山西省吕梁市中考二模数学考试试卷
- 格式:doc
- 大小:666.50 KB
- 文档页数:17
山西省吕梁市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共9题;共18分)1. (2分)下列各数中,最小的是()A . ﹣B . 0C . ﹣1D . ﹣2. (2分) (2020七上·高淳期末) 如图正方体纸盒,展开后可以得到()A .B .C .D .3. (2分) (2018七下·桂平期末) 如图,已知AB∥CD,则∠1、∠2和∠3之间的关系为()A . ∠2+∠1﹣∠3=180°B . ∠3+∠1=∠2C . ∠3+∠2+∠1=360°D . ∠3+∠2﹣2∠1=180°4. (2分)下列计算正确的是()A . a+2a=3a2B . (a2b)3=a6b3C . (am)2=am+2D . a3•a2=a65. (2分) (2017八下·邵阳期末) 样本频数分布反映了()A . 样本数据的多少B . 样本数据的平均水平C . 样本数据的离散程度D . 样本数据在各个小范围内数量的多少6. (2分) (2019八上·天山期中) 如图,点A在线段BC的垂直平分线上,AD=DC,∠ A=28°,则∠BCD的度数为()A . 76°B . 62°C . 48°D . 38°7. (2分)已知α,β是关于x的一元二次方程x2+ (2m+3)x+m2=0 的两个不相等的实数根,且满足= -1,则m的值是().A . 3或 -1B . 3C . -1D . -3 或 18. (2分)(2020·遵化模拟) 扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A .B .C .D .9. (2分)(2016·上海) 如图,在梯形ABCD中,AD∥BC,BD⊥DC,∠C=60°,AD=4,BC=6,则AB长为()A . 2B .C . 5D .二、填空题 (共6题;共6分)10. (1分)若有意义,则x=________.11. (1分) (2020八下·长沙期末) 甲、乙两名男同学练习投掷实心球,每人投了10次,平均成绩均为7.6米,方差分别为 =0.2, =0.08,成绩比较稳定的是________(填“甲”或“乙”).12. (1分) (2015八下·鄂城期中) 一根旗杆在离底部4.5米的地方折断,旗杆顶端落在离旗杆底部6米处,则旗杆折断前高为________13. (1分)(2017·谷城模拟) 如图,在Rt△ABC中,∠ACB=90°,AC=2 ,以点C为圆心,CB的长为半径画弧,与AB边交于点D,将绕点D旋转180°后点B与点A恰好重合,则图中阴影部分的面积为________.14. (1分)(2019·莲湖模拟) 观察下列顺序排列的等式:1×2×100+25=1522×3×100+25=2523×4×100+25=3524×5×100+25=452…根据以上的规律直接写出结果:2009×2010×100+25=________.15. (1分) (2020九上·秦淮期末) 二次函数y=ax2+bx+c(a≠0)的图像如图所示,当y<3时,x的取值范围是________.三、解答题 (共8题;共64分)16. (5分)(2020九下·哈尔滨月考) 先化简,再求值:,其中.17. (5分)(2017·六盘水模拟) 计算题(1)计算:|﹣2|+()﹣1﹣(﹣2010)0﹣•tan60°(2)先化简,再求值:÷(x﹣),其中x= .18. (10分)(2017·诸城模拟) 将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].(1)如图①,对△ABC作变换[60°, ]得△AB′C′,则S△AB′C′:S△ABC=________;直线BC与直线B′C′所夹的锐角为________度;(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值.19. (2分) (2019八下·长春期中) 如图,在平面直角坐标系中,为坐标原点,的边垂直于轴,垂足为,已知.反比例函数的图象经过的中点,交于点.(1)求反比例函数的表达式;(2)求经过、两点的直线所对应的函数表达式;(3)设点是轴上的动点,请直接写出使为直角三角形的点的坐标.20. (10分)(2014·连云港) 如图1,在一个不透明的袋中装有四个球,分别标有字母A、B、C、D,这些球除了所标字母外都相同,另外,有一面白色、另一面黑色、大小相同的4张正方形卡片,每张卡片上面的字母相同,分别标有A、B、C、D.最初,摆成图2的样子,A、D是黑色,B、C是白色.操作:①从袋中任意取一个球;②将与取出球所标字母相同的卡片翻过来;③将取出的球放回袋中再次操作后,观察卡片的颜色.(如:第一次取出球A,第二次取出球B,此时卡片的颜色变)(1)求四张卡片变成相同颜色的概率;(2)求四张卡片变成两黑两白,并恰好形成各自颜色矩形的概率.21. (5分)(2013·徐州) 如图,为了测量某风景区内一座塔AB的高度,小明分别在塔的对面一楼房CD的楼底C,楼顶D处,测得塔顶A的仰角为45°和30°,已知楼高CD为10m,求塔的高度(结果精确到0.1m).(参考数据:≈1.41,≈1.73)22. (12分) (2020九下·台州月考) 如图,以矩形ABCD的边CD为直径作⊙O,点E是AB 的中点,连接CE 交⊙O于点F,连接AF并延长交BC于点H.(1)若连接AO,试判断四边形AECO的形状,并说明理由;(2)求证:AH是⊙O的切线;(3)若AB=6,CH=2,则AH的长为________.23. (15分) (2019九上·赵县期中) 如图,已知抛物线y=(x﹣1)2+k的图象与x轴交于点A(﹣1,0),C 两点,与y轴交于点B.(1)求抛物线解析式及B点坐标;(2)在抛物线上是否存在点P使S△PAC= S△ABC?若存在,求出P点坐标,若不存在,请说明理由;(3)在抛物线的对称轴上是否存在点Q,使△ABQ是等腰三角形,若存在,求出Q点坐标,若不存在,请说明理由.参考答案一、选择题 (共9题;共18分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、二、填空题 (共6题;共6分)10-1、11-1、12-1、13-1、14-1、15-1、三、解答题 (共8题;共64分)16-1、17-1、17-2、18-1、18-2、18-3、19-1、19-2、19-3、20-1、20-2、21-1、22-1、22-2、22-3、23-1、23-2、23-3、。
山西省吕梁市2019-2020学年中考数学二月模拟试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A.BE=DF B.AE=CF C.AF//CE D.∠BAE=∠DCF2.如图所示,点E在AC的延长线上,下列条件中能判断AB∥CD的是( )A.∠3=∠A B.∠D=∠DCE C.∠1=∠2 D.∠D+∠ACD=180°3.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D.34.如图,等腰直角三角形纸片ABC中,∠C=90°,把纸片沿EF对折后,点A恰好落在BC上的点D处,点CE=1,AC=4,则下列结论一定正确的个数是()①∠CDE=∠DFB;②BD>CE;③BC=2CD;④△DCE与△BDF的周长相等.A.1个B.2个C.3个D.4个5.估计7+1的值在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间6.观察下列图案,是轴对称而不是中心对称的是()A.B.C.D.7.不等式组的解集在数轴上表示正确的是()A .B .C .D .8.16=( ) A .±4 B .4 C .±2 D .29.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .15B .17C .19D .2410.《九章算术》中有这样一个问题:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而钱亦五十.问甲、乙持钱各几何?”题意为:今有甲乙二人,不知其钱包里有多少钱,若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50,问甲、乙各有多少钱?设甲的钱数为x ,乙的钱数为y ,则列方程组为( )A .15022503x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩B .15022503y y x x ⎧+=⎪⎪⎨⎪+=⎪⎩C .15022503x y y x ⎧-=⎪⎪⎨⎪-=⎪⎩D .15022503y y x x ⎧-=⎪⎪⎨⎪-=⎪⎩11.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--o12.如图,AB是一垂直于水平面的建筑物,某同学从建筑物底端B出发,先沿水平方向向右行走20米到达点C,再经过一段坡度(或坡比)为i=1:0.75、坡长为10米的斜坡CD到达点D,然后再沿水平方向向右行走40米到达点E(A,B,C,D,E均在同一平面内).在E处测得建筑物顶端A的仰角为24°,则建筑物AB的高度约为(参考数据:sin24°≈0.41,cos24°≈0.91,tan24°=0.45)()A.21.7米B.22.4米C.27.4米D.28.8米二、填空题:(本大题共6个小题,每小题4分,共24分.)13.已知一个正数的平方根是3x-2和5x-6,则这个数是_____.14.若一个多边形的内角和为1080°,则这个多边形的边数为__________.15.如图,在△ABC中,∠ACB=90°,∠A=45°,CD⊥AB于点D,点P在线段DB上,若AP2-PB2=48,则△PCD的面积为____.16.如图,在梯形ABCD中,AD∥BC,∠A=90°,点E在边AB上,AD=BE,AE=BC,由此可以知道△ADE旋转后能与△BEC重合,那么旋转中心是_____.a 中的字母a的取值范围是_____.17.二次根式118.如图,E是▱ABCD的边AD上一点,AE=ED,CE与BD相交于点F,BD=10,那么DF=__.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,已知在Rt△ABC中,∠ACB=90°,AC>BC,CD是Rt△ABC的高,E是AC的中点,ED的延长线与CB的延长线相交于点F.求证:DF是BF和CF的比例中项;在AB上取一点G,如果AE•AC=AG•AD ,求证:EG•CF=ED•DF .20.(6分)如图所示:△ABC 是等腰三角形,∠ABC=90°.(1)尺规作图:作线段AB 的垂直平分线l ,垂足为H .(保留作图痕迹,不写作法);(2)垂直平分线l 交AC 于点D ,求证:AB=2DH .21.(6分)计算:8﹣(﹣2016)0+|﹣3|﹣4cos45°.22.(8分)如图,AB 是⊙O 的直径,C 是弧AB 的中点,弦CD 与AB 相交于E .若∠AOD =45°,求证:CE =2ED ;(2)若AE =EO ,求tan ∠AOD 的值.23.(8分)某校园图书馆添置新书,用240元购进一种科普书,同时用200元购进一种文学书,由于科普书的单价比文学书的价格高出一半,因此,学校所购文学书比科普书多4本,求:(1)这两种书的单价.(2)若两种书籍共买56本,总费用不超过696元,则最多买科普书多少本?24.(10分)在平面直角坐标系中,一次函数y ax b =+(a≠0)的图象与反比例函数(0)k y k x=≠的图象交于第二、第四象限内的A 、B 两点,与y 轴交于点C ,过点A 作AH ⊥y 轴,垂足为点H ,OH=3,tan ∠AOH=43,点B 的坐标为(m ,-2).求该反比例函数和一次函数的解析式;求△AHO 的周长.25.(10分)如图,在ABC V 中,CD AB ⊥,垂足为D ,点E 在BC 上,EF AB ⊥,垂足为F.12∠∠=,试判断DG与BC的位置关系,并说明理由.26.(12分)小昆和小明玩摸牌游戏,游戏规则如下:有3张背面完全相同,牌面标有数字1、2、3的纸牌,将纸牌洗匀后背面朝上放在桌面上,随机抽出一张,记下牌面数字,放回后洗匀再随机抽出一张.请用画树形图或列表的方法(只选其中一种),表示出两次抽出的纸牌数字可能出现的所有结果;若规定:两次抽出的纸牌数字之和为奇数,则小昆获胜,两次抽出的纸牌数字之和为偶数,则小明获胜,这个游戏公平吗?为什么?27.(12分)如图,小明今年国庆节到青城山游玩,乘坐缆车,当登山缆车的吊箱经过点A到达点B时,它经过了200m,缆车行驶的路线与水平夹角∠α=16°,当缆车继续由点B到达点D时,它又走过了200m,缆车由点B到点D的行驶路线与水平面夹角∠β=42°,求缆车从点A到点D垂直上升的距离.(结果保留整数)(参考数据:sin16°≈0.27,cos16°≈0.77,sin42°≈0.66,cos42°≈0.74)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF//CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE//CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.2.C【解析】【分析】由平行线的判定定理可证得,选项A,B,D能证得AC∥BD,只有选项C能证得AB∥CD.注意掌握排除法在选择题中的应用.【详解】A.∵∠3=∠A,本选项不能判断AB∥CD,故A错误;B.∵∠D=∠DCE,∴AC∥BD.本选项不能判断AB∥CD,故B错误;C.∵∠1=∠2,∴AB∥CD.本选项能判断AB∥CD,故C正确;D.∵∠D+∠ACD=180°,∴AC∥BD.故本选项不能判断AB∥CD,故D错误.故选:C.【点睛】考查平行线的判定,掌握平行线的判定定理是解题的关键.3.B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=5,AC=10,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.4.D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴=,∴BD=BC﹣DC=4﹣1,∴BD>CE,故②正确;∵BC=4CD=4,∴CD,故③正确;∵AC=BC=4,∠C=90°,∴,∵△DCE的周长,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=4+(4﹣),∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.5.B【解析】分析:直接利用2<3,进而得出答案.详解:∵2<3,∴3+1<4,故选B.的取值范围是解题关键.6.A【解析】试题解析:试题解析:根据轴对称图形和中心对称图形的概念进行判断可得:A、是轴对称图形,不是中心对称图形,故本选项符合题意;B、不是轴对称图形,是中心对称图形,故本选项不符合题意;C、不是轴对称图形,是中心对称图形,故本选项不符合题意;D、是轴对称图形,也是中心对称图形,故本选项不符合题意.故选A.点睛:在同一平面内,如果把一个图形绕某一点旋转180o,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.这个旋转点,就叫做对称中心.7.D【解析】试题分析:,由①得:x≥1,由②得:x<2,在数轴上表示不等式的解集是:,故选D.考点:1.在数轴上表示不等式的解集;2.解一元一次不等式组.8.B【解析】【分析】1616的算术平方根,为正数,再根据二次根式的性质化简.【详解】,164故选B.【点睛】本题考查了算术平方根,本题难点是平方根与算术平方根的区别与联系,一个正数算术平方根有一个,而平方根有两个.9.D【解析】【分析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.10.A【解析】【分析】设甲的钱数为x,人数为y,根据“若乙把其一半的钱给甲,则甲的钱数为50;而甲把其23的钱给乙,则乙的钱数也能为50”,即可得出关于x,y的二元一次方程组,此题得解.【详解】解:设甲的钱数为x,乙的钱数为y,依题意,得:15022503x yy x⎧+=⎪⎪⎨⎪+=⎪⎩.故选A.【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.11.A【解析】【详解】分析:根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.详解:由折叠得:∠A=∠A',∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',∵∠A=α,∠CEA′=β,∠BDA'=γ,∴∠BDA'=γ=α+α+β=2α+β,故选A.点睛:本题考查了三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是关键. 12.A【解析】【分析】作BM⊥ED交ED的延长线于M,CN⊥DM于N.首先解直角三角形Rt△CDN,求出CN,DN,再根据tan24°=AMEM,构建方程即可解决问题.【详解】作BM⊥ED交ED的延长线于M,CN⊥DM于N.在Rt△CDN中,∵140.753CNDN==,设CN=4k,DN=3k,∴CD=10,∴(3k)2+(4k)2=100,∴k=2,∴CN=8,DN=6,∵四边形BMNC是矩形,∴BM=CN=8,BC=MN=20,EM=MN+DN+DE=66,在Rt△AEM中,tan24°=AM EM,∴0.45=866AB +,∴AB=21.7(米),故选A.【点睛】本题考查的是解直角三角形的应用-仰角俯角问题,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【详解】试题解析:根据题意,得:32560,x x -+-=解得:1,x =321,56 1.x x ∴-=-=-()21 1.±=故答案为1【点睛】:一个正数有2个平方根,它们互为相反数.14.1【解析】【分析】根据多边形内角和定理:(n ﹣2)•110 (n≥3)可得方程110(x ﹣2)=1010,再解方程即可.【详解】解:设多边形边数有x 条,由题意得:110(x ﹣2)=1010,解得:x =1,故答案为:1.【点睛】此题主要考查了多边形内角和定理,关键是熟练掌握计算公式:(n ﹣2)•110 (n≥3).15.6【解析】【分析】根据等角对等边,可得AC=BC ,由等腰三角形的“三线合一”可得AD=BD=12AB ,利用直角三角形斜边的中线等于斜边的一半,可得CD=12AB ,由AP 2-PB 2=48 ,利用平方差公式及线段的和差公式将其变形可得CD·PD=12,利用△PCD 的面积 =12CD·PD 可得. 【详解】解:∵ 在△ABC 中,∠ACB=90°,∠A=45°,∴∠B=45°,∴AC=BC ,∵CD ⊥AB ,∴AD=BD=CD=12AB , ∵AP 2-PB 2=48 ,∴(AP+PB)(AP-PB)=48,∴AB(AD+PD-BD+DP)=48, ∴AB·2PD=48,∴2CD·2PD=48,∴CD·PD=12,∴△PCD的面积=12CD·PD=6.故答案为6.【点睛】此题考查等腰三角形的性质,直角三角形的性质,解题关键在于利用等腰三角形的“三线合一16.CD的中点【解析】【分析】根据旋转的性质,其中对应点到旋转中心的距离相等,于是得到结论.【详解】∵△ADE旋转后能与△BEC重合,∴△ADE≌△BEC,∴∠AED=∠BCE,∠B=∠A=90°,∠ADE=∠BEC,DE=EC,∴∠AED+∠BEC=90°,∴∠DEC=90°,∴△DEC是等腰直角三角形,∴D与E,E与C是对应顶点,∵CD的中点到D,E,C三点的距离相等,∴旋转中心是CD的中点,故答案为:CD的中点.【点睛】本题考查了旋转的性质,等腰直角三角形的性质,关键是明确旋转中心的概念.17.a≥﹣1.【解析】【分析】根据二次根式的被开方数为非负数,可以得出关于a的不等式,继而求得a的取值范围. 【详解】由分析可得,a+1≥0,解得:a≥﹣1.【点睛】熟练掌握二次根式被开方数为非负数是解答本题的关键.18.4【解析】∵AE=ED,AE+ED=AD,∴ED=AD,∵四边形ABCD是平行四边形,∴AD=BC,AD//BC,∴△DEF∽△BCF,∴DF:BF=DE:BC=2:3,∵DF+BF=BD=10,∴DF=4,故答案为4.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.证明见解析【解析】试题分析:(1)根据已知求得∠BDF=∠BCD,再根据∠BFD=∠DFC,证明△BFD∽△DFC,从而得BF:DF=DF:FC,进行变形即得;(2)由已知证明△AEG∽△ADC,得到∠AEG=∠ADC=90°,从而得EG∥BC,继而得EG BF ED DF=,由(1)可得BF DFDF CF=,从而得EG DFED CF=,问题得证.试题解析:(1)∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是Rt△ABC的高,∴∠ADC=∠BDC=90°,∴∠A+∠ACD=90°,∴∠A=∠BCD,∵E是AC的中点,∴DE=AE=CE,∴∠A=∠EDA,∠ACD=∠EDC,∵∠EDC+∠BDF=180°-∠BDC=90°,∴∠BDF=∠BCD,又∵∠BFD=∠DFC,∴△BFD∽△DFC,∴BF:DF=DF:FC,∴DF2=BF·CF;(2)∵AE·AC=ED·DF,∴AE AG AD AC=,又∵∠A=∠A,∴△AEG∽△ADC,∴∠AEG=∠ADC=90°,∴EG∥BC,∴EG BF ED DF=,由(1)知△DFD∽△DFC,∴BF DF DF CF=,∴EG DF ED CF=,∴EG·CF=ED·DF.20.(1)见解析;(2)证明见解析. 【解析】【分析】(1)利用线段垂直平分线的作法,分别以A,B为端点,大于12AB为半径作弧,得出直线l即可;(2)利用利用平行线的性质以及平行线分线段成比例定理得出点D是AC的中点,进而得出答案.【详解】解:(1)如图所示:直线l即为所求;(2)证明:∵点H是AB的中点,且DH⊥AB,∴DH∥BC,∴点D是AC的中点,∵12DH BC BC AB==,,∴AB=2DH.【点睛】考查作图—基本作图,线段垂直平分线的性质,等腰三角形的性质等,熟练掌握垂直平分线的性质是解题的性质.21.1.【解析】【分析】根据二次根式性质,零指数幂法则,绝对值的代数意义,以及特殊角的三角函数值依次计算后合并即可.【详解】解:原式=12﹣1+3﹣4×22=1.【点睛】本题考查实数的运算及特殊角三角形函数值.22.(1)见解析;(2)tan∠AOD=3 4 .