因式分解完全平方
- 格式:doc
- 大小:30.00 KB
- 文档页数:4
完全平方公式因式分解
完全平方公式即(a+b)²=a²+2ab+b²、(a-b)²=a²-2ab+b²。
该公式是进行代数运算与变形的重要的知识基础,是因式分解中常用到的公式。
该知识点重点是对完全平方公式的熟记及应用,难点是对公式特征的理解(如对公式中积的一次项系数的理解等)。
完全平方公式:
两数和的平方,等于它们的平方和加上它们的的积的2倍。
(a+b)²=a²﹢2ab+b²
两数差的平方,等于它们的平方和减去它们的积的二倍。
﹙a-b﹚²=a²﹣2ab+b²
扩展:
掌握用完全平方公式因式分解的特征.
(1)完全平方式:形如的多项式称为完全平方式.
(2)完全平方公式:公式中的a,b不仅可以表示数字、_____, 也可以是_____.
(3)公式的特征:左边由三项组成,其中有两项分别是某两个数(或式)的平方,另一项是上述两数(或式)的_____,符号可正可负;右边是两项和(或差)的平方.
【解析】
完全平方公式:.公式中的a,b,不仅可以表示数字、单项式,也可以是多项式.
(公式的特征:左边由三项组成,其中有两项分别是某两个数(或式)的平方,另一项是上述两数(或式)的乘积的倍,符号可正可负;右边是两项和(或差)的平方. 【答案】
(2)单项式,多项式.(3)乘积的倍.。
师航教育一对一个性化辅导讲义3因式分解---完全平方公式一、目标要求1.理解完全平方公式的意义。
2.能运用完全平方公式进行多项式的因式分解。
二、重点难点完全平方公式的意义及运用。
1.完全平方公式的意义:公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2意义:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。
2.完全平方公式的应用:用完全平方公式分解因式时要先判断是否是完全平方公式,再运用公式分解因式。
知识点一:因式分解---完全平方公式用完全平方公式因式分解:即两个数(整式)的平方和加上(减去)这两个数(整或式)的积的,等于这两个数(整式)的和(差)的平方.如:,其中叫做完全平方式。
注:①与整式乘法中完全平方公式正好相反.②形式和结构特征:左边是一个三项式,其中两项同号且均为一个整式的平方(平方项),另一项是平方项幂的底数的2倍(乘积项),符号可正也可负,右边是两个整式的和(或差)的平方,中间的符号同左边的乘积项的符号3、用公式法进行因式分解的关键要在这个多项式中找出符合公式(平方差公式,完全平方公式)的条件.这就要求必须清楚每个公式的结构特点.不要忽视完全平方公式的中间项,而错误的认为:a2±b2=(a±b)2。
4、理解公式中的字母a、b不仅可以表示数,而且还可以表示单项式,多项式等。
.【例1】把4a2-12ab+9b2分解因式。
分析:多项式4a2-12ab+9b2共有三项,第一项是(2a)2,第三项是(3b)2,4a2+9b2是2a、3b的平方和,第二项正好是2a与3b的积的2倍,所以4a2-12ab+9b2是一个完全平方式,可分解为(2a-3b)2。
解:原式=(2a)2-2·2a·3b+(3b)2=(2a-3b)2。
【例2】把16-8xy+x2y2分解因式。
分析:多项式16-8xy+x2y2共有三项,第一项是42,第三项是(xy)2,而第二项正好是4与xy乘积的2倍,所以16-8xy+x2y2是一个完全平方式,可分解为(4-xy)2。
因式分解完全平方公式
本文旨在介绍因式分解完全平方公式,帮助读者更好地理解和应用该公式。
请注意,本文不包含真实姓名和引用。
1. 什么是完全平方公式?
完全平方公式是一种用于因式分解二次方程的方法。
对于形如ax^2 + bx + c的二次多项式,如果其可以被写成(a1x + b1)^2的形式,那么我们称其为完全平方形式。
在求解二次方程或进行因式分解时,可以利用完全平方公式进行简化和化简。
2. 完全平方公式的表达式
完全平方公式可以表示为:a^2 + 2ab + b^2 = (a + b)^2。
3. 如何应用完全平方公式进行因式分解?
