偶售价为27元时,每小时可以卖出10个.摊主为扩大销量,决定降价销售.若售价每降低1元,则每小时多卖出2个.若不考虑库存,按当天摆摊8小时计算,试求当天出售A款玩偶获得利润最大为多少?45. 2021年是中国共产党建党周年华诞.某市组织了“唱支歌儿给党听”合唱比赛.根据各参赛队的比赛成绩(分制,得分均为整数),整理并绘制了如下的条形统计图(不完整),已知有的参赛队比赛成绩为满分;(1)求参赛合唱队总数(2)若比赛成绩由高到低前的参赛队可以获奖.某一参赛队的比赛成绩为分,请你判断该合唱队能否获奖,并说明理由(3)甲、乙两个合唱队准备从“”三首歌曲中各自任选一首歌曲参加表演,且两个队表演歌曲各不相同.求事件“甲、乙两队所选两首歌曲中一定有”发生的概率.(树状图或列表法)46. 某玩具厂计划一周生产某种玩具700件,平均每天生产100件,但由于种种原因,实际每天生产量与计划量相比有出入.如下表是某周的三、解答题生产情况(超产记为正,不足记为负),根据记录的数据解答下列问题:星期一二三四五六日生产情况(件)(1)求产量最多的一天比产量最少的一天多生产多少件玩具?(2)求该厂这一周实际生产玩具的件数;(3)该厂实行“每日计件工资制”,每生产一件玩具可得20元,若超额完成任务,则超过部分每件另奖5元;少生产一件则扣4元,那么该厂工人这一周的工资总额是多少元?47. “书香昭通,苹果之城”,昭通苹果成为昭鲁坝区果农增收致富的“金果果”,随着苹果种植基地规模的不断扩大,苹果产量增加.昭阳区年苹果的产量是万吨,年产量达到万吨.(1)求年、年苹果产量的年平均增长率是多少?(2)若年苹果产量继续稳步增长(即年增长率与前两年的年平均增长率相同),那么请你估计年我区苹果产量将达到多少万吨?48. 蓝莓是一种高营养、低热量的水果,被称为浆果之王,深受消费者喜爱.从2020年到2022年,沙坪坝区某蓝莓基地的蓝莓亩产量增长了.(1)求2021、2022这两年蓝莓亩产量的年平均增长率;(2)去年,甲、乙两名采摘员每小时各摘4千克蓝莓,劳务费均为4元/千克.今年,甲因采摘小果每千克的劳务费增加了a元(),但每小时的采摘量减少了千克;乙采摘大果每小时能多摘千克,每千克的劳务费不变;结果今年甲、乙两人每小时总收入比去年多了元,求a 的值.49. 2014年,周口市某楼盘以每平方米4000元的均价对外销售.因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2016年的均价为3240元.(1)求平均每年下调的百分率;(2)假设2017年仍然下调相同的百分率,刘老师准备购买一套100平方米的住房,他持有现金12万元,可以在银行贷款18万元,刘老师的愿望能否实现?(房价每平方米按照均价计算)50. 公安交警部门提醒市民,骑车出行必须严格遵守“一盔一带”的规定.某头盔经销商统计了某品牌头盔4月份到6月份的销量,该品牌头盔4月份销售150个,6月份销售216个,且从4月份到6月份销售量的月增长率相同.(1)求该品牌头盔销售量的月增长率;(2)若此种头盔的进价为30元/个,测算在市场中,当售价为40元/个时,月销售量为600个,若在此基础上售价每上涨1元/个,则月销售量将减少5个,为使月销售利润达到8625元,而且尽可能让顾客得到实惠,则该品牌头盔的实际售价应定为多少元/个?51. 已知在菱形ABCD 中,点P 在CD 上,连接AP.(1)在BC 上取点Q ,使得∠PAQ =∠B ,①如图1,当AP ⊥CD 于点P 时,求证:AP=AQ .②如图2,当AP 与CD 不垂直时,判断①中的结论(即AP =AQ )是否仍然成立,若成立,请给出证明,若不成立,则需说明理由.(2)如图3,在CD 的延长线取点N ,连接AN ,使得∠PAN =∠B ,若AB =6,∠B =60°,∠ANC =45°,求此时线段DN 的长.52. 如图,在△ABC 中,∠ACB = 90°,AC = BC ,E 为AC 边的中点,过点A 作AD ⊥AB 交BE 的延长线于点D ,CG 平分∠ACB 交BD 于点G ,F 为AB 边上一点,连结CF ,且∠ACF =∠CBG .(1)证明:AF = CG ;(2)判断点G 在BD 上的位置,并说明理由;(3)在(2)的条件下,若DE = 3,求CF的长.53. 如图,在中,点为边的中点,以点为顶点的的两边分别与边,交于点,,且与互补.(1)如图1,若,且,则线段与有何数量关系?请直接写出结论;(2)如图2,若,那么(1)中的结论是否还成立?若成立,请给出证明;若不成立,请说明理由;(3)如图3,若,探索线段与的数量关系,并证明你的结论.54. 如图,在△ABC 中,点M 、N 是∠ABC 与∠ACB 三等分线的交点,连接MN(1)求证:MN 平分∠BMC .(2)若∠A =60°,求∠BMN 的度数.55. 如图,点E ,F ,G ,H 分别为四边形ABCD 的边AB ,BC ,CD ,DA 的中点,试判断四边形EFGH的形状,并证明你的结论.56. 如图,是等边三角形,点分别在边、上,,连接,过点作,交线段的延长线于点.(1)求证:;(2)若,求线段的长.2024年初中数学中考高频考点解答题测试卷。
(2010•东阳市)我市中考体育测试中,1分钟跳绳为自选项目.某中学九年级共有50名女同学选考1分钟跳绳,根据测试评分标准,将她们的成绩进行统计后分为A,B,C,D四等,并绘制成下面的频数分布表(注:6~7的意义为大于等于6分且小于7分,其余类似)和
扇形统计图(如图).
频数分布表
(1)等级A人数的百分比是
;
(2)求m,n的值;
(3)在抽取的这个样本中,请说明哪个分数段的学生最多?请你帮助老师计算这次1分钟跳绳测试的及格率(6分以上含6分为及格).
解:(1)根据题意,得m+n=50-(4+12+17+1)=16;
则m+n=16① 17+m=32②;
解之,得m=15 n=1 ;
(2)7~8分数段的学生最多,
及格人数=4+12+17+15=48(人),
及格率=48 50 ×100%=96%.
答:这次1分钟跳绳测试的及格率为96%.。