【解析】【分析】(1)作DF⊥AB于F,连接OC,则△ODF是等腰直角三角形,得出OC=OD=2DF,由垂径定理得出∠COE=90°,证明△DEF∽△CEO得出22ED OC DFCE DF===,即可得出结论;(2)由题意得OE=12OA=12OC,同(1)得△DEF∽△CEO,得出12EF EODF OC==,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理求出x=35a,得出DF=65a,OF=EF+EO=85a,由三角函数定义即可得出结果.【详解】(1)证明:作DF⊥AB于F,连接OC,如图所示:则∠DFE=90°,∵∠AOD=45°,∴△ODF是等腰直角三角形,∴OC=OD2DF,∵C是弧AB的中点,∴OC⊥AB,∴∠COE=90°,∵∠DEF=∠CEO,∴△DEF∽△CEO,∴22 ED OC DFCE DF===∴CE;(2)如图所示:∵AE=EO,∴OE=12OA=12OC,同(1)得:,△DEF∽△CEO,∴12 EF EODF OC==,设⊙O的半径为2a(a>0),则OD=2a,EO=a,设EF=x,则DF=2x,在Rt△ODF中,由勾股定理得:(2x)2+(x+a)2=(2a)2,解得:x=35a,或x=﹣a(舍去),∴DF=65a,OF=EF+EO=85a,∴DF3 tan AODOF4∠==.【点睛】本题考查了等腰直角三角形的判定与性质、相似三角形的判定与性质、勾股定理、垂径定理、三角函数等知识,熟练掌握相似三角形的判定与性质、勾股定理是关键.23.(1)文学书的单价为10元,则科普书的单价为15元;(2)27本【解析】【分析】(1)根据等量关系:文学书数量﹣科普书数量=4本可以列出方程,解方程即可.(2)根据题意列出不等式解答即可.【详解】(1)设文学书的单价为x元,则科普书的单价为1.5x元,根据题意得:2002401.5x x-=4,解得:x=10,经检验:x=10是原方程的解,∴1.5x=15,答:文学书的单价为10元,则科普书的单价为15元.(2)设最多买科普书m本,可得:15m+10(56﹣m)≤696,解得:m≤27.2,∴最多买科普书27本.【点睛】此题考查分式方程的实际应用,不等式的实际应用,正确理解题意列出方程或是不等式是解题的关键.24.(1)一次函数为112y x=-+,反比例函数为12yx=-;(2)△AHO的周长为12【解析】分析:(1)根据正切函数可得AH=4,根据反比例函数的特点k=xy为定值,列出方程,求出k的值,便可求出反比例函数的解析式;根据k的值求出B两点的坐标,用待定系数法便可求出一次函数的解析式.(2)由(1)知AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案.详解:(1)∵tan∠AOH=AH OH=43∴AH=43OH=4∴A(-4,3),代入kyx =,得k=-4×3=-12∴反比例函数为12 yx =-∴12 2m -=-∴m=6∴B(6,-2)∴43 62a ba b-+=⎧⎨+=-⎩∴a=12-,b=1∴一次函数为112y x=-+(2)5OA===△AHO的周长为:3+4+5=12点睛:此题考查的是反比例函数图象上点的坐标特点及用待定系数法求一次函数及反比例函数的解析式.25.DG∥BC,理由见解析【解析】【分析】由垂线的性质得出CD∥EF,由平行线的性质得出∠2=∠DCE,再由已知条件得出∠1=∠DCE,即可得出结论.【详解】解:DG∥BC,理由如下:∵CD⊥AB,EF⊥AB,∴CD∥EF,∴∠2=∠DCE ,∵∠1=∠2,∴∠1=∠DCE ,∴DG ∥BC .【点睛】本题考查平行线的判定与性质;熟练掌握平行线的判定与性质,证明∠1=∠DCE 是解题关键. 26.(1)结果见解析;(2)不公平,理由见解析.【解析】判断游戏是否公平,即是看双方取胜的概率是否相同,若相同,则公平,不相同则不公平.27.缆车垂直上升了186 m .【解析】【分析】在Rt ABC △中,sin 200sin1654BC AB α=⋅=⨯︒≈米,在Rt BDF V 中,sin 200sin42132DF BD β=⋅=⨯︒≈,即可求出缆车从点A 到点D 垂直上升的距离.【详解】解:在Rt ABC △中,斜边AB=200米,∠α=16°,sin 200sin1654BC AB α=⋅=⨯︒≈(m ), 在Rt BDF V 中,斜边BD=200米,∠β=42°,sin 200sin42132DF BD β=⋅=⨯︒≈,因此缆车垂直上升的距离应该是BC+DF=186(米).答:缆车垂直上升了186米.【点睛】本题考查了解直角三角形的应用-坡度坡角问题,锐角三角函数的定义,结合图形理解题意是解决问题的关键.。
山西省吕梁市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图形中,是中心对称图形,但不是轴对称图形的是( )A.B.C.D.2.不论x、y为何值,用配方法可说明代数式x2+4y2+6x﹣4y+11的值()A.总不小于1 B.总不小于11C.可为任何实数D.可能为负数3.如图,若a∥b,∠1=60°,则∠2的度数为()A.40°B.60°C.120°D.150°4.如图,弹性小球从点P(0,1)出发,沿所示方向运动,每当小球碰到正方形OAB C的边时反弹,反弹时反射角等于入射角,当小球第1次碰到正方形的边时的点为P1(2,0),第2次碰到正方形的边时的点为P2,…,第n次碰到正方形的边时的点为P n,则点P2018的坐标是()A.(1,4)B.(4,3)C.(2,4)D.(4,1)5.甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是A.120100x x10=-B.120100x x10=+C.120100x10x=-D.120100x10x=+6.某车间需加工一批零件,车间20名工人每天加工零件数如表所示:每天加工零件4 5 6 7 8数人数 3 6 5 4 2每天加工零件数的中位数和众数为( )A.6,5 B.6,6 C.5,5 D.5,67.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为()A.0.555×104B.5.55×103C.5.55×104D.55.5×1038.如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是A.5个B.4个C.3个D.2个9.一个几何体的三视图如图所示,根据图示的数据计算出该几何体的表面积()A.65πB.90πC.25πD.85π10.一个数和它的倒数相等,则这个数是()A.1 B.0 C.±1 D.±1和011.如图,在▱ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为()A.8 B.10 C.12 D.1412.如图,一段抛物线:y=﹣x(x﹣5)(0≤x≤5),记为C1,它与x轴交于点O,A1;将C1绕点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A3;…如此进行下去,得到一“波浪线”,若点P(2018,m)在此“波浪线”上,则m的值为()A .4B .﹣4C .﹣6D .6二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲ 度.14.点P 的坐标是(a,b ),从-2,-1,0,1,2这五个数中任取一个数作为a 的值,再从余下的四个数中任取一个数作为b 的值,则点P (a,b )在平面直角坐标系中第二象限内的概率是 .15.如果分式4x x 的值是0,那么x 的值是______. 16.甲,乙两家汽车销售公司根据近几年的销售量分别制作了如图所示的统计图,从2014~2018年,这两家公司中销售量增长较快的是_____公司(填“甲”或“乙”).17.在一个不透明的布袋中,红色、黑色的玻璃球共有20个,这些球除颜色外其它完全相同.将袋中的球搅匀,从中随机摸出一个球,记下颜色后再放回袋中,不断地重复这个过程,摸了200次后,发现有60次摸到黑球,请你估计这个袋中红球约有_____个.18.已知a ,b 为两个连续的整数,且a 5b ,则b a =_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元? 20.(6分)某地一路段修建,甲队单独完成这项工程需要60天,若由甲队先做5天,再由甲、乙两队合作9天,共完成这项工程的三分之一.(1)求甲、乙两队合作完成这项工程需要多少天?(2)若甲队的工作效率提高20%,乙队工作效率提高50%,甲队施工1天需付工程款4万元,乙队施工一天需付工程款2.5万元,现由甲乙两队合作若干天后,再由乙队完成剩余部分,在完成此项工程的工程款不超过190万元的条件下要求尽早完成此项工程,则甲、乙两队至多要合作多少天?21.(6分)已知关于的方程mx2+(2m-1)x+m-1=0(m≠0). 求证:方程总有两个不相等的实数根;若方程的两个实数根都是整数,求整数的值.22.(8分)如图,在图中求作⊙P,使⊙P满足以线段MN为弦且圆心P到∠AOB两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)23.(8分)计算:﹣22+2cos60°+(π﹣3.14)0+(﹣1)201824.(10分)徐州至北京的高铁里程约为700km,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁A与“复兴号”高铁B前往北京.已知A车的平均速度比B车的平均速度慢80km/h,A车的行驶时间比B车的行驶时间多40%,两车的行驶时间分别为多少?25.(10分)如图,已知A(﹣4,n),B(2,﹣4)是一次函数y=kx+b的图象和反比例函数y=mx的图象的两个交点.求反比例函数和一次函数的解析式;求直线AB与x轴的交点C的坐标及△AOB的面积;直接写出一次函数的值小于反比例函数值的x的取值范围.26.(12分)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交与点G、H,若AB=CD,求证:AG=DH.27.(12分)如图,一次函数y=kx+b的图象与反比例函数ayx的图象交于点A(4,3),与y轴的负半轴交于点B,连接OA,且OA=OB.(1)求一次函数和反比例函数的表达式;(2)过点P(k,0)作平行于y轴的直线,交一次函数y=2x+n于点M,交反比例函数ayx的图象于点N,若NM=NP,求n的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】分析:根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,即可判断出答案.详解:A、此图形是中心对称图形,不是轴对称图形,故此选项正确;B、此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形是中心对称图形,也是轴对称图形,故此选项错误;D、此图形不是中心对称图形,是轴对称图形,故此选项错误.故选A.点睛:此题主要考查了中心对称图形与轴对称的定义,关键是找出图形的对称中心与对称轴.2.A【解析】【分析】利用配方法,根据非负数的性质即可解决问题;【详解】解:∵x 2+4y 2+6x-4y+11=(x+3)2+(2y-1)2+1,又∵(x+3)2≥0,(2y-1)2≥0,∴x 2+4y 2+6x-4y+11≥1,故选:A .【点睛】本题考查配方法的应用,非负数的性质等知识,解题的关键是熟练掌握配方法.3.C【解析】如图:∵∠1=60°,∴∠3=∠1=60°,又∵a ∥b ,∴∠2+∠3=180°,∴∠2=120°,故选C.点睛:本题考查了平行线的性质,对顶角相等的性质,熟记性质是解题的关键.平行线的性质定理:两直线平行,同位角相等,内错角相等,同旁内角互补,两条平行线之间的距离处处相等.4.D【解析】【分析】先根据反射角等于入射角先找出前几个点,直至出现规律,然后再根据规律进行求解.【详解】由分析可得p(0,1)、1(2,0)p 、)(24,1p 、)(30,3p 、()42,4p 、)(54,3p 、)(60,1p 等,故该坐标的循环周期为7则有则有2018128837+L =,故是第2018次碰到正方形的点的坐标为(4,1). 【点睛】本题主要考察规律的探索,注意观察规律是解题的关键.5.A【解析】分析:甲队每天修路xm ,则乙队每天修(x -10)m ,因为甲、乙两队所用的天数相同,所以,120100x x 10=-。
山西省吕梁市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)在实数、、、0.、π、中,无理数有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2019七上·乌鲁木齐月考) 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000,这个数用科学记数法表示()A . 44×104B . 4.4×108C . 4.4×109D . 4.4×10103. (2分)(2016·云南模拟) 如图,由4个大小相同的正方体组合而成的几何体,其俯视图是()A .B .C .D .4. (2分)(2016·十堰) 下列运算正确的是()A . a2•a3=a6B . (﹣a3)2=﹣a6C . (ab)2=ab2D . 2a3÷a=2a25. (2分)(2020·北京模拟) 已知l1∥l2 ,一个含有30°角的三角尺按照如图所示位置摆放,则∠1+∠2的度数为()A . 90°B . 120°C . 150°D . 180°6. (2分) (2019九上·马山月考) 在平面直角坐标系中,点A(-3,5)关于原点对称的点的坐标为()A . (– 3,–5)B . (3,5)C . (–3,5)D . (3,–5)7. (2分)(2018·濮阳模拟) 如图,在平面直角坐标系中,Rt△ABC的斜边BC在x轴上,点B坐标为(1,0),AC=2,∠ABC=30°,把Rt△ABC先绕B点顺时针旋转180°,然后向下平移2个单位,则A点的对应点的坐标为()A .B .C .D .8. (2分) (2019八下·余姚月考) 若二次根式有意义,则x的取值范围是()A . x≥1B . x>1C . x≥-1D . x≤19. (2分)如图,在平行四边形ABCD中,BD⊥AD,以BD为直径作圆,交于AB于E,交CD于F,若BD=12,AD:AB=1:2,则图中阴影部分的面积为()A . 12B .C .D .10. (2分)已知x1、x2是方程x2﹣(k﹣2)x+k2+3k+5=0的两个实数根,则x12+x22的最大值是()A . 19B . 18C . 15D . 13二、填空题 (共9题;共9分)11. (1分)(2017·宽城模拟) 分解因式:a3﹣2a2+a=________.12. (1分) (2015九下·深圳期中) 如图,已知一次函数的图象与坐标轴分别交于点A,B 两点,⊙O的半径为1,P是线段AB上的一个点,过点P作⊙O的切线PQ,切点为Q,则PQ的最小值为________.13. (1分)(2018·铜仁模拟) 如图,在菱形ABCD中,对角线AC、BD相交于点O,点E是线段BO上的一个动点,点F为射线DC上一点,若∠ABC=60°,∠AEF=120°,AB=4,则EF可能的整数值是________.14. (1分) (2019八上·长兴期中) 等腰三角形的两边长为3和6,则这个等腰三角形的周长是 ________.15. (1分)已知方程x2+kx﹣2=0的一个根为1,则k的值是________,另一个根是________.16. (1分)(2017·浦东模拟) 如果方程x2﹣2x+m=0有两个实数根,那么m的取值范围是________.17. (1分)如图,在矩形ABCD中,AD=10,CD=6,E是CD边上一点,沿AE折叠△ADE,使点D恰好落在BC 边上的F处,则 =________.18. (1分) (2020九上·覃塘期末) 如图,在平行四边形中,点在边上,且,若,则的长为________.19. (1分) (2018九上·西安期中) 如图,菱形ABCD的面积为6,边AD在x轴上,边BC的中点E在y轴上,反比例函数的图象经过顶点B,则k的值为________.三、解答题 (共9题;共97分)20. (10分)(2014·宿迁) 计算:2sin30°+|﹣2|+(﹣1)0﹣.21. (5分) (2019八下·江北期中) 先化简,再求值(其中 x= -2 )22. (7分)(2017·官渡模拟) 一袋中装有形状大小都相同的四个小球,每个小球上各标有一个数字,分别是1,3,4,7.现规定从袋中任取一个小球,对应的数字作为一个两位数的个位数;然后将小球放回袋中并搅拌均匀,再任取一个小球,对应的数字作为这个两位数的十位数.(1)写出按上述规定得到所有可能的两位数;(2)从这些两位数中任取一个,求其算术平方根大于5且小于8的概率.23. (5分)某风景区的湖心岛靠水边有一凉亭A,其正东方向的湖边B处有一棵大树,游客李先生必须在10分钟之内从湖心岛凉亭A处划船赶回湖边B,否则他将赶不上旅游车约定的发车时间.已知湖边建筑物C在凉亭A的南偏东45°方向上,也在大树B的南偏西32°的方向上,且量得B、C间的距离为100m.若李先生立即登船以15m/s的速度划行,问他能否在规定时间内赶到B处?(参考数据:sin32°=0.5299 cos32°=0.8480)24. (15分)如图,在平面直角坐标系xOy中,一次函数y1=kx+b(k≠0)的图象与反比例函数y2= (m≠0,x>0)的图象交于第一象限内的A、B两点,过点A作AC⊥x轴于点C,AC=3,点B的坐标为(2,6)(1)求反比例函数和一次函数的解析式;(2)求△AOB的面积;(3)根据图象,请直接写出y1<y2时x的取值范围.25. (15分) (2018九上·金华期中) 若一个四边形的两条对角线互相垂直且相等,则称这个四边形为“奇妙四边形”.如图1,四边形ABCD中,若AC=BD,AC⊥BD,则称四边形ABCD为奇妙四边形.根据“奇妙四边形”对角线互相垂直的特征可得“奇妙四边形”的一个重要性质:“奇妙四边形”的面积等于两条对角线乘积的一半.根据以上信息回答:(1)矩形“奇妙四边形”(填“是”或“不是”);(2)如图2,已知⊙O的内接四边形ABCD是“奇妙四边形”,若⊙O的半径为6,∠BCD=60°.“奇妙四边形”ABCD的面积为;(3)如图3,已知⊙O的内接四边形ABCD是“奇妙四边形”,作OM⊥BC于M.请猜测OM与AD的数量关系,并证明你的结论.26. (10分)(2019·花都模拟) 某文具店购进A,B两种钢笔,若购进A种钢笔2支,B种钢笔3支,共需90元;购进A种钢笔3支,B种钢笔5支,共需145元.(1)求该文具店购进A、B两种钢笔每支各多少元?(2)经统计,B种钢笔售价为30元时,每月可卖64支;每涨价3元,每月将少卖12支,求该文具店B种钢笔销售单价定为多少元时,每月获利最大?最大利润是多少元?27. (15分) (2019八下·香洲期末) 如图,菱形ABCD中,AB=6cm,∠ADC=60°,点E从点D出发,以1cm/s 的速度沿射线DA运动,同时点F从点A出发,以1cm/s的速度沿射线AB运动,连接CE、CF和EF,设运动时间为t(s).(1)当t=3s时,连接AC与EF交于点G,如图①所示,则AG=________cm;(2)当E、F分别在线段AD和AB上时,如图②所示,求证△CEF是等边三角形;(3)当E、F分别运动到DA和AB的延长线上时,如图③所示,若CE= cm,求t的值和点F到BC的距离.28. (15分)(2014·梧州) 如图,抛物线y=ax2+bx+2与直线l交于点A、B两点,且A点为抛物线与y轴的交点,B(﹣2,﹣4),抛物线的对称轴是直线x=2,过点A作AC⊥AB,交抛物线于点C、x轴于点D.(1)求此抛物线的解析式;(2)求点D的坐标;(3)抛物线上是否存在点K,使得以AC为边的平行四边形ACKL的面积等于△ABC的面积?若存在,请直接写出点K的横坐标;若不存在,请说明理由.[提示:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣,顶点坐标为(﹣,)].参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共97分)20-1、21-1、22-1、22-2、23-1、24-1、24-2、24-3、25-1、25-2、25-3、26-1、26-2、27-1、27-2、27-3、28-1、28-2、28-3、。