为了利用完全平方公式进行因式分解,我们需要先将二次多项式化简为完全平方形式。
考虑二次多项式x^2 + 6x + 9。
我们可以看出该多项式的第一项是x的平方,第二项是2倍于x的系数的乘积,第三项是常数项的平方。
我们可以将其写成(x + 3)^2的形式,进而完成因式分解。
4. 完全平方公式的应用领域
完全平方公式在数学中有广泛的应用。
它可以用于求解二次方程、因式分解多项式、简化复杂的数学表达式等。
在代数学、高等数学、物理学和工程学等领域中,都会涉及到使用完全平方公式简化和解决问题。
本文介绍了因式分解完全平方公式的概念、表达式和应用领域。
通过理解和掌握完全平方公式,读者可以更好地处理与二次方程相关的问题,并在数学和相关学科中取得更好的成绩和进展。
希望本文能对您的学习和应用有所帮助。
因式分解的五个公式导读a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a& ...因式分解有哪些公式?因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)平方差公式:a²-b²=(a+b)(a-b)推导过程:a²-b²=a²+ab-(b²+ab)=a(a+b)-b(a+b)=(a+b)(a-b)说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。
应该问哪些方法!常见的有:(1)提取公因式法(2)公式法(3)十字相乘法(4)分组分解法……因式分解的方法因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)因式分解原则:1.因式分解因子是多项式的常数变形,要求方程的左边必须是多项式。
运用完全平方公式因式分解因式分解这玩意儿,就像是数学世界里的开锁匠,而完全平方公式就是那把神奇的钥匙。
咱们今天就来好好聊聊怎么用这把钥匙打开因式分解的大门。
我先给大家讲讲完全平方公式是啥。
它就像一对双胞胎,一个叫(a+ b)² = a² + 2ab + b²,另一个叫(a - b)² = a² - 2ab + b²。
这俩公式看着有点复杂,但其实就像是搭积木,只要你掌握了规律,就能轻松拼出想要的形状。
比如说,给你一个式子 x² + 6x + 9,这时候咱们就可以把它看成是(a + b)²的形式。
那谁是 a,谁是 b 呢?很明显,a 就是 x,b 就是 3,因为 2ab = 6x,所以 2×x×3 = 6x。
那按照公式,它就可以分解为(x + 3)²。
是不是感觉挺神奇的?再比如 4x² - 12xy + 9y²,咱们也来找找 a 和 b。
a 就是 2x,b 就是3y,因为 2×2x×3y = 12xy。
所以这个式子就可以分解为(2x - 3y)²。
我记得之前有个同学,叫小李,他刚开始学这个的时候总是晕头转向的。
有一次做作业,遇到一个式子 16x² + 24x + 9,他怎么都分解不出来。
我就问他:“你想想完全平方公式,先找找 a 和 b 呀。
”他苦着脸说:“老师,我找不到。
”我就引导他:“那 16x²可以写成谁的平方呀?”他想了想说:“4x 的平方。
”我又问:“那 9 呢?”他马上回答:“3 的平方。
”“那 2ab 是不是 24x 呢?”他一拍脑袋:“哎呀,我知道了,a 是 4x,b 是 3,所以可以分解为(4x + 3)²。
”从那以后,小李遇到这种题就再也不害怕了,还经常主动给其他同学讲呢。
咱们再来说说用完全平方公式因式分解的一些小窍门。
因式分解——完全平方公式因式分解是数学中一种常用的运算方法,它将一个多项式表达式转化为它的因数之积的形式。
完全平方公式是因式分解中的一种特殊形式,它可以将一个二次多项式分解为两个完全平方的乘积。
在这篇文章中,我们将详细介绍完全平方公式及其运用。
完全平方公式是指将一个二次多项式分解为两个完全平方的乘积的公式。
它的一般形式为:(a+b)^2 = a^2 + 2ab + b^2其中a和b可以是任意实数。
我们可以通过完全平方公式来分解一个二次多项式,使得它的因式之积具有更简洁的形式。
完全平方公式的运用可以提高我们解决数学问题的效率,并且能够帮助我们更好地理解和掌握二次多项式的结构。
完全平方公式的运用可以分为两个方向:一是将一个二次多项式分解为两个完全平方的乘积,二是通过完全平方公式来求解一个二次方程。
首先,我们来介绍如何将一个二次多项式分解为两个完全平方的乘积。
假设我们有一个二次多项式x^2+6x+9,我们要将其分解为两个完全平方的乘积。
首先,我们观察到x^2+6x+9的首项和尾项都是平方。
这提示我们可以将x^2+6x+9写成一个完全平方的形式。
根据完全平方公式,我们可以知道a=x,b=3、将这些值代入完全平方公式中,我们可以得到:(x+3)^2=x^2+2(x)(3)+3^2=x^2+6x+9所以,x^2+6x+9可以写成(x+3)^2的形式。