吕梁市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题:本题共10小题,每小题4分,共40分 (共10题;共40分)1. (4分)(2018·陆丰模拟) 下列四张扑克牌的牌面,不是中心对称图形的是()A .B .C .D .2. (4分)我国以2010年11月1日零时为标准时点进行了笫六次全国人口普查,普查得到全国总人口为1370536875人,该数用科学记数法表示为()(保留3个有效数字)A . 13.7亿B . 13.7×108C . 1.37×109D . 1.4×1093. (4分)已知Rt△ABC∽Rt△A'B'C',∠C=∠C'=90°,且AB=2A'B',则sinA与sinA'的关系为()A . sinA=2sinA'B . sinA=sinA'C . 2sinA=sinA'D . 不能确定4. (4分)(2016·毕节) 估计的值在()A . 2到3之间B . 3到4之间C . 4到5之间D . 5到6之间5. (4分)如图1,△ABC和△GAF是两个全等的等腰直角三角形,图中相似三角形(不包括全等)共有()A . 1对B . 2对C . 3对D . 4对6. (4分)下列等式正确的是()A . (﹣x2)3=﹣x5B . x3+x3=2x6C . a3•a3=2a3D . 26+26=277. (4分)小明做抛币实验,连续抛了5次都是反面向上,当他抛第6次时,反面向上是一件()事件A . 必然B . 不可能C . 确定D . 随机8. (4分)如图,在Rt△ABC中,AB=CB,BO⊥AC,把△ABC折叠,使AB落在AC上,点B与AC上的点E重合,展开后,折痕AD交BO于点F,连接DE、EF.下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF 沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF ,上述结论中正确的个数是()A . 4个B . 3个C . 2个D . 1个9. (4分)如图,点A,B,C在一次函数y=-2x+m的图象上,它们的横坐标依次为-1,1,2,分别过这些点作x轴与y轴的垂线,则图中阴影部分的面积之和是()A . 1B . 3C . 3(m-1)D . (m-2)10. (4分)已知,那么x:y:z为()A . 2:(﹣1):3B . 6:1:9C . 6:(﹣1):9D .二、填空题:本题共6小题,每小题4分,共24分 (共6题;共24分)11. (4分)(2018·安徽模拟) 分解因式:2x2-8=________.12. (4分) (2018七上·酒泉期末) 一个几何体从正面、左面、上面看到的平面图形都是圆,则这个几何体是________;13. (4分)(2020·台州) 甲、乙两位同学在10次定点投篮训练中(每次训练投8个),各次训练成绩(投中个数)的折线统计图如图所示,他们成绩的方差分别为与,则 ________ 填">”、“=”、“<"中的一个)14. (4分)(2018·湖州) 当x=1时,分式的值是________.15. (4分)(2019·合肥模拟) 如图,⊙O是△ABC的外接圆,∠BAC=60°,OD⊥BC于点D ,若BC= ,则劣弧BC的长为________(结果保留π)16. (4分)(2016·衢州) 如图,正方形ABCD的顶点A,B在函数y= (x>0)的图象上,点C,D分别在x轴,y轴的正半轴上,当k的值改变时,正方形ABCD的大小也随之改变.①当k=2时,正方形A′B′C′D′的边长等于________.②当变化的正方形ABCD与(1)中的正方形A′B′C′D′有重叠部分时,k的取值范围是________.三、解答题:本题共9小题,共86分 (共9题;共86分)17. (8分) (2019九上·西安月考) 计算题:(1);(2)用适当的方法解: x2-4x-2=0.(3)化简:.18. (8分)如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加一个什么条件,可使四边形AECF是平行四边形?并给出证明.19. (8分)(2018·崇仁模拟) 先化简,再求值:÷ ,其中x=2,y=1.20. (8分) (2018八上·桥东期中) 如图,点A、B分别表示2个居民小区.(1)若直线表示公交通道,欲在公交通道旁建1个公交车站P,使该站到2个小区的距离相等,应如何确定车站的位置?请在图(1)中画出,尺规作图,保留痕迹;(2)若直线表示自来水总水管,欲在自来水总管道旁建1个加压站P,使该站向2个小区送水的管道总长度最短,应如何确定加压站的位置?请在图(2)中画出.21. (8分)(2017·贺州) 如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.(1)求证:四边形ABCD是菱形;(2)若CD=3,BD=2 ,求四边形ABCD的面积.22. (10分)已知5个数据的平均数是7,另外还有3个数据的平均数是k,则这8个数据的平均数是________ (用关于k的代数式表示).23. (10分)(2018·江苏模拟) 重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年,且x为整数;后4年,每年竣工投入使用的公租房面积单位:百万平方米,与时间x的关系是单位:年,且x为整数假设每年的公租房全部出租完另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金单位:元与时间单位:年,且x为整数满足一次函数关系如下表:元5052545658年12345参考数据:(1)求出z与x的函数关系式;(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高,这样可解决住房的人数将比第6年减少,求a的值.24. (13.0分) (2018九上·渝中期末) 已知平行四边形ABCD ,过点A作BC的垂线,垂足为E ,且满足AE=EC ,过点C作AB的垂线,垂足为F ,交AE于点G ,连接BG ,(1)如图1,若AC=,CD=4,求EG的长度;(2)如图2,取BE的中点K,在EC上取一点H,使得点K和点E为BH的三等分点,连接AH,过点K作AH 的垂线,交AC于点Q,求证:BG=2CQ.25. (13.0分) (2018九上·北京期末) 在平面直角坐标系xOy中,反比例函数的图象经过点A(1,4),B(m,n).(1)求反比例函数的解析式;(2)若二次函数的图象经过点B,求代数式的值;(3)若反比例函数的图象与二次函数的图象只有一个交点,且该交点在直线y=x的下方,结合函数图象,求a的取值范围.参考答案一、选择题:本题共10小题,每小题4分,共40分 (共10题;共40分) 1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题:本题共6小题,每小题4分,共24分 (共6题;共24分) 11-1、12-1、13-1、14-1、15-1、16-1、三、解答题:本题共9小题,共86分 (共9题;共86分)17-1、17-2、17-3、18-1、19-1、20-1、20-2、21-1、21-2、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、25-3、。
吕梁市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果两个实数a、b满足a+b=0,那么a、b一定是()A . 都等于0B . 一正一负C . 互为相反数D . 互为倒数2. (2分) (2017八上·孝义期末) 若一粒米的质量约是0.000021kg,将数据0.000021用科学记数法表示为()A . 21×10﹣4B . 2.1×10﹣6C . 2.1×10﹣5D . 2.1×10﹣43. (2分)(2018·合肥模拟) 将下列多项式因式分解,结果中不含有因式(a+1)的是()A . a2-1B . a2+aC . a2+a-2D . (a+2)2-2(a+2)+14. (2分)如图的几何体是由4个相同的小正方体组成.其左视图为()A .B .C .D .5. (2分)如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A . 5mB . 6mC . 7mD . 8m6. (2分) (2017七下·无锡期中) 为了奖励学习有进步的学生,老师请小杰帮忙到文具店买了20本练习簿和10支水笔,共花了36元.已知每支水笔的价格比每本练习簿的价格贵1.2元,如果设练习簿每本为x元,水笔每支为y元,那么下面列出的方程组中正确的是()A .B .C .D .7. (2分) (2019九上·南山期末) 下列说法错误的是()A . 一组同旁内角相等的平行四边形是矩形B . 一组邻边相等的菱形是正方形C . 有三个角是直角的四边形是矩形D . 对角线相等的菱形是正方形8. (2分)(2018·江苏模拟) 体育老师对甲、乙两名同学分别进行了8次摸高测试,这两名同学成绩的平均数不相等,甲同学的方差是S =6.4,乙同学的方差是S =8.2,那么这两名同学摸高成绩比较稳定的是()A . 甲B . 乙C . 甲乙一样D . 无法确定9. (2分) (2020七上·抚顺期末) a,b是有理数,它们在数轴上的对应点的位置如所示:把a,﹣a,b,﹣b按照由小到大的顺序排列是()A . ﹣b<﹣a<b<aB . ﹣a<b<﹣b<aC . ﹣a<﹣b<b<aD . b<﹣a<-b<a10. (2分)(2017·新化模拟) 在△ABC中,AB=10,AC=2 ,BC边上的高AD=6,则另一边BC等于()A . 10B . 8C . 6或10D . 8或10二、填空题 (共6题;共6分)11. (1分) (2017七下·萧山开学考) 计算36。
山西省吕梁市中考二模数学考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共32分)1. (2分)(2019·双牌模拟) 下列运算正确的是()A .B .C .D .2. (2分) (2016八上·扬州期末) 下图中,既是轴对称图形又是中心对称图形的有()A . 1个B . 2个C . 3个D . 4个3. (2分)(2017·丰润模拟) 小明从正面观察如图所示的两个物体,看到的大致图形是()A .B .C .D .4. (2分)(2018·崇阳模拟) 下列算式中,结果等于a5的是()A . a2+a3B . a2•a3C . a5÷aD . (a2)35. (2分)点P(-3,5)关于y轴的对称点的坐标是()A . (-3,-5)B . (3,-5)C . (5,-3)D . (3,5)6. (2分) (2016七下·重庆期中) 某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A .B .C .D .7. (2分)如图,某水库堤坝横断面迎水坡AB的坡比是1:,堤坝高BC=50m,则迎水坡面AB的长度是()A . 100mB . 100mC . 150mD . 50m8. (2分)如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A . 12个单位B . 10个单位C . 4个单位D . 15个单位9. (2分)如图,在△ABC中,∠C=90°,AC=BC,AB=2 ,点O为AB的中点,以点O为圆心作半圆与边AC相切于点D.则图中阴影部分的面积为()A . 1﹣πB . 1﹣πC . 2﹣πD . 2﹣π10. (2分) (2020八下·长沙期中) 有一组数据:3,4,6,6,6,则这组数据的众数是()A . 3B . 4C . 5D . 611. (2分)(2020·吉林模拟) 如图,在△ABC 中,点 E 是线段 AC 上一点,AE∶CE=1∶2,过点 C 作CD∥AB 交BE 的延长线于点 D ,若△ABE 的面积等于 4,则△BCD 的面积等于()A . 8B . 16C . 24D . 3212. (2分) (2019九上·桂林期末) 一元二次方程2x2-3x+1=0的根的情况是()A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根13. (2分)(2016·毕节) 为加快“最美毕节”环境建设,某园林公司增加了人力进行大型树木移植,现在平均每天比原计划多植树30棵,现在植树400棵所需时间与原计划植树300棵所需时间相同,设现在平均每天植树x棵,则列出的方程为()A .B .C .D .14. (2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x袖于点M ,交y轴于点N ,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P .若点P的坐标为(2a , b+1),则a与b的数量关系为()A . a-bB . 2a+b=-1C . 2a-b=lD . 2a+b=l15. (2分) (2020七下·高新期末) 如图反映的过程是小明从家去食堂吃早餐,接着去图书馆读报,然后原路返回家,其中x(分钟)表示时间,y(千米)表示小明离家的距离,小明家、食堂、图书馆在同一直线上,根据图中提供的信息,下列说法正确的是()A . 食堂离小明家2.4千米B . 小明在图书馆的时间有17分钟C . 小明从图书馆回家的平均速度是0.04千米/分钟D . 图书馆在小明家和食堂之间16. (2分) (2019八上·浙江期中) 如图所示,△ABC的顶点A,B,C在边长为1的正方形网格的格点上,BD⊥AC于点D,则BD的长为()A . 3B . 2C . 4D . 1.5二、填空题 (共3题;共7分)17. (1分) (2017八下·常州期末) 使二次根式有意义的x的取值范围是 ________.18. (1分)袋子中装有3个红球和5个白球,这些球除颜色外均相同.在看不到球的条件下,随机从袋中摸出一个球,则摸出白球的概率是________19. (5分)挑战自我!下图是由一些火柴棒搭成的图案:(1)摆第①个图案用________ 根火柴棒,摆第②个图案用________ 根火柴棒,摆第③个图案用________ 根火柴棒.(2)按照这种方式摆下去,摆第n个图案用________ 根火柴棒?(3)计算一下摆121根火柴棒时,是第________ 个图案?三、解答题 (共7题;共85分)20. (10分)(2012·贺州)(1)计算:|﹣2012|+(3.14﹣π)0+sin30°﹣2﹣1(2)先化简,再求值:,其中.21. (10分) (2015九上·应城期末) 如图,⊙O是△ABC的外接圆,圆心O在AB上,M是OA上一点,过M 作AB的垂线交BC的延长线于点E,过点C作⊙O的切线,交ME于点F.(1)求证:EF=CF;(2)若∠B=2∠A,AB=4,且AC=CE,求BM的长.22. (15分) (2015八下·龙岗期中) 如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF;(3)以线段AE,BF和AB为边构成一个新的三角形ABG(点E与点F重合于点G),记△ABC和△ABG的面积分别为S△ABC和S△ABG ,如果存在点P,能使得S△ABC=S△ABG ,求∠ACB的取值范围.23. (15分)哈市某中学为了丰富校园文化生活,校学生会决定举办演讲、歌唱、绘画、舞蹈四项比赛,要求每位学生都参加,且只能参加其中一项比赛.围绕“你参赛的项目是什么?(必选且只选一项)”的问题,校学生会在全校范围内随机抽取部分学生进行问卷调查,将调查问卷适当整理后绘制成如图所示的不完整的条形统计图.其中参加舞蹈比赛的人数与参加歌唱比赛的人数之比为1:4.请你根据以上信息回答下列问题:(1)通过计算补全条形统计图;(2)在这次调查中,一共抽取了多少名学生?(3)若全校有780名学生,请你估计该校学生中参加演讲比赛的学生有多少名?24. (10分) (2020八下·无锡期中) 在△ABC中,AB=12,AC=BC=10,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为D,点C的对应点为E,连接BD,BE.(1)如图,当α=60°时,延长BE交AD于点F.①求证:△ABD是等边三角形;②求证:BF⊥AD,AF=DF;③请直接写出BE的长.(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.25. (15分) (2017八下·金华期中) 如图,在△ABC中,AB=AC=13厘米,BC=10厘米,AD⊥BC于点D,动点P从点A出发以每秒1厘米的速度在线段AD上向终点D运动,设动点运动时间为t秒.(1)求AD的长.(2)当P、C两点的距离为时,求t的值.(3)动点M从点C出发以每秒2厘米的速度在射线CB上运动.点M与点P同时出发,且当点P运动到终点D 时,点M也停止运动.是否存在时刻t,使得S△PMD= S△ABC?若存在,请求出t的值;若不存在,请说明理由.26. (10分)(2018·广州) 已知抛物线。
山西省吕梁市九年级数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七上·江津月考) 如图是一个简单的数值运算程序,若输入x的值为-2时,则输出的数值为()A . -4B . 8C . 4D . -82. (2分)(2016·河池) 下列四个几何体中,主视图为圆的是()A .B .C .D .3. (2分)(2019·陕西模拟) 已知正比例函数y=kx(k≠0)过点(5,3),(m,4),则m的值为()A .B . -C .D .4. (2分)(2018·恩施) 如图所示,直线a∥b,∠1=35°,∠2=90°,则∠3的度数为()A . 125°B . 135°C . 145°D . 155°5. (2分)(2017·吉林) 不等式x+1≥2的解集在数轴上表示正确的是()A .B .C .D .6. (2分) (2017八下·阳信期中) 若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A . 60B . 30C . 20D . 327. (2分)线段AB、CD在平面直角坐标系中的位置如图所示,O为坐标原点.若线段AB上一点P的坐标为(3.5,2),则直线OP与线段CD的交点的坐标为()A . (7,2)B . (3.5,4)C . (3.5,2)D . (7,4)8. (2分)如图,在矩形ABCD中,AB=9,BC=12,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A . 4B . 6C . 8D . 99. (2分)如图是一圆柱形输水管的横截面,阴影部分为有水部分,如果水面AB宽为8cm,水面最深地方的高度为2cm,则该输水管的半径为()A . 3cmB . 4cmC . 5cmD . 6cm10. (2分) (2015九上·平邑期末) 如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④二、填空题 (共4题;共4分)11. (1分) (2019九下·武威月考) 分解因式: ________.12. (1分)一个三角形的两个内角分别是55°和65°,这个三角形的外角可能是________.13. (1分)(2018·陕西) 若一个反比例函数的图象经过点A(m,m)和B(2m,-1),则这个反比例函数的表达式为________14. (1分) (2017八上·沂水期末) 如图,已知AB∥CF,E为DF的中点,若AB=7cm,CF=4cm,则BD=________cm.三、解答题 (共11题;共86分)15. (5分)计算:16. (5分)(2018·绵阳)(1)计算:(2)解分式方程:17. (5分) (2016九上·朝阳期中) 如图,图①、图②、图③均为4×2的正方形网格,△ABC的顶点均在格点上.按要求在图②、图③中各画一个顶点在格点上的三角形.要求:所画的两个三角形都与△ABC相似但都不与△ABC全等.图②和图③中新画的三角形不全等.18. (5分)(2017·黄冈) 已知:如图,∠BAC=∠DAM,AB=AN,AD=AM,求证:∠B=∠ANM.19. (7分)某小区便民超市为了了解顾客的消费情况,在该小区居民中进行调查,询问每户人家每周到超市的次数,下图是根据调查结果绘制的,请问:(1)这种统计图通常被称为什么统计图?(2)此次调查共询问了多少户人家?(3)超过半数的居民每周去多少次超市?(4)请将这幅图改为扇形统计图.20. (2分)以图中的格点为顶点,画一个与已知△ABC相似的三角形(相似比不为1).21. (11分)(2017·南山模拟) 为更新果树品种,某果园计划新购进A、B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种苗的单价为7元/棵,购买B种苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数关系式;(2)若在购买计划中,B种苗的数量不超过35棵,但不少于A种苗的数量,请设计购买方案,使总费用最低,并求出最低费用.22. (10分) (2016九上·朝阳期末) 党的十八大提出,倡导富强、民主、文明、和谐,倡导自由、平等、公正、法治,倡导爱国、敬业、诚信、友善,积极培育和践行社会主义核心价值观,这24个字是社会主义核心价值观的基本内容.其中:“富强、民主、文明、和谐”是国家层面的价值目标;“自由、平等、公正、法治”是社会层面的价值取向;“爱国、敬业、诚信、友善”是公民个人层面的价值准则.小光同学将其中的“文明”、“和谐”、“自由”、“平等”的文字分别贴在4张硬纸板上,制成如右图所示的卡片.将这4张卡片背面朝上洗匀后放在桌子上,从中随机抽取一张卡片,不放回,再随机抽取一张卡片.(1)小光第一次抽取的卡片上的文字是国家层面价值目标的概率是________;(2)请你用列表法或画树状图法,帮助小光求出两次抽取卡片上的文字一次是国家层面价值目标、一次是社会层面价值取向的概率(卡片名称可用字母表示).23. (10分) (2019九上·灌阳期中) 如图,在平面直角坐标系中,的直角顶点A在轴上,OB=5,OA=4,动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O运动,同时点N从点O出发,以每秒2个单位长度的速度,沿OB向终点B移动,当两个动点运动了秒时,解答下列问题:(1)若点B在反比例函数的图象上,求出该函数的解析式;(2)在两个动点运动过程中,当为何值时,使得以O,M,N为顶点的三角形与相似?24. (15分) (2017九上·商水期末) 如图,抛物线y=ax2+bx﹣4与x轴交于A(﹣4,0)、B(2,0)两点,与y轴交于点C,连接AC,BC.(1)求该抛物线的解析式;(2)若点P是x轴上的一动点,且位于AB之间,过点P作PE∥AC,交BC于E,连接CP,设P点横坐标为x,△PCE的面积为S,请求出S关于x的解析式,并求△PCE面积的最大值;(3)点为D(﹣2,0),若点M是线段AC上一动点,是否存在M点,能使△OMD是等腰三角形?若存在,请直接写出M点的坐标;若不存在,请说明理由.25. (11分) (2017八下·徐州期末) 如图,已知直线a∥b,a、b之间的距离为4cm.A、B是直线a上的两个定点,C、D是直线b上的两个动点(点C在点D的左侧),且AB=CD=10cm,连接AC、BD、BC,将△ABC沿BC翻折得△A1BC.(1)当A1、D两点重合时,AC=________cm;(2)当A1、D两点不重合时,①连接A1D,求证:A1D∥BC;②若以点A1、C、B、D为顶点的四边形是矩形,求AC的长.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共11题;共86分)15-1、16-1、16-2、17-1、18-1、19-1、19-2、19-3、19-4、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、24-3、25-1、。
山西省吕梁市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题(满分30分) (共10题;共30分)1. (3分)(2018·重庆模拟) ﹣的相反数的倒数是()A . 1B . ﹣1C . 2 016D . ﹣2 0162. (3分) (2015八下·开平期中) 下列计算正确的是()A . x2+x4=x6B . x6÷x3=x2C .D . x﹣3=﹣x33. (3分) (2018八上·肇庆期中) 下面有4个汽车标志图案,其中是轴对称图形的是()A . ②③④B . ①②③C . ①②④D . ①③④4. (3分)(2017·烟台) 如图所示的工件,其俯视图是()A .B .C .D .5. (3分) (2016九上·端州期末) 如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm。
则DC 的长为()A . cmB . 1cmC . 2cmD . 5cm6. (3分)把抛物线y=-x2+4x-3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是()A . y=-(x+3)2-2B . y=-(x+1)2-1C . y=-x2+x-5D . 前三个答案都不正确7. (3分)化分式方程−−=0为整式方程时,方程两边必须同乘()A . (4x2-4)(x2-1)(1-x)B . 4(x2-1)(1-x)C . 4(x2-1)(x-1)D . 4(x+1)(x-1)8. (3分)(2020·黄石模拟) 如图,在平面直角坐标系中,矩形OABC的面积为10,反比例函数与AB、BC分别交于点D、E,若AD=2BD,则的值为()A .B .C .D .9. (3分) (2020九上·景县期末) 如图,为了测量某棵树的高度,小明用长为2m的竹竿做测量工具,移动竹竿,使竹竿、树的顶端的影子恰好落在地面的同一点此时,竹竿与这一点距离相距6m,与树相距15m,则树的高度为()m.A . 6B . 9C . 7D . 410. (3分)一元二次方程x2-1=0的根是().A . x=1B . x=-1C . x1=1,x2=0D . x1=1,x2=-1二、填空题(满分30分) (共10题;共30分)11. (3分)(2017·渠县模拟) 234 610 000用科学记数法表示为________.(保留三个有效数字)12. (3分) (2017八下·高密期中) 计算﹣3 =________.13. (3分)(2019·方正模拟) 函数y=中,自变量x的取值范围是________.14. (3分)(2016·巴彦) 分解因式:﹣2xy2+8xy﹣8x=________.15. (3分)按下列程序进行运算(如图)规定:程序运行到“判断结果是否大于244”为一次运算.若x=5,则运算进行________ 次才停止;若运算进行了5次才停止,则x的取值范围是________ .16. (3分)(2017·薛城模拟) 已知方程2x2﹣3x﹣5=0两根为,﹣1,则抛物线y=2x2﹣3x﹣5与x轴两个交点间距离为________.17. (3分) (2019九上·济阳期末) 已知扇形的圆心角为,面积为,则扇形的半径是________.18. (3分)若我们把十位上的数字比个位和百位上的数字都大的三位数称为凸数,如:786,465.则由1,2,3这三个数字构成的,数字不重复的三位数是“凸数”的概率是________19. (3分) (2017九下·梁子湖期中) 在平面直角坐标系中,已知A(﹣3,0),B(0,4),C(1,m),当△ABC 是直角三角形时,m的值为________.20. (3分) (2019九上·港南期中) 如图,点,分别在的边,的延长线上,.若,的面积为3,则的面积为________.三、解答题(满分60分) (共7题;共60分)21. (7分)已知 =2,求的值.22. (7分) (2018八上·九台期末) 已知a,b,c是△ABC的三边长,且满足,试判断△ABC的形状。
山西省吕梁市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共39分)1. (3分)(2020·五峰模拟) 有理数的倒数为().A .B .C .D .2. (3分) (2019七上·佛山月考) 网购正逐渐成为常见的消费方式,在2019年11月11日网上促销活动中,某购物网站当天的交易额达到惊人的2051亿元,体现了网购无比巨大市场空间.其中2051亿用科学记数法表示为()A . 2.051×1010B . 20.51×1010C . 2.051×1011D . 0.2051×10113. (2分)(2016·海南) 如图是由四个相同的小正方体组成的几何体,则它的主视图为()A .B .C .D .4. (3分) (2016八上·临泽开学考) 下列运算中,正确的是()A . (﹣a)2•(a3)2=﹣a8B . (﹣a)(﹣a3)2=a7C . (﹣2a2)3=﹣8a6D . (ab2)2(a2b)=a3b55. (3分) (2019九上·张家港期末) 已知,则的值是()A .B .C .D . ﹣6. (2分) (2019七下·简阳期中) 如图,已知∠1=∠B,∠2=∠C,则下列结论不成立的是()A . AB//CDB . AD//BCC . ∠2+∠B=180°D . ∠B=∠C7. (3分)(2019·颍泉模拟) 如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B(3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于 MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,则点A的坐标为()A . (,0)B . (,0)C . (,0)D . (2,0)8. (3分)(2020·淄博) 李老师为了解学生家务劳动时间情况,更好地弘扬“热爱劳动”的民族传统美德,随机调查了本校10名学生在上周参加家务劳动的时间,收集到如下数据(单位:小时):4,3,4,6,5,5,6,5,4,5.则这组数据的中位数和众数分别是()A . 4,5B . 5,4C . 5,5D . 5,69. (2分) (2020九上·长春月考) 如图,在平面直角坐标系中,点A、B、C、D的坐标分别为、、、,若线段和是位似图形,位似中心在y轴上,则位似中心的坐标为()A .B .C .D .10. (3分) (2020八下·惠州月考) 如图,矩形中,为中点,过点的直线分别与,交于点,,连结,交于点,连结,.若,,则下列结论:① ;② 垂直平分线段;③ ;④四边形是菱形.其中正确结论的个数是()A . 1个B . 2个C . 3个D . 4个11. (2分)甲队修路120 m与乙队修路100 m所用天数相同,已知甲队比乙队每天多修10 m,设甲队每天修路xm.依题意,下面所列方程正确的是()A .B .C .D .12. (2分)一元二次方程x2﹣2x=0的解是()A . x=2B . x1=2,x2=0C . x=0D . x1=2,x2=113. (2分) (2017八下·广州期中) 如图,平行四边形ABCD中,∠A的平分线AE交CD于E,AB=5,BC=3,则EC的长()A . 1B . 1.5C . 2D . 314. (2分) (2018九上·清江浦期中) 如图,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O的切线,切点为C,若∠A=25°,则∠D=()A . 50°B . 25°C . 40°D . 65°15. (2分) (2019七下·合肥期末) 利用一张左、右两边已经破损的长方形纸片ABCD折纸,如图,将纸片沿EF折叠后,D、C两点分别落在D′、C′的位置,若∠AED′=46°,则∠EFB的度数为()A . 67°B . 64°C . 88°D . 46°16. (2分) (2018九上·沈丘期末) 如图,A点在半径为2的⊙O上,过线段OA上的一点P作直线l,与⊙O 过A点的切线交于点B,且∠APB=60°,设OP=x,则△PAB的面积y关于x的函数图象大致是()A .B .C .D .二、填空题 (共3题;共12分)17. (3分) (2019八上·嘉定月考) 在实数范围内分解因式: =________18. (3分)如图,点A(m,6),B(n,1)在反比例函数图象上,AD⊥x轴于点D,BC⊥x轴于点C,DC=5.线段DC上有一点E,当△ABE的面积等于5时,点E的坐标为________19. (6分)(2020·南宁模拟) 正比例函数,随的增大而增大,那么的取值范围是________.三、解答题 (共7题;共60分)20. (8分) (2020七下·岳阳期中) 化简: ________.21. (2分)(2019·绍兴模拟) 随着航母编队的成立,我国海军日益强大.2018年4月12日,中央军委在南海海域隆重举行海上阅兵,在阅兵之前我军加强了海上巡逻,如图,我军巡逻舰在某海域航行到A处时,该舰在观测点P的南偏东45°的方向上,且与观测点P的距离PA为400海里;巡逻舰继续沿正北方向航行一段时间后,到达位于观测点P的北偏东30°方向上的B处,问此时巡逻舰与观测点P的距离PB为多少海里?(参考数据:≈1.414,≈1.732,结果精确到1海里).22. (8分)(2019·金堂模拟) 结合书香成都全民阅读活动,金堂在全县中小学推广普及中华经典诵读,让孩子掌握国学经典作品“读、诵、吟”等基本方法,培养中华经典诵读活动的爱好者、传播者,营造浓郁的文化氛围.2018年9月某初中学校开展了国学金典诵读活动,林老师对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有1名来自七年级,有2名来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加县级国学经典诵读大赛,请用列表或画树状图的方法求所选出的两人中既有七年级又有八年级同学的概率.23. (9.0分)(2018·铜仁) 如图,在三角形ABC中,AB=6,AC=BC=5,以BC为直径作⊙O交AB于点D,交AC于点G,直线DF是⊙O的切线,D为切点,交CB的延长线于点E.(1)求证:DF⊥AC;(2)求tan∠E的值.24. (10.0分) (2019八下·江门期末) 某公司把一批货物运往外地,有两种运输方案可供选择.方案一:使用快递公司的邮车运输,装卸收费400元,另外每千米再回收4元;方案二:使用快递公司的火车运输,装卸收费820元,另外每千米再回收2元.(1)分别求邮车、火车运输总费用y1(元)、y2(元)关于运输路程x(km)之间的函数关系式:(2)如何选择运输方案,运输总费用比较节省?25. (11.0分)(2020·南县) 定义:若四边形有一组对角互补,一组邻边相等,且相等邻边的夹角为直角,像这样的图形称为“直角等邻对补”四边形,简称“直等补”四边形,根据以上定义,解决下列问题:(1)如图1,正方形中,E是上的点,将绕B点旋转,使与重合,此时点E的对应点F在的延长线上,则四边形为“直等补”四边形,为什么?(2)如图2,已知四边形是“直等补”四边形,,,,点到直线的距离为.①求的长.②若M、N分别是、边上的动点,求周长的最小值.26. (12分) (2020九下·北碚月考) 如图,抛物线的解析式为y=﹣ x+5,抛物线与x轴交于A、B两点(A点在B点的左侧),与y轴交于点C,抛物线对称轴与直线BC交于点D.(1) E点是线段BC上方抛物线上一点,过点E作直线EF平行于y轴,交BC于点F,若线段CD长度保持不变,沿直线BC移动得到C'D',当线段EF最大时,求EC'+C'D'+ D'B的最小值;(2) Q是抛物线上一动点,请问抛物线对称轴上是否存在一点P是△APQ为等边三角形,若存在,请直接写出三角形边长,若不存在请说明理由.参考答案一、选择题 (共16题;共39分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共12分)17-1、18-1、19-1、三、解答题 (共7题;共60分)20-1、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、26-1、26-2、。
2024年中考第二次模拟考试(山西卷)数学·全解全析第Ⅰ卷一、选择题(本大题共10个小题,每小题3分,共30分.在每个小题给出的四个选项中,只有一项符合题目要求,请选出并在答题卡上将该项涂黑)-+-⨯的结果等于()1.计算5(2)3A.11-B.1-C.1D.11【答案】A-+-⨯【解析】解:5(2)3=--56=-,11故选:A.2.以下是“双减”背景下学校社团拓展课程的相关图片,其中是中心对称图形的是()A.剪纸B.琵琶C.钢笔D.乒乓球拍【答案】A【解析】A、是中心对称图形,符合题意;B、不是中心对称图形,不符合题意;C、不是中心对称图形,不符合题意;D、不是中心对称图形,不符合题意;故选:A.3.下列是一位同学在课堂小测中做的四道题,如果每道题10分,满分40分,那么他的测试成绩是()(1)01π=(2)22(2)4x x +=+(3)2(2)(2)4x x x -+--=-(4)232824a b ab ab-÷=-A .40分B .30分C .20分D .10分【答案】B【解析】第(1)题,01π=,正确,得10分;第(2)题,22(2)44x x x +=++,原题解答错误,得0分;第(3)题,2(2)(2)4x x x -+--=-,正确,得10分;第(4)题,232824a b ab ab -÷=-,正确,得10分;所以这位同学的测试成绩是30分.故选B .4.如图,三位学生在做投圈游戏.他们分别站在Rt ABC △的三个顶点处,目标物放在斜边AC 的中点处.仅从数学的角度看这样的队形哪个位置的学生投中的可能性最大()A .A 处学生投中的可能性最大B .B 处学生投中的可能性最大C .C 处学生投中的可能性最大D .三位学生投中的可能性一样大【答案】D 【解析】解:依题意,他们分别站在Rt ABC △的三个顶点处,目标物放在斜边AC 的中点处.设AC 的中点为D ,则BD AD DC ==,∴三位学生投中的可能性一样大,故选:D .5.《海底两万里》是法国著名作家儒勒·凡尔纳的一部著名作品,他在小说中塑造了尼摩船长这个反对沙皇专制统治的高大形象,赋予其强烈的社会责任感和人道主义精神,以此来表达对现实的批判.如图所示是《海底两万里》中尼摩船长所发明的潜水头盔的示意图.这种头盔具有良好的抗水压性能,能使潜水工作者在水下数百米深处作业而行动自如.现将其抽象为图示的立体图形,则该头盔的俯视图为()A .B .C .D .【答案】D【解析】解:根据俯视图是由从上往下看得到的图形可得,该头盔的俯视图为故选:D .6.随着新能源电动汽车的快速增加,绵阳市正在快速推进全市电动汽车的充电桩建设,已知到2023年底,绵阳全市约有3.5万个充电桩,根据规划到2025年底,全市的充电桩数量将会达到5.04万个,则从2023年底到2025年底,全市充电桩数量的年平均增长率为()A .10%B .15%C .20%D .25%【答案】C【解析】解:设全市充电桩数量的年平均增长率为x ,根据题意得23.5(1) 5.04x +=,解得120.2, 2.2x x ==-(舍去),故全市充电桩数量的年平均增长率为20%.故选C .7.如图是物体AB 在焦距为cm a (即cm OE OF a ==)的凸透镜下成倒立放大实像的光路示意图.从点A 发出的平行于BD 的光束折射后经过右焦点F ,而经过光心O 点的光束不改变方向,最后A 点发出的光汇聚于点C ,B 点发出的光汇聚于点D ,从而得到最清晰的实像.若物距cm OB b =,则像距OD 为()cm .A .2a b a-B .2b b a -C .2b a D .ab b a-【答案】D 【解析】解:由题意得:AB OG CD ∥∥,AB OG =,ABO GOF CDO ∴∠=∠=∠,AOB COD ∠=∠,GFO CDF ∠=∠,ABO CDO ∴ ∽,GFO CDO ∽,AB OB CD OD ∴=,OG OF CD DF=, AB OG =,AB OG OB OF CD CD OD DF ∴===,设cm DF x =,则()cm OD x a =+,b a x a x∴=+,解得:2a xb a=-,经检验2a xb a=-为原分式方程的解,222a a ab a ab OD x a a b a b a b a+-∴=+===---,故选:D .8.如图,A ,B ,C ,D 是电路图中的四个接线柱,闭合开关后,灯泡不发光.小明同学用一根完好导线的两端随机触连A ,B ,C ,D 中的两个接线柱,若电流表有示数或灯泡发光,说明两个接线柱之间的电路元件存在故障.已知灯泡存在断路故障,其他元件完好,则小明触连一次找到故障(用导线触连接线柱BC )的概率为()A .12B .13C .14D .16【答案】D 【解析】解:根据题意列出表格如下:AB C D A (),A B (),A C (),A D B (),B A (),B C (),B D C (),C A (),C B (),C D D (),D A (),D B (),D C 由表可知,一共有12种情况,小明触连一次找到故障的有2种情况,∴小明触连一次找到故障的概率21126==,故选:D .9.创新驱动发展,也使人们的生活更加便捷.如图是一款手机支撑架,我们可以通过改变面板张角的大小来调节视角舒适度.小明将该支撑架放置在水平桌面上,并调节面板CD 的张角至视角舒适,若张角70BCD ∠=︒,支撑杆CB 与桌面夹角65B ∠=︒,那么此时面板CD 与水平方向夹角1∠的度数为().A .45︒B .55︒C .65︒D .70︒【答案】A 由题意可得:DE AB ∥,则65DEC B ∠=∠=︒;然后根据三角形内角和定理即可解答.【解析】解:由题意可得:DE AB ∥,∴65DEC B ∠=∠=︒,∵70BCD ∠=︒,∴118045BCD CED ∠=︒-∠-∠=︒.故选:A .10.已知四个正六边形如图摆放在图中,顶点A ,B ,C ,D ,E ,F 在圆上.若两个大正六边形的边长均为2,则小正六边形的边长是()A .33B .2312C .312D .1312-【答案】D 【解析】解:如图,连接AD 交PM 于O ,则点O 是圆心,过点O 作ON ⊥DE 于N ,连接MF ,取MF 的中点G ,连接GH ,GQ ,由对称性可知,OM =OP =EN =DN =1,由正六边形的性质可得ON =3∴OD 2213DN ON =+==OF ,∴MF 13=-1,由正六边形的性质可知,△GFH 、△GHQ 、△GQM 都是正三角形,∴FH 12=MF 1312-=,故选:D .第Ⅱ卷二、填空题(本大题共5个小题,每小题3分,共15分)11.计算:(3622÷3312-【解析】解:原式331331 362222222-===;故答案为:331 2.12.园林设计师为公园设计了种植月季花的正方形造型:最外层种黄花,用○表示;里面种红花,用●表示.请你观察下图,当红花列数为n时,红花有()朵,黄花有()朵.【答案】2n8n【解析】解:第1个图形中红花的朵数是1,黄花的朵数是8,第2个图形中红花的朵数是4=22,黄花的朵数是16=8×2,,第3个图形中红花的朵数是9=32,黄花的朵数是24=8×3,第4个图形中红花的朵数是16=42,黄花的朵数是32=8×4,…,所以,第n个图形中红花的朵数是n2,黄花的朵数是8n,故答案为:2n,8n.13.商店里的自动扶梯在2 min内可把人送上楼.若扶梯不动,人沿扶梯走上楼需3 min.现在人沿运动的扶梯以同样的速度走上楼,则所需的时间是.【答案】1.2min【解析】解:设人走的速度为1v ,自动扶梯的速度为2v ,设人沿运动的扶梯以同样的速度走上楼,所需的时间是min t ,根据距程=速度×时间,得:自动扶梯在2min 内可把人送上楼,人通过的距离为:22s v =,扶梯不动,人沿扶梯走上楼需3min ,人通过的距离为:13s v =,人沿运动的扶梯以同样的速度走上楼,所需的时间是min t ,人通过的距离为:()12s v v t =+,2123v v ∴=,2132v v ∴=,()1123v v v t =+ ,111332v v v t ⎛⎫∴=+ ⎪⎝⎭,解得 1.2t =.故答案为:1.2min .14.如图,已知ABC 的面积为12,结合尺规作图痕迹所提供的条件可知,APC △的面积为.【答案】4【解析】连MN ,由作图知M ,N 分别为,AB BC 的中点,∴1,2MN AC MN AC = ,由等底同高三角形面积相等得1112622ACM BCM ABC S S S ==⨯=⨯= 又∵MN AC∥∴,,PAC PNM PCA PMN ∠=∠∠=∠∴ACP NMP∴12MP MN PC AC ==∴22123PC CM ==+∴226433APC ACM S S ==⨯= 故答案为:415.如图,在正方形ABCD 内有一点E ,90AEB ∠=︒.以CE ,DE 为邻边作CEDF ,连结EF ,若A ,E ,F 三点共线,且ADF △的面积为10,则CF 的长为.10【解析】解:设EF 、CD 的交点为G ,过E 作EH AD ⊥交于H ,∵四边形ECFD 是平行四边形,∴12DG CG DG ==,DE CF =,EG FG =,设正方形的边长为2x ,则2AD AB CD x ===,DG CG x ==,在Rt ADG 中,5AG x =,∵90AEB ∠=︒,∴90BAE ABE ∠+∠=︒,∵90BAE DAE ∠+∠=︒,∴ABE DAE ∠=∠,又90AEB ADG ∠=∠=︒,∴ABE GAD ∽ ,∴AB AEAG DG =5x AE x x =,∴255AE =,∴355EG x =,∴35EGAG =,∴53ADG DEGSS = ,设5ADG S m = ,则3DEG S m = ,∵EG FG =,∴3DGF DEG S S m == ,∴538ADF S m m m =+= ,∵10ADF S =△,∴810m =,∴54m =,∴22554ADG S m x === ,∴52x =,∴5AD =,5EA =∵15522ADE S HE =⨯⨯= ,∴1HE =,在Rt AHE △中,222AH AE HE =-=,∴3HD =,在Rt HED 中,10ED ∴10CF .10.三、解答题(本大题共8个小题,共75分.解答应写出文字说明,证明过程或演算步骤)16.(10分)(1(2011832123-⎛⎫--- ⎪⎝⎭;(2)下面是王亮同学解方程2358224x x x +=-+-的过程,请阅读并完成相应任务.解:方程两边同乘以24x -,得()()32528x x ++-=第一步36528x x ++-=.第二步2862x =-+第三步6x =第四步经检验:6x =是原方程的解.第五步∴原方程的解是6x =第六步任务一:①以上求解过程中,第一步的依据是______;②王亮同学的求解过程从第______步开始出现错误,整个解答过程.从前一步到后一步的变形共出现______处错误:③分式方程检验的目的是______.任务二:请你直接写出这个方程的正确解______.【解析】解:(1(211832123-⎛⎫--- ⎪⎝⎭329321=--10=-;(2)任务一:①方程两边同乘以24x -,得()()32528x x ++-=,依据是等式的性质;②第二步,()()32528x x ++-=,漏乘了项,应为365108x x ++-=∴王亮同学的求解过程从第二步开始出现错误,第三步,左边35x x +应为8x 不是2x ,第四步,计算错误,应为2x =不是6x =,∴整个解答过程,从前一步到后一步的变形第二步、第三步、第四步共出现3处错误;③分式方程检验的目的是判定解是否是增根.任务二:解:方程两边同乘以24x -,得()()32528x x ++-=,365108x x ++-=.,88106x =+-,32x =,经检验:32x =是原方程的解.∴原方程的解是32x =.17.