这样,我们就成功地将这个二次多项式分解为两个完全平方的乘积了。
接下来,我们介绍如何通过完全平方公式来求解一个二次方程。
二次方程的一般形式为ax^2 + bx + c = 0,其中a、b和c为实数,且a不等于0。
对于一个二次方程ax^2 + bx + c = 0,我们可以通过完全平方公式来求解。
首先,我们需要将二次方程转化为完全平方的形式。
假设我们有一个二次方程x^2+6x+9=0,我们要求解它。
首先,我们观察到x^2+6x+9可以写成一个完全平方的形式,即(x+3)^2、根据完全平方公式,我们可以得到:(x+3)^2=0那么,根据完全平方的定义,我们可以知道x+3=0,即x=-3所以,这个二次方程的解为x=-3通过这个例子,我们可以看出完全平方公式在求解二次方程时的作用。
14.3.2公式法(完全平方公式)一、内容及内容解析1.内容:本节课的主要内容是利用完全平方公式进行因式分解。
2.内容解析:本节是人教版八年级上册第十四章14.3.2公式法的内容。
主要是利用完全平方公式进行因式分解。
因式分解是整式的一种重要的恒等变形,它和整式的乘法,尤其是多项式的乘法关系十分密切。
因式分解的几种基本方法都是直接依据整式乘法的各个法则和乘法公式。
完全平方公式是一种重要的因式分解的方法,学好用完全平方公式因式分解,是学生进一步学习数学不可或缺的工具。
基于以上分析,确定本节课的教学重点是:能准确判断全平方公式,会用完全平方公式进行因式分解。
二、目标及目标解析1.目标:(1)知道完全平方式的特征,会用完全平方公式分解因式;(2)能综合运用提公因式法、完全平方公式分解因式。
2.目标解析:达成目标(1)的具体标志是:学生通过自学,小组合作的方式,能准确说出完全平方式的特征、并会判断一个式子是否是完全平方式,是哪两个数的完全平方和(或差),从而将这个式子进行因式分解。
达成目标(2)的具体标志是:学生能综合运用提公因式法、完全平方公式分解因式,并且会判断一个式子是否已经分解到最简,还能否继续分解。
从而培养学生的观察和联想能力。
再以课堂习题加以巩固,提高学生灵活运用知识的能力,使新知识得到巩固和升华。
三、教学问题诊断分析在知识上:学生在学习用完全平方公式因式分解之前,已经学习了用平方差公式因式分解。
这两种方法都是整式乘法的逆运用,所以应先复习整式乘法中的完全平方公式,再学习用公式法分解因式,可以加强学生对公式的熟练使用。
在思想上:学生个体有所差异,所以应准备不同梯度的题目,让不同层次的学生尝试完成不同难度的题目,从而达到让“差生吃好,优生吃饱”的教学效果。
另外,平方差公式与完全平方公式都有平方项,容易混淆,讲解时应加以区分。
基于以上分析,确定本节课的教学难点是:能准确判断完全平方式,并能综合运用提公因式法、完全平方公式分解因式。
因式分解——完全平方公式
完全平方公式(Quadratic Formula),是一类中学数学问题,它用来求解格式为ax2+bx+c=0,a≠0 的二次方程的根(即x)的一种方法。
它的公式是:
x1 = [-b+√(b2-4ac)]/2a;
x2 = [-b-√(b2-4ac)]/2a。
二、完全平方分解
完全平方分解是一种方法对一个数进行因式分解,以求得它最原始的因式。
它让我们将一个数分解到最简单的形式,比如n²或者n²+2n+1、常见的完全平方分解公式如下:
a² +2ab +b² = (a+b)²;
a² -2ab +b² = (a-b)²;
a² +2ma + m²= (a+m)²。
它可以用于分解多项式,因为它可以有效地将多个项分解成一个项并求得它们的乘积;如果需要相减,完全平方分解也可以将一个含有两个负号的多项式分解成两部分,使其易于求和。
完全平方分解的步骤如下:
步骤一:将原式拆分成平方项的和;
步骤二:比较、选择两个数,使其和等于未被拆分的系数;
步骤三:选出两个数的积,使其和等于已被拆分的平方项;
步骤四:将拆分的平方项的和写成完全平方式;
步骤五:最后,将原式分解为完全平方式形式。
示例:
令x²-4x+4=0。
步骤一:将原式拆分成平方项的和,即x²=4x-4;
步骤二:比较、选择两个数,使其和等于未被拆分的系数;x可以选择2,4;。
上课班级:江苏省如东县景安初中初二(6)班邮编:226441
上课教师:唐国栋e-mail:guodong.tang@
设计思路:
教师是学习活动的引导者和组织者,学生是课堂的主人。
教师在教学中要充分体现教师的导向作用,尊重学生的个体差异,选择适合自己的学习方式,鼓励学生自主探索与合作交流,让学生经历数学知识的形成与应用过程,鼓励学生的直觉并且运用基本方法进行相关的验证,指导学生注重数学知识之间的联系,不断提高解决问题的能力。
教学过程:
师生问好,组织上课。
师:我们在初一第二学期就已经学习了乘法完全平方公式,请一位同学用文字语言来描述一下这个公式的内容?