(7分)如图,在O 中,AC 是直径,DC DE EA AB BE 、、、、是弦,BE 的延长线交AF 于点F ,且,DE EA FBA FAE =∠=∠.(1)试说明直线AF 与O 的位置关系,并说明理由;(2)若2,6DE EA DC ===,求tan CAE ∠的值.【解析】(1)解:直线AF 与O 相切,理由如下:连接CE ,AC 是直径,90AEC ∴∠=︒,90EAC ECA ∴∠+∠=︒,AE AE = ,FBA ECA ∴∠=∠,90EAC FBA ∴∠+∠=︒FBA FAE ∠=∠ ,90EAC FAE ∴∠+∠=︒,即OA AF ⊥,∴直线AF 与O 相切;(2)解:连接OE ,AD 交于点G ,DE EA = ,DE EA ∴=,OG AD ∴⊥,AG DG =,OA OC = ,116322OG CD ∴==⨯=,设O 半径为r ,则3EG OE OG r =-=-,在Rt OAG △中,22222239AG OA OG r r =-=-=-,在Rt EAG △中,()()2222222343AG EA EG r r =-=--=--,()22943r r ∴-=--,解得3172r =或3172r =(舍),2317AC r ∴==+在Rt ACE 中,()2222317222617CE AC EA =-+-=+22617tan 2CE CAE EA +∴∠==18.(8分)为有效落实双减政策,切实做到减负提质,某学校在课外活动中增加了球类项目.学校计划用1800元购买篮球,在购买时发现,每个篮球的售价可以打六折,打折后购买的篮球总数量比打折前多10个.(1)求打折前每个篮球的售价是多少元?(2)由于学生的需求不同,该学校决定增购足球.学校决定购买篮球和足球共50个,每个足球原售价为100元,在购买时打八折,且购买篮球的数量不超过总数量的一半,请问学校预算的1800元是否够用?如果够用,请设计一种最节省的购买方案;如果不够用,请求出至少需要再添加多少元?【解析】(1)设打折前每个篮球的售价是x 元,则打折后每个篮球的售价是0.6x 元,由题意,得180********.6x x-=,解得120x =经检验,120x =是原方程的解,且符合题意答:打折前每个篮球的售价是120元;(2)设购买篮球m 个,则购买足球()50m -个设购买50个篮球和足球的总费用为w 元由题意,得()1200.61000.85084000w m m m =⨯+⨯-=-+80-< ∴w 随着m 的增大而减小又 150252m ≤⨯=∴当25m =时,w 取得最小值,最小值为82540003800-⨯+= 38001800>∴学校预算的1800元不够用380018002000-=(元)∴该学校至少还需要再添加2000元.19.(9分)为增强同学们的环保意识,某校八年级举办“垃圾分类知识竞赛”活动,分为笔试和展演两个阶段.已知年级所有学生都参加了两个阶段的活动.首先将成绩分为以下六组(满分100分,实际得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤随机抽取n 名学生,将他们两个阶段的成绩均按以上六组进行整理,相关信息如下:已知笔试成绩中,D 组的数据如下:85,85,85,85,86,87,87,88,89.请根据以上信息,完成下列问题:(1)在扇形统计图中,“E 组”所对应的扇形的圆心角是________︒;(2)n =_____,并补全图2中的频数分布直方图;(3)在笔试阶段中,n 名学生成绩的中位数是_______分;(4)已知笔试和展演两个阶段的成绩是按照2:3的权重计入总成绩,总成绩在91分以上的将获得“环保之星”称号,以下为甲、乙两位同学的成绩,最终谁能获得“环保之星”称号?请通过计算说明理由.【解析】(1)“E 组”所对应的扇形的圆心角是:()360145%20%5%5%10%54︒⨯-----=︒,故答案为:54;(2)945%20n =÷=,并补全频数分布直方图如图,故答案为:20;(3)由(2)得:20n =,即抽取20名学生,即中位数排在第10,11位的平均数,为85.528586=+,故答案为:85.5;(4)甲:92289390.223⨯+⨯=+,乙:9029539323⨯+⨯=+,∵90.293<,∴乙将获得“环保之星”称号.20.(8分)山西省首座独塔悬索桥——通达桥,全长1.54公里,主桥横跨汾河,全长416m ,宽45m ,是太原新建成的一座跨河大桥,桥的主塔由曲线形拱门组成,取意“时代之门”.某数学“综合与实践”小组把“测量通达桥拱门的高度”作为一项课题活动,他们制订了测量方案,并利用课余时间完成了实地测量.测量结果如表:项目内容测量通达桥拱门的高度测量示意图及说明说明:他们利用无人机技术进行测量,AB 代表通达桥拱门,C ,D 是两个观测点,已知CD BM AB BM ⊥⊥,,A ,B ,C ,D 在同一平面内,BM 为桥面测量数据C 处的仰角D 处的俯角观测点C 距桥面的高度DC 之间的距离30︒45︒50m 200m ……任务一:请运用你所学的知识,根据上表中的测量数据,帮助“综合与实践”小组求出通达桥拱门的高度AB ;3 1.73≈2 1.41≈)任务二:请你根据所学的知识,再设计一种方案,画出示意图,并写出需要测量的量.【解析】解:任务一:如图①,延长DC 与BM 交于点N ,过点A 作AP DC ⊥于点P ,∵CDBM AB BM ⊥⊥,,∴90APN PNB ABN ∠=∠=∠=︒,∴四边形APNB 为矩形,∴AB PN =,根据题意可得903060ACP ∠=︒-︒=︒,904545ADP ∠=︒-︒=︒,50m CN =,200m DC =,在Rt APC △中,tan tan 603APACP PC ∠=︒==∴3AP =,在Rt APD 中,tan tan 451APADP DP ∠=︒==,∴3DP AP PC ==,∵200m DC =,∴200m PC PD +=,∴3200m PC PC +=,∴)2001003173m13PC ==-≈+∵50m CN =,∴7350123m AB PN PC CN ==+=+=,∴通达桥拱门的高度AB 约为123m;任务二:测量方案如图②所示,需要测量的数据有ACB ∠的度数,ADC ∠的度数,DC 之间的距离.解Rt ABC △可得tan AB BC ACB =∠,解Rt △ABD 可得tan AB BD ADB =∠,则tan tan AB AB CD BC BD ACB ADB=+=+∠∠,∴需要测量的数据有ACB ∠的度数,ADC ∠的度数,DC之间的距离.21.(8分)阅读以下材料,并按要求完成相应的任务.数学对物理学的发展起着重要的作用,物理学也对数学的发展起着重要的作用,莫尔斯所说:“数学是数学,物理是物理,但物理可以通过数学的抽象而受益,而数学则可以通过物理的见识而受益.”以下是数学中常见的一个问题:若2a b +=,则ab 的最大值是多少?设1a x =+,1b x =-,则22(1)(1)11ab x x x x =+-=-=-+.……以下是物理中的一个问题:物理学中的电路分为串联电路和并联电路,已知电路中有大小分别为1R 和2R 的两个电阻,串联电路的电阻公式为12R R R =+,并联电路的电阻公式为12111R R R =+.在某一段电路上测得两个电阻的和为15kΩ.若根据实际需要把这两个电阻并联在一起,则并联后总电阻的最大值是多少?任务:(1)按照上面的解题思路,完成数学问题的剩余部分.(2)若a ,b 两数的和为定值,则a ,b 满足______时,ab 的值最大.(3)解决这个物理问题主要体现的数学思想是______.(填序号即可)A .统计思想B .分类思想C .模型思想(4)物理问题中并联后总电阻的最大值是______k Ω.【解析】(1)解:按照上面的解题思路,完成数学问题的剩余部分如下:∵10-<,∴当1x =时,ab 取最大值,最大值为1;(2)令a ,b 两数的和为定值m ,设2m a x =+,2m b x =-,则22224m m m ab x x x ⎛⎫⎛⎫=+-=-+ ⎪⎪⎝⎭⎝⎭,∴当0x =时,ab 取最大值为24m ,此时2m a b ==,∴若a ,b 两数的和为定值,则a ,b 满足a b =时,ab 的值最大.故答案为:a b =;(3)解决这个物理问题主要体现的数学思想是模型思想.故选:C ;(4)由以上结论可知,当12R R =时,12R R 取最大值,∴1221212121111515415152R R R R R R R R R +=+====⎛⎫ ⎪⎝⎭,∴15 3.75k 4R ==Ω.故答案为:3.75.22.(12分)问题背景:点E ,F 分别在正方形ABCD 的边BC ,CD 上,45EAF ∠=︒,试判断BE ,EF ,DF之间的数量关系.小云同学的思路是过点A 作AG AE ⊥,交CD 的延长线于点G ,如图1,通过这种证明方法,可发现上述线段BE ,EF ,DF 的数量关系为________(直接写出结果);变式迁移:如图2,在菱形ABCD 中,=60B ∠︒,点E ,F 分别在BC ,CD 上,且1BE =,3DF =,若60EAF ∠=︒,求EF 的长;拓展应用:如图3,在ABC 中,45BAC ∠=︒,AD BC ⊥于D ,6BD =,4CD =,直接写出AD 的长为________.【解析】解:EF BE DF =+;证明:如图1,过点A 作AG AE ⊥,交CD 的延长线于点G .∵四边形ABCD 为正方形,AG AE ⊥,∴90B BAD EAG ADC ∠=∠=∠=∠=︒,AB AD =,∴,90BAE DAG B ADG ∠=∠∠=∠=︒,∴ABE ADG △≌△,∴AE AG =,BE DG =,∵90EAG ∠=︒,45EAF ∠=︒,∴45EAF GAF ∠=∠=︒,∵AF AF =,∴EAF GAF △≌△,∴EF GF =,∴EF GF GD DF BE DF ==+=+,即EF BE DF =+.故答案为:EF BE DF=+变式迁移:如图2,连AC ,过点A 作AM CD ⊥于点M .∵四边形ABCD 为菱形,∴AB BC =,180B BCD ∠+∠=︒,∵=60B ∠︒,∴ABC 为等边三角形,∴AB AC =,60BAC ACB ∠=∠=︒,∴60BAE EAC CAF ∠=︒-∠=∠,60ACF ∠=︒,∴ABE ACFV V ≌∴1BE CF ==,AE AF =,∴4AD AC CD CF DF ===+=,∵AM CD ⊥,∴122CM CD ==,在Rt ACM 中,2223AM AC CM =-=∵2,1CM CF ==,∴1MF =,在Rt ACM 中,2213AF AM FM =+,又∵AE AF =,60EAF ∠=︒,∴AEF △为等边三角形,∴13EF AF ==拓展应用:如图3,以AB 为对称轴作ABD △的轴对称图形ABE ,以AC 为对称轴作ACD 的轴对称图形ACF △,延长EB 、FC 交于点G .∵AD BC ⊥,由轴对称的性质得90,E ADB F ADC AE AD AF ∠=∠=∠=∠=︒==,,EAB DAB FAC DAC ∠=∠∠=∠,6,4BE BD CF CD ====,∵45BAC ∠=︒,∴90EAF ∠=︒,∴四边形AEGF 是正方形,∴90G ∠=︒,设AD x =,则AE AF EG FG x ====,∴6,4BG x CG x =-=-,在Rt BGC △中,根据勾股定理得()()()2226464x x -+-=+,解得1212,2x x ==-(不合题意,舍去),∴12AD =.故答案为:1223.(13分)如图,抛物线294y ax x c =++与x 轴相交于点()1,0A -和点B ,与y 轴相交于点()0,3C ,作直线BC.(1)求抛物线的解析式;(2)若在直线BC 上方的抛物线上有一动点P ,连接OP 交直线BC 于点D ,若:3:4PCD OCD S S =△△,求点P 的坐标;(3)若在直线BC 上方的抛物线上存在点Q ,使2QCB ABC ∠=∠,求点Q 的坐标.【解析】(1)解:把()1,0A -,()0,3C 代入抛物线解析式294y ax x c =++中得9043a c c ⎧=-+⎪⎨⎪=⎩,解得343a c ⎧=-⎪⎨⎪=⎩,∴抛物线的解析式为239344y x x =-++.(2)解:如图所示,过点D 作DE x ⊥轴于E ,过点P 作PF x ⊥轴于F ,∵:3:4PCD OCD S S =△△,∴:4:7OCD OCP S S =△△,∴142172OC DE OC PF ⋅=⋅,∴47DEPF =;在239344y x x =-++中,当2393044y x x =-++=时,解得=1x -或4x =,∴()40B ,,设直线BC 解析式为y kx b '=+,∴403k b b ''+=⎧⎨=⎩,∴343k b ⎧=-⎪⎨⎪=⎩',∴直线BC 解析式为334y x =-+,设()433D m m -+,,∴4337DE m OE m PF m ==-+=,,,∴2147637344P m m m ⎛⎫-++ ⎪⎝⎭,,∴214763344OF m m =-++,∵DE OF PF OF ⊥,⊥,∴DE PF ∥,∴OED OFP △∽△,∴47OEDE OF PF ==,∴2334147637344m m m -+=-++,∴214763122121m m m -++=-+,∴21478490m m -+=,∴()()732130m m --=,解得37m =或17m =,∴点P 的坐标为()33,或912⎛⎫⎪⎝⎭,;(3)解:如图,过点C 作CE x ∥轴交抛物线与点E ,过点Q 作QH CE ⊥与于点H ,CE x ∥ 轴,ABC BCE ∴∠=∠,2QCB QCE BCE ABC ∠=∠+∠=∠ ,QCE ABC ∴∠=∠,90QHC BOC ∠=∠=︒ ,CHQ BOC ∴ ∽,QHCHOC OB ∴=,设239,344Q t t x ⎛⎫-++ ⎪⎝⎭,()0,3C ,3OC ∴=,23944QH t t ∴=-+,2394434t t t -+∴=,解得:2t =或0=t (舍)23993442t x ∴-++=,∴点Q 的坐标为92,2⎛⎫⎪⎝⎭.。
吕梁市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2016·毕节) 的算术平方根是()A . 2B . ±2C .D . ±2. (2分)(2016·平武模拟) 如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A .B .C .D .3. (2分)计算(﹣p)8·(﹣p2)3·[(﹣p)3]2的结果是()A . ﹣p20B . p20C . ﹣p18D . p184. (2分) (2019八上·吴兴期中) 如图,把一长方形纸片ABCD沿EG折叠后,点A,B分别落在A′、B′的位置上,EA′与BC相交于点F,已知∠1=130°,则∠2的度数是()A . 40°B . 50°C . 65°D . 80°5. (2分) (2018八上·金东期末) 根据图可以得到如图的y与x之间关系,那么m,n的值是()A . ,3B . 3,C . 3,3D . ,6. (2分) (2020九下·萧山月考) 不等式的解是()A . 1≤x<2B . x>2C . -1≤x<D . x>7. (2分)如图,已知一次函数y=kx+b的图象经过A(0,1)和B(2,0),当x>0时, y的取值范围是()A . y<1;B . y<0;C . y>1;D . y<28. (2分)七巧板是我国著名的拼图玩具,从宋代“燕几图”演变而来,距今有3000多年历史.已知一副七巧板(左图)的总面积为64cm2 ,现用这副七巧板如右图摆放,则图中“箭头” ABCDEFG的面积是()cm2A . 8B . 8-C . 68-48D . 48 -609. (2分)如图,已知,AB是⊙O的直径,点C,D在⊙O上,∠ABC=50°,则∠D为()A . 50°B . 45°C . 40°D . 30°10. (2分)根据下表中的二次函数y=ax2+bx+c的自变量x与函数y的对应值,可判断二次函数的图像与x 轴()A . 只有一个交点B . 有两个交点,且它们分别在y轴两侧C . 有两个交点,且它们均在y轴同侧D . 无交点二、填空题 (共5题;共5分)11. (1分)比较大小:﹣ ________﹣2(填“<”号或“>”号)12. (1分) (2019七下·许昌期末) 如图,A、B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1 ,A1、B1的坐标分别为(2,a)、(b,3),则=________.13. (1分) (2019九下·温州竞赛) 在小水池旁有一盏路灯,已知支架AB的长是1m,A端到地面的距离AC 是4.8m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水池的内沿E测得支架A端的仰角是50°(点C、E、D在同一直线上),则小水池的宽DE=________m.(结果精确到0.1m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)14. (1分)(2020·丰南模拟) 如图,过点O的直线AB与反比例函数y= 的图象交于A,B两点,A(2,1),直线BC∥y轴,与反比例函数y= (x<0)的图象交于点C,连接AC,则△ABC的面积为________.15. (1分)(2020·西安模拟) 如图,已知,点为边中点,点在线段上运动,点在线段上运动,连接,则周长的最小值为________.三、解答题 (共11题;共108分)16. (10分) (2019八下·广州期中) 计算:(1)(2)17. (10分)计算。
山西省吕梁市2019-2020学年中考第二次模拟数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知:二次函数y=ax2+bx+c(a≠1)的图象如图所示,下列结论中:①abc>1;②b+2a=1;③a-b<m(am+b)(m≠-1);④ax2+bx+c=1两根分别为-3,1;⑤4a+2b+c>1.其中正确的项有( )A.2个B.3个C.4个D.5个2.如图:A、B、C、D四点在一条直线上,若AB=CD,下列各式表示线段AC错误的是( )A.AC=AD﹣CD B.AC=AB+BCC.AC=BD﹣AB D.AC=AD﹣AB3.在同一直角坐标系中,二次函数y=x2与反比例函数y=(x>0)的图象如图所示,若两个函数图象上有三个不同的点A(x1,m),B(x2,m),C(x3,m),其中m为常数,令ω=x1+x2+x3,则ω的值为()A.1 B.m C.m2D.4.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,155.四个有理数﹣1,2,0,﹣3,其中最小的是()A.﹣1 B.2 C.0 D.﹣36.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是()A.平均数B.中位数C.众数D.方差7.如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则CFCD的值是()A.1 B.12C.13D.148.甲、乙两人同时分别从A,B两地沿同一条公路骑自行车到C地.已知A,C两地间的距离为110千米,B,C两地间的距离为100千米.甲骑自行车的平均速度比乙快2千米/时.结果两人同时到达C地.求两人的平均速度,为解决此问题,设乙骑自行车的平均速度为x千米/时.由题意列出方程.其中正确的是()A.1101002x x=+B.1101002x x=+C.1101002x x=-D.1101002x x=-9.(2016福建省莆田市)如图,OP是∠AOB的平分线,点C,D分别在角的两边OA,OB上,添加下列条件,不能判定△POC≌△POD的选项是()A.PC⊥OA,PD⊥OB B.OC=OD C.∠OPC=∠OPD D.PC=PD 10.对于下列调查:①对从某国进口的香蕉进行检验检疫;②审查某教科书稿;③中央电视台“鸡年春晚”收视率.其中适合抽样调查的是( )A.①②B.①③C.②③D.①②③11.下列计算正确的是()A.2224()39b bc c=B.0.00002=2×105C.2933xxx-=--D.3242·323x yy x x=12.如图,BC是⊙O的直径,A是⊙O上的一点,∠B=58°,则∠OAC的度数是( )A .32°B .30°C .38°D .58°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.ABCD 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P 、Q 分别从点A 、C 同时出发,点P 以3 cm/s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm/s 的速度向D 移动,P 、Q 两点从出发开始到__________秒时,点P 和点Q 的距离是10 cm.14.若一个棱柱有7个面,则它是______棱柱.15.如图,直线m ∥n ,△ABC 为等腰直角三角形,∠BAC=90°,则∠1= 度.16.如图,转盘中6个扇形的面积相等,任意转动转盘1次,当转盘停止转动时,指针指向的数小于5的概率为_____.17.函数2y x =-x 的取值范围是_____.18.不透明袋子中装有5个红色球和3个蓝色球,这些球除了颜色外没有其他差别.从袋子中随机摸出一个球,摸出蓝色球的概率为_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,某人站在楼顶观测对面的笔直的旗杆AB ,已知观测点C 到旗杆的距离3,测得旗杆的顶部A 的仰角∠ECA=30°,旗杆底部B 的俯角∠ECB=45°,求旗杆AB 的髙.20.(6分)有这样一个问题:探究函数y =316x ﹣2x 的图象与性质. 小东根据学习函数的经验,对函数y =316x ﹣2x 的图象与性质进行了探究. 下面是小东的探究过程,请补充完整:(1)函数y =316x ﹣2x 的自变量x 的取值范围是_______; (2)如表是y 与x 的几组对应值x … ﹣4 ﹣3.5﹣3 ﹣2 ﹣1 0 1 2 3 3.5 4 …y … ﹣83 ﹣748 32 83 116 0 ﹣116 ﹣83 m 748 83 …则m 的值为_______;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)观察图象,写出该函数的两条性质________.21.(6分)如图,抛物线y =ax 2+bx ﹣2经过点A (4,0),B (1,0).(1)求出抛物线的解析式;(2)点D 是直线AC 上方的抛物线上的一点,求△DCA 面积的最大值;(3)P 是抛物线上一动点,过P 作PM ⊥x 轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与△OAC 相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由.22.(8分)如图,已知抛物线234y ax ax a =+-与x 轴负半轴相交于点A ,与y 轴正半轴相交于点B ,OB OA =,直线l 过A 、B 两点,点D 为线段AB 上一动点,过点D 作CD x ⊥轴于点C ,交抛物线于点 E . (1)求抛物线的解析式;(2)若抛物线与x 轴正半轴交于点F ,设点D 的横坐标为x ,四边形FAEB 的面积为S ,请写出S 与x 的函数关系式,并判断S 是否存在最大值,如果存在,求出这个最大值;并写出此时点E 的坐标;如果不存在,请说明理由.(3)连接BE ,是否存在点D ,使得DBE V 和DAC V 相似?若存在,求出点D 的坐标;若不存在,说明理由.23.(8分)如图,在△ABC 中,AD 是BC 边上的中线,E 是AD 的中点,过点A 作BC 的平行线交BE 的延长线于点F ,连接CF ,求证:AF=DC ;若AB ⊥AC ,试判断四边形ADCF 的形状,并证明你的结论.24.(10分)(1)解方程:11122x x --+=0; (2)解不等式组32193(1)x x x ->⎧⎨+<+⎩,并把所得解集表示在数轴上. 25.(10分)先化简,再求值:2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足210x x --=.26.(12分)(1)计算:|﹣3|2sin30°+(﹣12)﹣2 (2)化简:22222()x x y x y x y x y x y +--÷++-. 27.(12分)在“双十二”期间,,A B 两个超市开展促销活动,活动方式如下:A 超市:购物金额打9折后,若超过2000元再优惠300元;B 超市:购物金额打8折.某学校计划购买某品牌的篮球做奖品,该品牌的篮球在,A B 两个超市的标价相同,根据商场的活动方式:(1)若一次性付款4200元购买这种篮球,则在B 商场购买的数量比在A 商场购买的数量多5个,请求出这种篮球的标价;(2)学校计划购买100个篮球,请你设计一个购买方案,使所需的费用最少.(直接写出方案)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】根据二次函数的图象与性质判断即可.【详解】①由抛物线开口向上知: a >1; 抛物线与y 轴的负半轴相交知c <1; 对称轴在y 轴的右侧知:b >1;所以:abc<1,故①错误;②Q 对称轴为直线x=-1,12b a∴-=-,即b=2a, 所以b-2a=1.故②错误;③由抛物线的性质可知,当x=-1时,y 有最小值,即a-b+c <2am bm c ++(1m ≠-),即a ﹣b <m (am+b )(m≠﹣1),故③正确;④因为抛物线的对称轴为x=1, 且与x 轴的一个交点的横坐标为1, 所以另一个交点的横坐标为-3.因此方程ax+bx+c=1的两根分别是1,-3.故④正确;⑤由图像可得,当x=2时,y>1,即: 4a+2b+c>1,故⑤正确.故正确选项有③④⑤,故选B.【点睛】本题二次函数的图象与性质,牢记公式和数形结合是解题的关键.2.C【解析】【分析】根据线段上的等量关系逐一判断即可.【详解】A、∵AD-CD=AC,∴此选项表示正确;B、∵AB+BC=AC,∴此选项表示正确;C、∵AB=CD,∴BD-AB=BD-CD,∴此选项表示不正确;D、∵AB=CD,∴AD-AB=AD-CD=AC,∴此选项表示正确.故答案选:C.【点睛】本题考查了线段上两点间的距离及线段的和、差的知识,解题的关键是找出各线段间的关系.3.D【解析】【分析】本题主要考察二次函数与反比例函数的图像和性质.【详解】令二次函数中y=m.即x2=m,解得x=或x=令反比例函数中y=m,即=m,解得x=,将x的三个值相加得到ω=+()+=.所以本题选择D.【点睛】巧妙借助三点纵坐标相同的条件建立起两个函数之间的联系,从而解答.4.D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.5.D【解析】解:∵-1<-1<0<2,∴最小的是-1.故选D.6.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.7.C【解析】由题意知:AB=BE=6,BD=AD﹣AB=2(图2中),AD=AB﹣BD=4(图3中);∵CE∥AB,∴△ECF∽△ADF,得12 CE CFAD DF==,即DF=2CF,所以CF:CD=1:3,故选C.【点睛】本题考查了矩形的性质,折叠问题,相似三角形的判定与性质等,准确识图是解题的关键. 8.A【解析】设乙骑自行车的平均速度为x千米/时,则甲骑自行车的平均速度为(x+2)千米/时,根据题意可得等量关系:甲骑110千米所用时间=乙骑100千米所用时间,根据等量关系可列出方程即可.解:设乙骑自行车的平均速度为x千米/时,由题意得:1102 x =100x,故选A.9.D【解析】试题分析:对于A,由PC⊥OA,PD⊥OB得出∠PCO=∠PDO=90°,根据AAS判定定理可以判定△POC≌△POD;对于B OC=OD,根据SAS判定定理可以判定△POC≌△POD;对于C,∠OPC=∠OPD,根据ASA判定定理可以判定△POC≌△POD;,对于D,PC=PD,无法判定△POC≌△POD,故选D.考点:角平分线的性质;全等三角形的判定.10.B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】①对从某国进口的香蕉进行检验检疫适合抽样调查;②审查某教科书稿适合全面调查;③中央电视台“鸡年春晚”收视率适合抽样调查.故选B.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.11.D【解析】【分析】在完成此类化简题时,应先将分子、分母中能够分解因式的部分进行分解因式.有些需要先提取公因式,而有些则需要运用公式法进行分解因式.通过分解因式,把分子分母中能够分解因式的部分,分解成乘积的形式,然后找到其中的公因式约去.【详解】解:A 、原式=2249b c;故本选项错误; B 、原式=2×10-5;故本选项错误;C 、原式=()()3333x x x x +-=+- ;故本选项错误; D 、原式=223x ;故本选项正确; 故选:D .【点睛】分式的乘除混合运算一般是统一为乘法运算,如果有乘方,还应根据分式乘方法则先乘方,即把分子、分母分别乘方,然后再进行乘除运算.同样要注意的地方有:一是要确定好结果的符号;二是运算顺序不能颠倒.12.A【解析】【分析】根据∠B =58°得出∠AOC=116°,半径相等,得出OC=OA ,进而得出∠OAC=32°,利用直径和圆周角定理解答即可.【详解】解:∵∠B =58°, ∴∠AOC=116°,∵OA=OC ,∴∠C=∠OAC=32°,故选:A .【点睛】此题考查了圆周角的性质与等腰三角形的性质.此题比较简单,解题的关键是注意数形结合思想的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.85或245 【解析】【分析】作PH ⊥CD ,垂足为H ,设运动时间为t 秒,用t 表示线段长,用勾股定理列方程求解.【详解】设P ,Q 两点从出发经过t 秒时,点P ,Q 间的距离是10cm ,作PH ⊥CD ,垂足为H ,则PH=AD=6,PQ=10,∵DH=PA=3t ,CQ=2t ,∴HQ=CD−DH−CQ=|16−5t|,由勾股定理,得222(165)610t -+=,解得124.8, 1.6.t t ==即P ,Q 两点从出发经过1.6或4.8秒时,点P ,Q 间的距离是10cm. 故答案为85或245. 【点睛】考查矩形的性质,勾股定理,解一元二次方程等,表示出HQ=CD−DH−CQ=|16−5t|是解题的关键. 14.5【解析】分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断.详解:由题意可知:7-2=5.故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键.15.1.【解析】试题分析:∵△ABC 为等腰直角三角形,∠BAC=90°,∴∠ABC=∠ACB=1°,∵m ∥n ,∴∠1=1°;故答案为1.考点:等腰直角三角形;平行线的性质.16.23【解析】试题解析:∵共6个数,小于5的有4个,∴P(小于5)=46=23.故答案为23.17.2x≥【解析】【分析】根据被开方式是非负数列式求解即可.【详解】依题意,得20x-≥,解得:2x≥,故答案为:2x≥.【点睛】本题考查了函数自变量的取值范围,函数有意义时字母的取值范围一般从几个方面考虑:①当函数解析式是整式时,字母可取全体实数;②当函数解析式是分式时,考虑分式的分母不能为0;③当函数解析式是二次根式时,被开方数为非负数.④对于实际问题中的函数关系式,自变量的取值除必须使表达式有意义外,还要保证实际问题有意义.18.3 8【解析】分析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值即其发生的概率.详解:由于共有8个球,其中篮球有5个,则从袋子中摸出一个球,摸出蓝球的概率是38,故答案是38.点睛:此题主要考查了概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19..【解析】【分析】利用∠ECA的正切值可求得AE;利用∠ECB的正切值可求得BE,由AB=AE+BE可得答案.【详解】在Rt△EBC中,有BE=EC×tan45°,在Rt△AEC中,有AE=EC×tan30°=8m,∴(m).【点睛】本题考查了解直角三角形的应用-俯角、仰角问题,要求学生能借助其关系构造直角三角形并解直角三角形.20.(1)任意实数;(2)32 ;(3)见解析;(4)①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【解析】【分析】(1)没有限定要求,所以x 为任意实数,(2)把x =3代入函数解析式即可,(3)描点,连线即可解题,(4)看图确定极点坐标,即可找到增减区间.【详解】解:(1)函数y =316x ﹣2x 的自变量x 的取值范围是任意实数; 故答案为任意实数; (2)把x =3代入y =316x ﹣2x 得,y =﹣32; 故答案为﹣32; (3)如图所示;(4)根据图象得,①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.故答案为①当x <﹣2时,y 随x 的增大而增大;②当x >2时,y 随x 的增大而增大.【点睛】本题考查了函数的图像和性质,属于简单题,熟悉函数的图像和概念是解题关键.21.(1)y=﹣12x 2+52x ﹣2;(2)当t=2时,△DAC 面积最大为4;(3)符合条件的点P 为(2,1)或(5,﹣2)或(﹣3,﹣14).【解析】【分析】(1)把A与B坐标代入解析式求出a与b的值,即可确定出解析式;(2)如图所示,过D作DE与y轴平行,三角形ACD面积等于DE与OA乘积的一半,表示出S与t的二次函数解析式,利用二次函数性质求出S的最大值即可;(3)存在P点,使得以A,P,M为顶点的三角形与△OAC相似,分当1<m<4时;当m<1时;当m>4时三种情况求出点P坐标即可.【详解】(1)∵该抛物线过点A(4,0),B(1,0),∴将A与B代入解析式得:,解得:,则此抛物线的解析式为y=﹣x2+x﹣2;(2)如图,设D点的横坐标为t(0<t<4),则D点的纵坐标为﹣t2+t﹣2,过D作y轴的平行线交AC于E,由题意可求得直线AC的解析式为y=x﹣2,∴E点的坐标为(t,t﹣2),∴DE=﹣t2+t﹣2﹣(t﹣2)=﹣t2+2t,∴S△DAC=×(﹣t2+2t)×4=﹣t2+4t=﹣(t﹣2)2+4,则当t=2时,△DAC面积最大为4;(3)存在,如图,设P 点的横坐标为m ,则P 点的纵坐标为﹣m 2+m ﹣2,当1<m <4时,AM=4﹣m ,PM=﹣m 2+m ﹣2,又∵∠COA=∠PMA=90°, ∴①当==2时,△APM ∽△ACO ,即4﹣m=2(﹣m 2+m ﹣2),解得:m=2或m=4(舍去),此时P (2,1); ②当==时,△APM ∽△CAO ,即2(4﹣m )=﹣m 2+m ﹣2,解得:m=4或m=5(均不合题意,舍去)∴当1<m <4时,P (2,1);类似地可求出当m >4时,P (5,﹣2);当m <1时,P (﹣3,﹣14),综上所述,符合条件的点P 为(2,1)或(5,﹣2)或(﹣3,﹣14).【点睛】本题综合考查了抛物线解析式的求法,抛物线与相似三角形的问题,坐标系里求三角形的面积及其最大值问题,要求会用字母代替长度,坐标,会对代数式进行合理变形,解决相似三角形问题时要注意分类讨论.22.(1)234y x x =--+;(2)S 与x 的函数关系式为()2281040S x x x =--+-≤≤,S 存在最大值,最大值为18,此时点E 的坐标为()2,6-.(3)存在点D ,使得DBE V 和DAC V 相似,此时点D 的坐标为()2,2-或()3,1-.【解析】【分析】()1利用二次函数图象上点的坐标特征可得出点A 、B 的坐标,结合OA OB =即可得出关于a 的一元一次方程,解之即可得出结论;()2由点A 、B 的坐标可得出直线AB 的解析式(待定系数法),由点D 的横坐标可得出点D 、E 的坐标,进而可得出DE 的长度,利用三角形的面积公式结合ABE ABF S S S ∴=+V V 即可得出S 关于x 的函数关系式,再利用二次函数的性质即可解决最值问题;()3由ADC BDE ∠=∠、90ACD ∠=o ,利用相似三角形的判定定理可得出:若要DBE V 和DAC V 相似,只需90DEB ∠=o 或90DBE ∠=o ,设点D 的坐标为(),4m m +,则点E 的坐标为()2,34m m m --+,进而可得出DE 、BD 的长度.①当90DBE ∠=o 时,利用等腰直角三角形的性质可得出DE =,进而可得出关于m 的一元二次方程,解之取其非零值即可得出结论;②当90BED o ∠=时,由点B 的纵坐标可得出点E 的纵坐标为4,结合点E 的坐标即可得出关于m 的一元二次方程,解之取其非零值即可得出结论.综上即可得出结论.【详解】()1当0y =时,有2340ax ax a +-=,解得:14x =-,21x =,∴点A 的坐标为()4,0-.当0x =时,2344y ax ax a a =+-=-, ∴点B 的坐标为()0,4a -.OA OB =Q ,44a ∴-=,解得:1a =-,∴抛物线的解析式为234y x x =--+.()2Q 点A 的坐标为()4,0-,点B 的坐标为()0,4,∴直线AB 的解析式为4y x =+.Q 点D 的横坐标为x ,则点D 的坐标为(),4x x +,点E 的坐标为()2,34x x x --+, ()223444(DE x x x x x ∴=--+-+=--如图1).Q 点F 的坐标为()1,0,点A 的坐标为()4,0-,点B 的坐标为()0,4,5AF ∴=,4OA =,4OB =,221128102(2)1822ABE ABF S S S OA DE AF OB x x x ∴=+=⋅+⋅=--+=-++V V . 20-<Q ,∴当2x =-时,S 取最大值,最大值为18,此时点E 的坐标为()2,6-,S ∴与x 的函数关系式为()2281040S x x x =--+-≤≤,S 存在最大值,最大值为18,此时点E 的坐标为()2,6-.()3ADC BDE ∠=∠Q ,90ACD ∠=o ,∴若要DBE V 和DAC V 相似,只需90DEB ∠=o 或90(DBE o ∠=如图2).设点D 的坐标为(),4m m +,则点E 的坐标为()2,34m m m --+, ()223444DE m m m m m ∴=--+-+=--,2.BD m =-①当90DBE ∠=o 时,OA OB =Q ,45OAB ∴∠=o ,45BDE ADC ∴∠=∠=o ,BDE V ∴为等腰直角三角形.DE ∴=,即242m m m --=-,解得:10(m =舍去),22m =-,∴点D 的坐标为()2,2-;②当90BED o ∠=时,点E 的纵坐标为4,2344m m ∴--+=,解得:33m =-,40(m =舍去),∴点D 的坐标为()3,1-.综上所述:存在点D ,使得DBE V 和DAC V 相似,此时点D 的坐标为()2,2-或()3,1-.故答案为:(1)234y x x =--+;(2)S 与x 的函数关系式为()2281040S x x x =--+-≤≤,S 存在最大值,最大值为18,此时点E 的坐标为()2,6-.(3)存在点D ,使得DBE V 和DAC V 相似,此时点D 的坐标为()2,2-或()3,1-.【点睛】本题考查了二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、三角形的面积、二次函数的性质、相似三角形的判定、等腰直角三角形以及解一元二次方程,解题的关键是:()1利用二次函数图象上点的坐标特征求出点A 、B 的坐标;()2利用三角形的面积找出S 关于x 的函数关系式;()3分90DBE ∠=o 及90BED o ∠=两种情况求出点D 的坐标.23.(1)见解析(2)见解析【解析】【分析】(1)根据AAS 证△AFE ≌△DBE ,推出AF=BD ,即可得出答案.(2)得出四边形ADCF 是平行四边形,根据直角三角形斜边上中线性质得出CD=AD ,根据菱形的判定推出即可.【详解】解:(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE .∵E 是AD 的中点,AD 是BC 边上的中线,∴AE=DE ,BD=CD .在△AFE 和△DBE 中,∵∠AFE=∠DBE ,∠FEA=∠BED , AE=DE ,∴△AFE ≌△DBE (AAS )∴AF=BD .∴AF=DC .(2)四边形ADCF 是菱形,证明如下:∵AF ∥BC ,AF=DC ,∴四边形ADCF 是平行四边形.∵AC ⊥AB ,AD 是斜边BC 的中线,∴AD=DC .∴平行四边形ADCF 是菱形24.(1)x=13;(2)x >3;数轴见解析; 【解析】【分析】(1)先把分式方程转化成整式方程,求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:(1)方程两边都乘以(1﹣2x )(x+2)得:x+2﹣(1﹣2x )=0,解得:1,3x =-检验:当13x =-时,(1﹣2x )(x+2)≠0,所以13x =-是原方程的解,所以原方程的解是13x =-; (2)()321931x x x ->⎧⎪⎨+<+⎪⎩①② , ∵解不等式①得:x >1,解不等式②得:x >3,∴不等式组的解集为x >3,在数轴上表示为:.【点睛】本题考查了解分式方程和解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集得出不等式组的解集是解(2)的关键. 25.1【解析】试题分析:原式第一项括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分后,两项通分并利用同分母分式的减法法则计算得到最简结果,已知方程变形后代入计算即可求出值. 试题解析:原式=21(2)2111x x x x x x x x x -+⋅-+-+=+ ∵x 2−x−1=0,∴x 2=x+1,则原式=1.26. (1)2;(2) x ﹣y .【解析】分析:(1)本题涉及了二次根式的化简、绝对值、负指数幂及特殊三角函数值,在计算时,需要针对每个知识 点分别进行计算,然后根据实数的运算法则求得计算结果.(2)原式括号中两项利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.详解:(1)原式=3﹣4﹣2×+4=2;(2)原式=•=x ﹣y .点睛:(1)本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式的化简、绝对值及特殊三角函数值等考点的运算;(2)考查了分式的混合运算,熟练掌握运算法则是解本题的关键.27.(1)这种篮球的标价为每个50元;(2)见解析【解析】【分析】(1)设这种篮球的标价为每个x 元,根据题意可知在B 超市可买篮球42000.8x个,在A 超市可买篮球42003000.9x+个,根据在B 商场比在A 商场多买5个列方程进行求解即可; (2)分情况,单独在A 超市买100个、单独在B 超市买100个、两家超市共买100个进行讨论即可得.【详解】(1)设这种篮球的标价为每个x 元,依题意,得4200420030050.80.9x x+-=, 解得:x=50,经检验:x=50是原方程的解,且符合题意,答:这种篮球的标价为每个50元;(2)购买100个篮球,最少的费用为3850元,单独在A超市一次买100个,则需要费用:100×50×0.9-300=4200元,在A超市分两次购买,每次各买50个,则需要费用:2(50×50×0.9-300)=3900元,单独在B超市购买:100×50×0.8=4000元,在A、B两个超市共买100个,根据A超市的方案可知在A超市一次购买:20000.950=4449,即购买45个时花费最小,为45×50×0.9-300=1725元,两次购买,每次各买45个,需要1725×2=3450元,其余10个在B超市购买,需要10×50×0.8=400元,这样一共需要3450+400=3850元,综上可知最少费用的购买方案:在A超市分两次购买,每次购买45个篮球,费用共为3450元;在B超市购买10个,费用400元,两超市购买100个篮球总费用3850元.【点睛】本题考查了分式方程的应用,弄清题意,找准等量关系列出方程是解题的关键.。