生1:(答略)
师:你能用符号语言来表示这个公式吗?
生1:(a+b)2=a2+2ab+b2(a-b)2=a2-2ab+b2
师:不错,请坐。
由此我们可以看出完全平方公式其实包含几个公式?
生齐答:两个。
师:接下来有两道填空题,我们该怎么进行填空?
a2++1=(a+1)24a2-4ab+=(2a-b)2
生2:(答略)
师:你能否告诉大家,你是根据什么来进行填空的吗?
生2:根据完全平方公式,将等号右边的展开。
师:很好。
(将四个式子分别标上○1○2○3○4)
问题:○1、○2两个式子由左往右是什么变形?
○3、○4两个式子由左往右是什么变形?
生3:(答略)
师:刚才的○1和○2是我们以前学过的完全平方公式,那么将这两个公式反过来就有:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2(板书)
问题:这两个式子由左到右的变形又是什么呢?
生齐答:因式分解。
师:可以看出,我们已将左边多项式写成完全平方的形式,即将左边的多项式分解因式了。
这两个公式我们也将它们称之为完全平方公式,也是我们今天来共同学习的知识(板书课题)
师:既然这两个是公式,那么我们以后遇到形如这种类型的多项式可以直接运用这个公式进行分解。
这个公式到底有哪些特征呢?请同学们仔细观察思考一下,同座的或前后的同学可以讨论一下。
(经过讨论之后)
生4:左边是三项,右边是完全平方的形式。
生5:左边有两项能够写成平方和的形式。
师:说得很好,其他同学有没有补充的?
生6:还有一项是两个数的乘积的2倍。
师:这“两个数的乘积”中“两个数”是不是任意的?
生6:不是,而是刚才两项的底数。
师:刚才三位同学都回答得不错,每人都找出了一些特征。
再请一位同学来综合一下。
生7:左边的多项式要有三项,有两项是平方和的形式,还有一项是这两个数的积的2倍。
右边是两个数的和或差的平方。
教师在学生回答的基础上总结:
1)多项式是三项式
2)有两项都为正且能够写成平方的形式
3)另一项是刚才写成平方项两底数乘积的2倍,但这一项可以是正,也可以是负
4)等号右边为两平方项底数和或差的平方。
师:我们如何将符号语言转化为文字语言呢?
生8:a、b两个数的平方和加上a、b乘积的2倍,等于a与b的和的平方;
a、b两个数的平方和减去a、b乘积的2倍,等于a与b的差的平方。
师:如果不用字母a、b,又怎么表达?能否将两句合并成一句呢?
生9:两个数的平方和加上或减去这两个数的乘积的2倍,等于这两个数的和或差的平方。
师:非常好!我们以后只要遇到这种类型的多项式可以直接利用完全平方公式方便地进行因式分解了。
通过刚才的学习,我们已经初步掌握了利用完全平方公式分解因式的有关知识,下面有几道练习题向我们同学提出了挑战,看你掌握知识的情况:
判断下列各式是不是完全平方式,并说出理由。
(1)a2-4a+4(2 )x2+4x+4y2(3 )4a2+2ab+b2
(4 )a2-ab+b2(5 )x2-6x-9(6 )a2+a+0.25
生10:第一题是完全平方式。
有三项,其中有两项正且能写成平方的形式,另一项是减去这两个数的积的2倍。
…… ……
生11:第四题不是完全平方式,因为中间一项不是两个数的乘积的2倍。
生12:第五题是完全平方式。
三项,有两项能写成平方的形式,另一项也是两个数的积的2倍。
师:其它同学同意他的意见吗?有没有补充的?