山西省吕梁市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列美丽的壮锦图案是中心对称图形的是( )A. B. C. D.2.已知⊙O的半径为5,若OP=6,则点P与⊙O的位置关系是( )A.点P在⊙O内 B.点P在⊙O外 C.点P在⊙O上 D.无法判断 3.下列几何体中,主视图和左视图都是矩形的是( )A. B. C. D.4.下列图形中为正方体的平面展开图的是( )A. B.C. D.5.如图,已知在Rt△ABC中,∠ABC=90°,点D是BC边的中点,分别以B、C为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC上方的交点为P,直线PD交AC于点E,连接BE,则下列结论:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED=1AB中,一定正确的是( )2A.①②③ B.①②④ C.①③④ D.②③④6.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A.30° B.25°C.20° D.15°7.如图,点A ,B 为定点,定直线l//AB ,P 是l 上一动点.点M ,N 分别为PA ,PB 的中点,对于下列各值:①线段MN 的长; ②△PAB 的周长; ③△PMN 的面积;④直线MN ,AB 之间的距离; ⑤∠APB 的大小.其中会随点P 的移动而变化的是( )A .②③B .②⑤C .①③④D .④⑤8.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A .0.96×0.96×10107B .9.6×9.6×10106C .96×96×10105D .9.6×9.6×101029.有两组数据,A 组数据为2、3、4、5、6;B 组数据为1、7、3、0、9,这两组数据的( ) A .中位数相等 B .平均数不同 C .A 组数据方差更大 D .B 组数据方差更大 10.已知,C 是线段AB 的黄金分割点,AC <BC ,若AB=2,则BC=( ) A .3﹣5B .12(5+1) C .5﹣1 D .12(5﹣1) 11.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3512.在半径等于5 cm 的圆内有长为53cm 的弦,则此弦所对的圆周角为 A .60°B .120°C .60°或120°D .30°或120°二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.如图△EDB 由△ABC 绕点B 逆时针旋转而来,D 点落在AC 上,DE 交AB 于点F ,若AB=AC ,DB=BF ,则AF 与BF 的比值为_____.14.因式分解:4ax 2﹣4ay 2=_____.15.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:则,y2=_____,第n次的运算结果y n=_____.(用含字母x和n的代数式表示).16.如图所示,一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的半径是____cm.17.若关于x的一元二次方程(a﹣1)x2﹣x+1=0有实数根,则a的取值范围为________.18.学校乒乓球社团有4名男队员和3名女队员,要从这7名队员中随机抽取一男一女组成一队混合双打组合,可组成不同的组合共有_____对.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平行四边形ABCD中,E为BC边上一点,连结AE、BD且AE=AB.求证:∠ABE=∠EAD;若∠AEB=2∠ADB,求证:四边形ABCD是菱形.20.(6分)列方程解应用题:某景区一景点要限期完成,甲工程队单独做可提前一天完成,乙工程队独做要误期6天,现由两工程队合做4天后,余下的由乙工程队独做,正好如期完成,则工程期限为多少天? 21.(6分)某区对即将参加中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频数分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:视力 频数(人) 频率4.0≤x<4.3 20 0.14.3≤x<4.6 40 0.24.6≤x<4.9 70 0.354.9≤x<5.2 a 0.35.2≤x<5.5 10 b(1)本次调查的样本为 ,样本容量为 ;在频数分布表中,a= ,b= ,并将频数分布直方图补充完整;若视力在4.6以上(含4.6)均属正常,根据上述信息估计全区初中毕业生中视力正常的学生有多少人?22.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;若存放x 天后将苹果一次性售出,设销售总金额为y 元,求出y 与x 的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少? 23.(8分)关于x 的一元二次方程ax 2+bx+1=1. (1)当b=a+2时,利用根的判别式判断方程根的情况;(2)若方程有两个相等的实数根,写出一组满足条件的a ,b 的值,并求此时方程的根. 24.(10分)如图,ABC ∆内接于O e ,AB AC =,CO 的延长线交AB 于点D .(1)求证:AO 平分BAC ∠; (2)若6BC =,3sin 5BAC ∠=,求AC 和CD 的长. 25.(10分)某校决定加强羽毛球、篮球、乒乓球、排球、足球五项球类运动,每位同学必须且只能选择一项球类运动,对该校学生随机抽取进行调查,根据调查结果绘制了如下不完整的频数分布表和扇形统计图: 运动项目 频数(人数) 羽毛球 30篮球乒乓球 36排球足球12请根据以上图表信息解答下列问题:频数分布表中的 , ;在扇形统计图中,“排球”所在的扇形的圆心角为 度;全校有多少名学生选择参加乒乓球运动?26.(12分)为了解某校七年级学生的英语口语水平,随机抽取该年级部分学生进行英语口语测试,学生的测试成绩按标准定为A、B、C、D 四个等级,并把测试成绩绘成如图所示的两个统计图表.七年级英语口语测试成绩统计表成绩x(分) 等级 人数x90≥ A 1275x90≤< B m60x75≤< C nx60< D 9请根据所给信息,解答下列问题:本次被抽取参加英语口语测试的学生共有多少人?求扇形统计图中 C 级的圆心角度数;若该校七年级共有学生640人,根据抽样结课,估计英语口语达到 B级以上(包括B 级)的学生人数.27.(12分)如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+3交x轴于B、C两点(点B在左,点C在右),交y轴于点A,且OA=OC,B(﹣1,0).(1)求此抛物线的解析式;(2)如图2,点D为抛物线的顶点,连接CD,点P是抛物线上一动点,且在C、D两点之间运动,过点P作PE∥y轴交线段CD于点E,设点P的横坐标为t,线段PE长为d,写出d与t的关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,连接BD,在BD上有一动点Q,且DQ=CE,连接EQ,当∠BQE+∠DEQ=90°时,求此时点P的坐标.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】【分析】根据中心对称图形的定义逐项进行判断即可得.【详解】A、是中心对称图形,故此选项正确;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、不是中心对称图形,故此选项错误,故选A.【点睛】本题主要考查了中心对称图形,熟练掌握中心对称图形的定义是解题的关键;把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形.2.B【解析】 【分析】比较OP 与半径的大小即可判断. 【详解】r 5Q =,d OP 6==, d r ∴>,∴点P 在O e 外,故选B . 【点睛】本题考查点与圆的位置关系,记住:点与圆的位置关系有3种设O e 的半径为r ,点P 到圆心的距离OP d =,则有:①点P 在圆外d r ⇔>;②点P 在圆上d r ⇔=;①点P 在圆内d r ⇔<.3.C 【解析】 【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解. 【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误. 故答案选:C. 【点睛】本题考查的知识点是截一个几何体,解题的关键是熟练的掌握截一个几何体.4.C 【解析】 【分析】利用正方体及其表面展开图的特点依次判断解题. 【详解】由四棱柱四个侧面和上下两个底面的特征可知A ,B ,D 上底面不可能有两个,故不是正方体的展开图,选项C 可以拼成一个正方体,故选C . 【点睛】本题是对正方形表面展开图的考查,熟练掌握正方体的表面展开图是解题的关键.5.B 【解析】 【详解】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断: 根据作图过程可知:PB=CP ,∵D 为BC 的中点,∴PD 垂直平分BC ,∴①ED ⊥BC 正确. ∵∠ABC=90°,∴PD ∥AB.∴E 为AC 的中点,∴EC=EA ,∵EB=EC.∴②∠A=∠EBA 正确;③EB 平分∠AED 错误;④ED=12AB 正确. ∴正确的有①②④. 故选B .考点:线段垂直平分线的性质. 6.B 【解析】根据题意可知∠1+∠2+45°2+45°=90°=90°,∴∠2=90°﹣∠1﹣45°45°=25°=25°, 7.B 【解析】 试题分析:①、MN=12AB ,所以MN 的长度不变; ②、周长C △PAB =12(AB+PA+PB ),变化;③、面积S △PMN =14S △PAB =14×12AB·AB·h h ,其中h 为直线l 与AB 之间的距离,不变;④、直线NM 与AB 之间的距离等于直线l 与AB 之间的距离的一半,所以不变; ⑤、画出几个具体位置,观察图形,可知∠APB 的大小在变化.故选B考点:动点问题,平行线间的距离处处相等,三角形的中位线 8.B 【解析】试题分析:“960万”用科学记数法表示为9.6×9.6×10106,故选B . 考点:科学记数法—表示较大的数. 9.D 【解析】 【分析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案. 【详解】A 组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷(2+3+4+5+6) ÷5=45=4, 方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷] ÷5=2; 5=2;B 组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷(1+7+3+0+9) ÷5=45=4, 方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷] ÷5=12; 5=12; ∴两组数据的中位数不相等,平均数相等,B 组方差更大. 故选D. 【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 10.C 【解析】 【分析】根据黄金分割点的定义,知BC 为较长线段;则BC=512- AB ,代入数据即可得出BC 的值. 【详解】解:由于C 为线段AB=2的黄金分割点,且AC <BC ,BC 为较长线段; 则BC=2×512-=5-1. 故答案为:5-1. 【点睛】本题考查了黄金分割,应该识记黄金分割的公式:较短的线段=原线段的 352-倍,较长的线段=原线段的 512-倍.11.A 【解析】 【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率: 【详解】 列表如下:红红红绿绿红 ﹣﹣﹣﹣﹣﹣(红,红)(红,红)(绿,红)(绿,绿)红 (红,红)﹣﹣﹣﹣﹣﹣(红,红)(绿,红)(绿,红)红 (红,红)(红,红)﹣﹣﹣﹣﹣﹣(绿,红)(绿,红)绿 (红,绿)(红,绿)(红,绿)﹣﹣﹣﹣﹣﹣(绿,绿)绿 (红,绿)(红,绿)(红,绿)(绿,绿)﹣﹣﹣﹣﹣﹣∵所有等可能的情况数为20种,其中两次都为红球的情况有6种,∴63P2010==两次红,故选A.12.C【解析】【分析】根据题意画出相应的图形,由OD⊥AB,利用垂径定理得到D为AB的中点,由AB的长求出AD与BD 的长,且得出OD为角平分线,在Rt△AOD中,利用锐角三角函数定义及特殊角的三角函数值求出∠AOD 的度数,进而确定出∠AOB的度数,利用同弧所对的圆心角等于所对圆周角的2倍,即可求出弦AB所对圆周角的度数.【详解】如图所示,∵OD⊥AB,∴D为AB的中点,即AD=BD=532,在Rt△AOD中,OA=5,AD=532,∴sin∠AOD=5332=52,又∵∠AOD为锐角, ∴∠AOD=60°,∴∠AOB=120°,∴∠ACB=12∠AOB=60°,又∵圆内接四边形AEBC对角互补,∴∠AEB=120°,则此弦所对的圆周角为60°或120°.故选C.【点睛】此题考查了垂径定理,圆周角定理,特殊角的三角函数值,以及锐角三角函数定义,熟练掌握垂径定理是解本题的关键.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.【解析】【分析】先利用旋转的性质得到BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,再利用等腰三角形的性质和三角形内角和定理证明∠ABD=∠A,则BD=AD,然后证明△BDC∽△ABC,则利用相似比得到BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,最后利用解方程求出AF与BF的比值.【详解】∵如图△EDB由△ABC绕点B逆时针旋转而来,D点落在AC上,∴BC=BD,∠C=∠EDB,∠A=∠E,∠CBD=∠ABE,∵∠ABE=∠ADF,∴∠CBD=∠ADF,∵DB=BF,∴BF=BD=BC,而∠C=∠EDB,∴∠CBD=∠ABD,∴∠ABC=∠C=2∠ABD,∵∠BDC=∠A+∠ABD,∴∠ABD=∠A,∴BD=AD,∴CD=AF,∵AB=AC,∴∠ABC=∠C=∠BDC,∴△BDC∽△ABC,∴BC:AB=CD:BC,即BF:(AF+BF)=AF:BF,整理得AF2+BF∙AF-BF2=0,∴AF=BF,即AF与BF的比值为.故答案是.【点睛】本题主要考查了旋转的性质、等腰三角形的性质、相似三角形的性质,熟练掌握这些知识点并灵活运用是解题的关键.14.4a(x﹣y)(x+y)【解析】【分析】首先提取公因式4a,再利用平方差公式分解因式即可.【详解】4ax2-4ay2=4a(x2-y2)=4a(x-y)(x+y).故答案为4a(x-y)(x+y).【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用公式是解题关键.15.431xx+2(21)1nnxx-+【解析】【分析】根据题目中的程序可以分别计算出y2和y n,从而可以解答本题. 【详解】∵y1=21xx+,∴y2=1121yy+=221211xxxx⨯+++=431xx+,y3=871xx+,……y n=2211nnxx-+().故答案为:4231211nnx xx x+-+,().【点睛】本题考查了分式的混合运算,解答本题的关键是明确题意,用代数式表示出相应的y2和y n.16.5【解析】【分析】本题先根据垂径定理构造出直角三角形,然后在直角三角形中已知弦长和弓形高,根据勾股定理求出半径,从而得解.【详解】解:如图,设圆心为O,弦为AB,切点为C.如图所示.则AB=8cm,CD=2cm.连接OC,交AB于D点.连接OA.∵尺的对边平行,光盘与外边缘相切,∴OC⊥AB.∴AD=4cm.设半径为Rcm,则R2=42+(R-2)2,解得R=5,∴该光盘的半径是5cm.故答案为5【点睛】此题考查了切线的性质及垂径定理,建立数学模型是关键.17.a≤54且a≠1.【解析】【分析】根据一元二次方程有实数根的条件列出关于a的不等式组,求出a的取值范围即可. 【详解】由题意得:△≥0,即(-1)2-4(a-1)×1≥0,解得a≤54,又a-1≠0,∴a≤54且a≠1.故答案为a≤54且a≠1.点睛:本题考查的是根的判别式及一元二次方程的定义,根据题意列出关于a的不等式组是解答此题的关键.18.1【解析】【分析】利用树状图展示所有1种等可能的结果数.【详解】解:画树状图为:共有1种等可能的结果数.故答案为1.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据平行四边形的对边互相平行可得AD∥BC,再根据两直线平行,内错角相等可得∠AEB=∠EAD,根据等边对等角可得∠ABE=∠AEB,即可得证.(2)根据两直线平行,内错角相等可得∠ADB=∠DBE,然后求出∠ABD=∠ADB,再根据等角对等边求出AB=AD,然后利用邻边相等的平行四边形是菱形证明即可.【详解】证明:(1)∵在平行四边形ABCD中,AD∥BC,∴∠AEB=∠EAD.∵AE=AB,∴∠ABE=∠AEB.∴∠ABE=∠EAD.(2)∵AD∥BC,∴∠ADB=∠DBE.∵∠ABE=∠AEB,∠AEB=2∠ADB,∴∠ABE=2∠ADB.∴∠ABD=∠ABE-∠DBE=2∠ADB-∠ADB=∠ADB.∴AB=AD.又∵四边形ABCD是平行四边形,∴四边形ABCD是菱形.20.15天【解析】试题分析:首先设规定的工期是x 天,则甲工程队单独做需(x-1)天,乙工程队单独做需(x+6)天,根据题意可得等量关系:乙工程队干x 天的工作量+甲工程队干4天的工作量=1,根据等量关系列出方程,解方程即可.试题解析:设工程期限为x 天. 根据题意得,x 41x 6x-1+=+ 解得:x=15.经检验x=15是原分式方程的解. 答:工程期限为15天.21.200名初中毕业生的视力情况 200 60 0.05 【解析】 【分析】(1)根据视力在4.0≤x <4.3范围内的频数除以频率即可求得样本容量; (2)根据样本容量,根据其对应的已知频率或频数即可求得a ,b 的值; (3)求出样本中视力正常所占百分比乘以5000即可得解. 【详解】(1)根据题意得:20÷20÷0.1=2000.1=200,即本次调查的样本容量为200, 故答案为200;(2)a=200×a=200×0.3=600.3=60,b=10÷b=10÷200=0.05200=0.05,补全频数分布图,如图所示,故答案为60,0.05; (3)根据题意得:5000×706010200++=3500(人),则全区初中毕业生中视力正常的学生有估计有3500人.22.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元. 【解析】 【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系; (2)根据每千克售价乘以销量等于销售总金额,求出即可; (3)利用总售价-成本-费用=利润,进而求出即可. 【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x xx =+-=-++.()3300410000w y x =--⨯Q25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元. 【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键. 23.(2)方程有两个不相等的实数根;(2)b=-2,a=2时,x 2=x 2=﹣2. 【解析】 【详解】分析:(2)求出根的判别式24b ac ∆=-,判断其范围,即可判断方程根的情况.(2)方程有两个相等的实数根,则240b ac ∆=-=,写出一组满足条件的a ,b 的值即可. 详解:(2)解:由题意:0a ≠.∵()22242440b ac a a a ∆=-=+-=+>,∴原方程有两个不相等的实数根.(2)答案不唯一,满足240b ac -=(0a ≠)即可,例如: 解:令1a =,2b =-,则原方程为2210x x -+=, 解得:121x x ==. 点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-,当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根. 当240b ac ∆=-<时,方程没有实数根.24. (1)证明见解析;(2)AC =310 , CD =9013, 【解析】分析:(1)延长AO 交BC 于H ,连接BO ,证明A 、O 在线段BC 的垂直平分线上,得出AO ⊥BC ,再由等腰三角形的性质即可得出结论;(2)延长CD 交⊙O 于E ,连接BE ,则CE 是⊙O 的直径,由圆周角定理得出∠EBC=90°,∠E=∠BAC ,得出sinE=sin ∠BAC ,求出CE=53BC=10,由勾股定理求出BE=8,证出BE ∥OA ,得出OA OD BE DE ,求出OD=2513,得出CD=9013,而BE ∥OA ,由三角形中位线定理得出OH=12BE=4,CH=12BC=3,在Rt △ACH 中,由勾股定理求出AC 的长即可.本题解析:解:(1)证明:延长AO 交BC 于H ,连接BO. ∵AB =AC ,OB =OC ,∴A ,O 在线段BC 的垂直平分线上.∴AO ⊥BC. 又∵AB =AC ,∴AO 平分∠BAC.(2)延长CD 交⊙O 于E ,连接BE ,则CE 是⊙O 的直径. ∴∠EBC =90°,BC ⊥BE.∵∠E =∠BAC ,∴sinE =sin ∠BAC. ∴=.∴CE =BC =10.∴BE ==8,OA =OE =CE =5.∵AH ⊥BC ,∴BE ∥OA. ∴=,即=,解得OD =.∴CD =5+=.∵BE ∥OA ,即BE ∥OH ,OC =OE ,∴OH 是△CEB 的中位线. ∴OH =BE =4,CH =BC =3.∴AH =5+4=9. 在Rt △ACH 中,AC ===3.点睛:本题考查了等腰三角形的判定与性质、三角函数及圆的有关计算,(1)中由三线合一定理求解是解题的关键,(2)中由圆周角定理得出∠EBC=90°,∠E=∠BAC ,再利用三角函数及三角形中位线定理求出AC 即可,本题综合性强,有一定难度. 25. (1)24,1;(2) 54;(3)360. 【解析】 【分析】(1)根据选择乒乓球运动的人数是36人,对应的百分比是30%,即可求得总人数,然后利用百分比的定义求得a ,用总人数减去其它组的人数求得b ; (2)利用360°乘以对应的百分比即可求得;(3)求得全校总人数,然后利用总人数乘以对应的百分比求解. 【详解】(1)抽取的人数是36÷36÷30%30%=120(人), 则a =120×120×20%20%=24, b =120﹣30﹣24﹣36﹣12=1. 故答案是:24,1;(2)“排球”所在的扇形的圆心角为360°360°××=54°,故答案是:54;(3)全校总人数是120÷120÷10%10%=1200(人), 则选择参加乒乓球运动的人数是1200×1200×30%30%=360(人). 26. (1)60人;(2)144°;(2)144°;(3)288;(3)288人. 【解析】 【分析】()1D 等级人数除以其所占百分比即可得;()2先求出A 等级对应的百分比,再由百分比之和为1得出C 等级的百分比,继而乘以360o 即可得; ()3总人数乘以A 、B 等级百分比之和即可得.