生13:这一题不是完全平方式,虽然有两部分能写成平方的形式,但这两项不是平方和。
师:同意他的意见吗?
生齐答:同意。
师:因此我们在观察一个多项式是否符合完全平方式的特点时,不仅要找有没有两项能够写成平方的形式,同时还要看这两项的符号是否同为正,更要看另一项是不是这两数的积的2倍。
像刚才的第2题和第4题都只满足特征中的一部分。
引例讲解:将下列各式分解因式。
1、x2+6x+9
2、4x2-20x+25
问题:这两题首先怎么分析?
生14:将9改写成32,6x正好是x与3的乘积的2倍。
(学生回答,教师板书)
生15:将4x2写成(2x)2,25写成52,20x写成2×2x×5
x2+6x+9=x2+2×x×3+32=(x+3)2
4x2-20x+25=(2x)2-2×2x×5+52=(2x-5)2
(联系字母表达式用箭头对应表示,加深学生印象。
)
师:由刚才的例子,我们同学能否发现将因式分解为两数的和或差的平方,如何确定是两数的和还是两数的差的平方呢?
生16:由符号来决定。
师:能不能具体点。
生16:由中间一项的符号决定,就是两个数乘积2倍这项的符号决定,是正,就是两个数的和;是负,就是两个数的差。
师:总之,在分解完全平方式时,要根据第二项的符号来选择运用哪一个完全平方公式。
例题1:把25x4+10x2+1分解因式。
师:这道题目能否运用以前所学的方法分解?就题目本身有什么特点?可以怎么分解?
生17:题目符合完全平方式的特点,可以将25x4改写成(5x2)2,1就是12,10x2改写成2×5x2×1。
(此学生板演,过程略)
例题2:把-x2-4y2+4xy分解因式。
师:按照常规我们首先怎么办?
生齐答:提取负号。
〔教师板书:-(x2+4y2-4xy)〕以下过程学生板演。
师:如果是这道题:4xy-x2-4y2 怎么分解呢?(教师改变刚才题型)
提示:从项的特征进行考虑,怎样转化比较合理?四人小组讨论。
生18:同样还是将负号提取改变成完全平方式的形式。
师:从这里我们可以发现,只要三项式中能改写成平方的两项是同号,且另一项为两底数积的2倍,我们都能利用这个公式分解,若这两项同为正则可直接分解,若同为负则先提取负号再分解。
练习题:课本p21 练习:第1题,学生板演,教师讲解,学生板演的同时,教师提示注意点、多项式的特征;第2题,学生口答。
例题3:把3ax2+6axy+3ay2分解因式。
师:先观察,再选择适当的方法。
(学生板演,教师点评)
练习:课本p22 第3题分两组学生板演,教师评讲、适当提示注意点。
师:这一堂课我们一起研究了完全平方式的有关知识,同学们先自查一下自己的收获,然后请同学发表自己的见解。
(学生小声讨论)
生甲:我学到了如何将完全平方式分解因式,遇到三项式中有两项符号相同且能化成平方的形式,另一项为这两个数的积的2倍的形式,如果能化成平方项是负的,首先将负号提取再分解。
第二项是正的就是两数的和的平方,第二项是负的就是两数差的平方。
生乙:有公因式可提取的先提取公因式,然后再分解,同时根据第二项的符号来选用合适的公式。
教师布置课堂作业:课本p23 习题8.2A组4~5 偶数题
例:用完全平方公式分解因式:
1.25a4-40a2b3+16b6;
2.(2x-y)2+6(2x-y)+9;
3.(x-1)2-2(x2-1)+(x+1)2;
4.(a+b)n+2-2(a+b)n+1+(a+b)n.
解:1.25a4-40a2b3+16b6
=(5a2)2-2(5a2)(4b3)+(4b3)2
=(5a2-4b3)2
2.(2x-y)2-6(2x-y)+9
=[(2x-y)-3]2=(2x-y-3)2.3.(x2-1)2-2(x-1)+(x+1)2
=(x-1)2-2(x-1)(x+1)+(x+1)2=[(x-1)-(x+1)]2
=[x-1-x+1]2=22.
4.(a+b)n+2-2(a+b)n+1+(a+b)n =(a+b)n[(a+b)2-2(a+b)+1] =(a+b)n(a+b-1)2.。