【详解】解:()1本次被抽取参加英语口语测试的学生共有915%60÷=人;()2A Q 级所占百分比为12100%20%60⨯=,C ∴级对应的百分比为()120%25%15%40%-++=,则扇形统计图中 C 级的圆心角度数为36040%144⨯=oo;()()364020%25%288(⨯+=人),答:估计英语口语达到 B 级以上(包括B 级)的学生人数为288人. 【点睛】力本题考查读频数分布直方图的能力和利用统计图获取信息的能力利利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了样本估计总体. 27.(1)y=﹣x 2+2x+3;(2)d=﹣t 2+4t ﹣3;(3)P (52,74). 【解析】 【分析】(1)由抛物线y=ax 2+bx+3与y 轴交于点A ,可求得点A 的坐标,又OA=OC ,可求得点C 的坐标,然后分别代入B,C 的坐标求出a ,b ,即可求得二次函数的解析式;(2)首先延长PE 交x 轴于点H ,现将解析式换为顶点解析式求得D (1,4),设直线CD 的解析式为y=kx+b ,再将点C (3,0)、D (1,4)代入,得y=﹣2x+6,则E (t ,﹣2t+6),P (t ,﹣t 2+2t+3),PH=﹣t 2+2t+3,EH=﹣2t+6,再根据d=PH ﹣EH 即可得答案;(3)首先,作DK ⊥OC 于点K ,作QM ∥x 轴交DK 于点T ,延长PE 、EP 交OC 于H 、交QM 于M ,作ER ⊥DK 于点R ,记QE 与DK 的交点为N ,根据题意在(2)的条件下先证明△DQT ≌△ECH ,再根据全等三角形的性质即可得ME=4﹣2(﹣2t+6),QM= t ﹣1+(3﹣t ),即可求得答案. 【详解】解:(1)当x=0时,y=3, ∴A (0,3)即OA=3, ∵OA=OC , ∴OC=3, ∴C (3,0),∵抛物线y=ax 2+bx+3经过点B (﹣1,0),C (3,0)∴309330a b a b -+=⎧⎨++=⎩,解得:12a b =-⎧⎨=⎩,∴抛物线的解析式为:y=﹣x 2+2x+3; (2)如图1,延长PE 交x 轴于点H ,∵y=﹣x 2+2x+3=﹣(x ﹣1)2+4, ∴D (1,4),设直线CD 的解析式为y=kx+b ,将点C (3,0)、D (1,4)代入,得:430k b k b +=⎧⎨+=⎩ ,解得:26k b =-⎧⎨=⎩,∴y=﹣2x+6,∴E (t ,﹣2t+6),P (t ,﹣t 2+2t+3), ∴PH=﹣t 2+2t+3,EH=﹣2t+6,∴d=PH ﹣EH=﹣t 2+2t+3﹣(﹣2t+6)=﹣t 2+4t ﹣3;(3)如图2,作DK ⊥OC 于点K ,作QM ∥x 轴交DK 于点T ,延长PE 、EP 交OC 于H 、交QM 于M ,作ER ⊥DK 于点R ,记QE 与DK 的交点为N ,∵D (1,4),B (﹣1,0),C (3,0), ∴BK=2,KC=2, ∴DK 垂直平分BC , ∴BD=CD , ∴∠BDK=∠CDK ,∵∠BQE=∠QDE+∠DEQ ,∠BQE+∠DEQ=90°,∴∠QDE+∠DEQ+∠DEQ=90°,即2∠CDK+2∠DEQ=90°, ∴∠CDK+∠DEQ=45°,即∠RNE=45°,∵ER⊥DK,∴∠NER=45°,∴∠MEQ=∠MQE=45°,∴QM=ME,∵DQ=CE,∠DTQ=∠EHC、∠QDT=∠CEH,∴△DQT≌△ECH,∴DT=EH,QT=CH,∴ME=4﹣2(﹣2t+6),QM=MT+QT=MT+CH=t﹣1+(3﹣t),4﹣2(﹣2t+6)=t﹣1+(3﹣t),解得:t=52,∴P(52,74).【点睛】本题考查了二次函数的综合题,解题的关键是熟练的掌握二次函数的相关知识点.AdministratorA d m i n i s t r a t o rGT? M i c r o s o f t W o r d。
吕梁市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()cm2 .A . 4B . 8C . 12D . 162. (2分) (2019九下·长沙开学考) 根据阿里巴巴公布的实时数据,截至年月日时,天猫双全球狂欢节总交易额约亿元,用科学记数法表示为()A .B .C .D .3. (2分)(2019·本溪模拟) 下列事件为必然事件的是()A . 掷一枚普通的正方体骰子,掷得的点数不小于1B . 任意购买一张电影票,座位号是奇数C . 抛一枚普通的硬币,正面朝上D . 一年有367天4. (2分) (2019八上·法库期末) 已知a,b为两个连续整数,且a< <b,则这两个整数是()A . 1和2B . 2和3C . 3和4D . 4和55. (2分)方程 = 的解为().A . x=B . x= -C . x=﹣2D . 无解6. (2分)(2018·南山模拟) 如图,在平面直角坐标系中,点P是反比例函数y=(x>0)图象上一点,过点P作垂线,与x轴交于点Q,直线PQ交反比例函数y=(k≠0)于点M.若PQ=4MQ,则k的值为()A . ±2B .C . -D . ±7. (2分)(2019·北部湾) 若点(-1,y1),(2,y2).(3,y3)在反比例函数y= (k<0)的图象上,则y1 ,y2 , y3的大小关系是()A . y1>y2>y3B . y3>y2>y1C . y1>y3>y2D . y2>y3>y18. (2分) (2020七下·天台月考) 如图,把长方形ABCD沿EF折叠,使点D,C,落在,处,若∠1=40°,则∠ EF等于()A . 105°B . 115°C . 110°D . 120°9. (2分)(2018·苏州模拟) 如图,在矩形纸片中,,点在边上,将沿直线折叠,点恰好落在对角线上的点处,若,则的长是()A .B . 6C . 4D . 510. (2分) (2017八下·东营期末) 若抛物线y=x2﹣2x+c与y轴的交点为(0,﹣3),则下列说法不正确的是()A . 抛物线开口向上B . 抛物线的对称轴是x=1C . 当x=1时,y的最大值为4D . 抛物线与x轴的交点为(﹣1,0),(3,0)二、填空题 (共8题;共14分)11. (1分)分解因式:x2y﹣y3=________ .12. (5分)(2017·长春) 若关于x的一元二次方程x2+4x+a=0有两个相等的实数根,则a的值是________.13. (1分)(2019·泰山模拟) 不等式组的解集是 ________.14. (2分)(2017·东营模拟) 如图,圆锥底面半径为r cm,母线长为10cm,其侧面展开图是圆心角为216°的扇形,则r的值为________.15. (2分)(2020·昆山模拟) 如图,点是正方形的对角线上的一个动点(不与、重合),连接,过点作直线的垂线,垂足为,连接 .若正方形的边长为4,则线段的最小值是________.16. (1分) (2020八下·哈尔滨月考) 一含30°角的直角三角形斜边长为4,则斜边上的高为________.17. (1分)(2019·余杭模拟) 如图,在平面直角坐标系中,直线y= x与双曲线y=(k≠0)交于点A,过点C(0,2)作AO的平行线交双曲线于点B,连接AB并延长与y轴交于点D(0,4),则k的值为________.18. (1分)如图,在△ABC中,AB=9,AC=6,BC=12,点M在AB边上,且AM=3,过点M作直线MN与AC边交于点N,使截得的三角形与原三角形相似,则MN=________.三、计算题 (共1题;共10分)19. (10分)(2017·怀化模拟) 计算:32﹣20170+tan45°.四、综合题 (共5题;共47分)20. (2分) (2019七上·北海期末) 在某市中小学生“我的中国梦”读书活动中,某校对部分学生做了一次主题为“我最喜爱的图书”的调查活动,将图书分为甲、乙、丙、丁四类,学生可根据自己的爱好任选其中一类.学校根据调查情况进行了统计,并绘制了不完整的条形统计图和扇形统计图.请你结合图中信息,解答下列问题:(1)本次共调查了________名学生;(2)被调查的学生中,最喜爱丁类图书的有________人,最喜爱甲类图书的人数占本次被调查人数的________ ;(3)在最喜爱丙类学生的图书的学生中,女生人数是男生人数的1.5倍,若这所学校共有学生1500人,请你估计该校最喜爱丙类图书的女生和男生分别有多少人.21. (10分)(2017·河北模拟) 如图1是一个三棱柱包装盒,它的底面是边长为10cm的正三角形,三个侧面都是矩形.现将宽为15cm的彩色矩形纸带AMCN裁剪成一个平行四边形ABCD(如图2),然后用这条平行四边形纸带按如图3的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重叠部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.在图3中,将三棱柱沿过点A的侧棱剪开,得到如图4的侧面展开图.为了得到裁剪的角度,我们可以根据展开图拼接出符合条件的平行四边形进行研究.(1)请在图4中画出拼接后符合条件的平行四边形;(2)请在图2中,计算裁剪的角度(即∠ABM的度数).22. (10分)如图,点A(1﹣, 1+)在双曲线y=(x<0)上.(1)求k的值;(2)在y轴上取点B(0,1),为双曲线上是否存在点D,使得以AB,AD为邻边的平行四边形ABCD的顶点C 在x轴的负半轴上?若存在,求出点D的坐标;若不存在,请说明理由.23. (10分)如图,AB是⊙O的直径,C为⊙O上一点,AC平分∠BAD,AD⊥DC,垂足为D,OE⊥AC,垂足为E.(1)求证:DC是⊙O的切线;(2)若OE=cm,AC=cm,求DC的长(结果保留根号).24. (15分)(2019·武汉) 某商店销售一种商品,童威经市场调查发现:该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表:售价x(元/件)506080周销售量y(件)1008040周销售利润w(元)100016001600注:周销售利润=周销售量×(售价-进价)(1)① 求y关于x的函数解析式________(不要求写出自变量的取值范围)② 该商品进价是________元/件;当售价是________元/件时,周销售利润最大,最大利润是________元(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共14分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、计算题 (共1题;共10分)19-1、四、综合题 (共5题;共47分)20-1、20-2、20-3、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、第11 页共11 页。
吕梁市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·开州期中) 在﹣(﹣1),π﹣3.14,0,﹣(﹣3)3中,正数有()个.A . 1B . 2C . 3D . 42. (2分)(2020·合肥模拟) 为促进城市发展,某市提出了总计约亿元的投资计划.将用科学记数法表示应为()A .B .C .D .3. (2分)(2019·自贡) 下列图案中,既是轴对称图形又是中心对称图形的是()A .B .C .D .4. (2分)下列计算正确的是()A . (a﹣b)2=a2﹣b2B . ﹣(a﹣1)=﹣a﹣1C . a3+a2=2a5D . (﹣2a3)2=4a65. (2分) (2017八下·南通期末) 在某次义务植树活动中,10名同学植树的棵树整理成条形统计图如图所示,他们植树的棵树的平均数为a,中位数为b,众数为c,则下列结论正确的是()A . a=bB . b>aC . b=cD . c>b6. (2分)某文具厂加工一种学生画图工具2500套,在加工了1000套后,采用了新技术,使每天的工作效率是原来的1.5倍,结果提前5天完成任务,若设该文具厂原来每天加工x套这种学生画图工具,则根据题意,可列方程()A . ﹣ =5B . ﹣ =5C . = +5D . + = ﹣57. (2分) (2020九下·牡丹开学考) 已知关于x的一元二次方程2x²+4x·sinα+1=0有两个相等的实数根,则锐角α的度数为()A . 30°B . 45°C . 60°D . 75°8. (2分)学校准备从甲、乙、丙、丁四位同学中选两位参加数学竞赛,则同时选中甲、乙两位同学的概率是()A .B .C .D .9. (2分) (2020八上·覃塘期末) 如图,在中,是边的中点,且BD⊥AC,ED//BC,ED 交AB于点E,若AC=4,BC=6,则的周长为()A .B .C .D .10. (2分)(2016·温州) 如图,半圆O的半径OA=4,P是OA延长线上一点,线段OP的垂直平分线分别交OP、半圆O于B、C两点,射线PC交半圆O于点D.设PA=x,CD=y,则能表示y与x的函数关系的图象是()A .B .C .D .二、填空题 (共5题;共5分)11. (1分) (2017八下·南召期末) (﹣)﹣1+(1﹣)0=________.12. (1分) (2020八下·惠东期中) 如图,AC⊥BC于点C ,DE⊥BE于点E , BC平分∠ABE ,∠BDE=58°,则∠A=________°.13. (1分) (2017·东莞模拟) 不等式组的解集为________.14. (1分)(2020·郑州模拟) 如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=,分别以点A,B 为圆心,AC,BC的长为半径画弧,交AB于点D,E,则图中阴影部分的面积是________.15. (1分)(2017·许昌模拟) 如图,矩形ABCD中,AB=8,BC=15,点E是AD边上一点,连接BE,把△ABE 沿BE折叠,使点A落在点A′处,点F是CD边上一点,连接EF,把△DEF沿EF折叠,使点D落在直线EA′上的点D′处,当点D′落在BC边上时,AE的长为________.三、解答题 (共8题;共75分)16. (5分)当x=1984,y=1916,计算.17. (12分)某校用随机抽样的方法在九年级开展了“你是否喜欢网课”的调查,并将得到的数据整理成了以下统计图(不完整).(1)此次共调查了________名学生;(2)请将条形统计图补充完整;(3)若该学校九年级共有300名学生,请你估计其中“非常喜欢”网课的人数.18. (11分)(2018·滨州) 如图,在平面直角坐标系中,点O为坐标原点,菱形OABC的顶点A在x轴的正半轴上,顶点C的坐标为(1,).(1)求图象过点B的反比例函数的解析式;(2)求图象过点A,B的一次函数的解析式;(3)在第一象限内,当以上所求一次函数的图象在所求反比例函数的图象下方时,请直接写出自变量x的取值范围.19. (6分)(2019·河北模拟) 如图,将直角三角板ACB的直角边AC放在半圆O的直径DE上,直角顶点C 与直径端点D重合,已知∠BAC=30°且△ACB的直角边C与半圆O的半径OD长均为2.现将直角三角板ACB沿直径D呢的方向向右平移,将三角板ACB平移后的三角形记为△A’B’C’.(1)如图,当△ACB平移到斜边与半圆相切时,试求弧的长度(结果保留π):(2)设平移距离为a,在直角三角板ABC平移过程中,折线CBA(包括端点)与半圆弧共有3个交点时,求a 的取值范围。
山西省吕梁市中考二模数学考试试卷
姓名:________ 班级:________ 成绩:________
一、选择题 (共10题;共20分)
1. (2分) (2016七上·中堂期中) 下列各对数中,互为相反数的是()
A . ﹣(﹣2)和2
B . +(﹣3)和﹣(+3)
C .
D . ﹣(﹣5)和﹣|﹣5|
2. (2分)如图所示几何体的主视图是()
A .
B .
C .
D .
3. (2分)下列计算正确的是()
A . a3+a2=a5
B . (3a-b)2=9a2-b2
C . a6b÷a2=a3
D . (-ab3)2=a2b6
4. (2分)如图,在□ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,则EC等于()
A . 1cm
B . 2cm
C . 3cm
D . 4cm
5. (2分)若代数式和的值相等,则x的值为()
A . 3
B . 7
C . -4
D . -8
6. (2分) (2017九上·宜春期末) 下列诗句所描述的事件中,是不可能事件的是()
A . 黄河入海流
B . 锄禾日当午
C . 大漠孤烟直
D . 手可摘星辰
7. (2分)(2018·青岛模拟) 已知25x=2000,80y=2000,则等于()
A . 2
B . 1
C .
D .
8. (2分)河南省统计局发布的统计公报显示,2010年到2014年,河南省GDP增长率分别为12.1%、10.5%、12%、11.7%、10.7%.经济学家评论说,这5年的年度GDP增长率比较平稳,从统计学的角度看,“增长率比较平稳”说明这组数据的()比较小.
A . 中位数
B . 平均数
C . 众数
D . 方差
9. (2分)如图,点P在∠MON的角平分线上,A、B分别在∠MON的边OM、ON上,若OB=3,S△OPB=6,则线段AP的长不可能是()
A . 3
B . 4
C . 5
D . 6
10. (2分)已知二次函数的图象如图所示,有下列5个结论:①;②;
③;④;⑤,(的实数)其中正确的结论有()
A . 2个
B . 3个
C . 4个
D . 5个
二、填空题 (共15题;共105分)
11. (1分)已知实数x、y满足+(y﹣1)2=0,则=________
12. (1分)(2017·道里模拟) 十边形的内角和是________度.
13. (1分) (2017七下·兴化月考) 如果(x+1)(x+m)的积中不含x的一次项,则m的值为________.
14. (8分)如图,使用直尺作图,看图填空:
(1)过点________和________ 作直线AB;
(2)连接线段________ ;
(3)以点________ 为端点,过点________ 作射线________ ;
(4)延长线段________ 到________ ,使BC=2AB.
15. (1分)(2017·通辽) 如图,直线y=﹣ x﹣与x,y轴分别交于点A,B,与反比例函数y= 的图象在第二象限交于点C,过点A作x轴的垂线交该反比例函数图象于点D.若AD=AC,则点D的坐标为________.
16. (1分) (2017七下·独山期末) 如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A 在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,则D点的坐标是________.
17. (5分)(2017·兰陵模拟) 计算: +(1﹣)0﹣4cos45°.
18. (10分) (2012·营口) 某市今年中考体育测试,其中男生测试项目有1000米跑、立定跳远、掷实心球、一分钟跳绳、引体向上五个项目.考生须从这五个项目中选取三个项目,要求:1000米跑必选,立定跳远和掷实心球二选一,一分钟跳绳和引体向上二选一.
(1)
写出男生在体育测试中所有可能选择的结果;
(2)
请你用列表法或画树状图法,求出两名男生在体育测试中所选项目完全相同的概率.
19. (10分)如图,点E,F, G,H分别是CD,BC,AB,DA的中点.
(1)求证:四边形EFGH是平行四边形.
(2)若连接AC,BD, 则当AC,BD满足什么关系时,四边形EFGH是正方形?请说明理由.
20. (12分)(2018·贺州) 某中学为了了解学生每周在校体育锻炼时间,在本校随机抽取了若干名学生进行调查,并依据调查结果绘制了以下不完整的统计图表,请根据图表信息解答下列问题:
时间(小时)频数(人数)频率
2≤t<340.1
3≤t<4100.25
4≤t<5a0.15
5≤t<68b
6≤t<7120.3
合计401
(1)表中的a=________,b=________;
(2)请将频数分布直方图补全;
(3)若该校共有1200名学生,试估计全校每周在校参加体育锻炼时间至少有4小时的学生约为多少名?
21. (8分)(2016·张家界) 已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).
(1)
△A1B1C1是△ABC绕点________逆时针旋转________度得到的,B1的坐标是________;
(2)
求出线段AC旋转过程中所扫过的面积(结果保留π).
22. (10分)(2015·义乌) 如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°.
(1)
求∠BPQ的度数;
(2)
求该电线杆PQ的高度(结果精确到1m).
备用数据:,.
23. (7分) (2017八下·宁江期末) 甲、乙两人利用不同的交通工具,沿同一路线从A地出发前往B地,甲出发1h后,y甲、y乙与x之间的函数图象如图所示.
(1)甲的速度是________km/h;
(2)当1≤x≤5时,求y乙关于x的函数解析式;
(3)当乙与A地相距240km时,甲与A地相距________km.
24. (15分)(2017·浦东模拟) 如图,矩形ABCD中,AB=3,BC=4,点E是射线CB上的动点,点F是射线CD上一点,且AF⊥AE,射线EF与对角线BD交于点G,与射线AD交于点M;
(1)
当点E在线段BC上时,求证:△AEF∽△ABD;
(2)
在(1)的条件下,联结AG,设BE=x,tan∠MA G=y,求y关于x的函数解析式,并写出x的取值范围;
(3)
当△AGM与△ADF相似时,求BE的长.
25. (15分) (2016八上·蕲春期中) 已知,如图坐标平面内,A(﹣2,0),B(0,﹣4),AB⊥AC,AB=AC,△ABC经过平移后,得△A′B′C′,B点的对应点B′(6,0),A,C对应点分别为A′,C′.
(1)
求C点坐标;
(2)
直接写出A′,C′坐标,并在图(2)中画出△A′B′C′;
(3)
P为y轴负半轴一动点,以A′P为直角边以A’为直角顶点,在A′P右侧作等腰直角三角形A′PD.①试证明点D一定在x轴上;②若OP=3,求D点坐标.
参考答案一、选择题 (共10题;共20分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
二、填空题 (共15题;共105分)
11-1、
12-1、
13-1、
14-1、
15-1、
16-1、
17-1、
18-1、
18-2、
19-1、
19-2、20-1、
20-2、20-3、
21-1、
21-2、22-1、
22-2、23-1、
23-2、23-3、
24-1、
24-2、
24-3、
25-1、25-2、
25-3、。