蚁群算法的数学模型
- 格式:doc
- 大小:73.54 KB
- 文档页数:3
蚁群算法概述一、蚁群算法蚁群算法(ant colony optimization, ACO),又称蚂蚁算法,是一种用来寻找最优解决方案的机率型技术。
它由Marco Dorigo于1992年在他的博士论文中引入,其灵感来源于蚂蚁在寻找食物过程中发现路径的行为。
蚂蚁在路径上前进时会根据前边走过的蚂蚁所留下的分泌物选择其要走的路径。
其选择一条路径的概率与该路径上分泌物的强度成正比。
因此,由大量蚂蚁组成的群体的集体行为实际上构成一种学习信息的正反馈现象:某一条路径走过的蚂蚁越多,后面的蚂蚁选择该路径的可能性就越大。
蚂蚁的个体间通过这种信息的交流寻求通向食物的最短路径。
蚁群算法就是根据这一特点,通过模仿蚂蚁的行为,从而实现寻优。
这种算法有别于传统编程模式,其优势在于,避免了冗长的编程和筹划,程序本身是基于一定规则的随机运行来寻找最佳配置。
也就是说,当程序最开始找到目标的时候,路径几乎不可能是最优的,甚至可能是包含了无数错误的选择而极度冗长的。
但是,程序可以通过蚂蚁寻找食物的时候的信息素原理,不断地去修正原来的路线,使整个路线越来越短,也就是说,程序执行的时间越长,所获得的路径就越可能接近最优路径。
这看起来很类似与我们所见的由无数例子进行归纳概括形成最佳路径的过程。
实际上好似是程序的一个自我学习的过程。
3、人工蚂蚁和真实蚂蚁的异同ACO是一种基于群体的、用于求解复杂优化问题的通用搜索技术。
与真实蚂蚁通过外激素的留存/跟随行为进行间接通讯相似,ACO中一群简单的人工蚂蚁(主体)通过信息素(一种分布式的数字信息,与真实蚂蚁释放的外激素相对应)进行间接通讯,并利用该信息和与问题相关的启发式信息逐步构造问题的解。
人工蚂蚁具有双重特性:一方面,他们是真实蚂蚁的抽象,具有真实蚂蚁的特性,另一方面,他们还有一些在真实蚂蚁中找不到的特性,这些新的特性,使人工蚂蚁在解决实际优化问题时,具有更好地搜索较好解的能力。
人工蚂蚁与真实蚂蚁的相同点为:1.都是一群相互协作的个体。
蚁群算法matlab精讲及仿真4.1基本蚁群算法4.1.1基本蚁群算法的原理蚁群算法是上世纪90年代意大利学者M.Dorigo,v.Maneizz。
等人提出来的,在越来越多的领域里得到广泛应用。
蚁群算法,是一种模拟生物活动的智能算法,蚁群算法的运作机理来源于现实世界中蚂蚁的真实行为,该算法是由 Marco Dorigo 首先提出并进行相关研究的,蚂蚁这种小生物,个体能力非常有限,但实际的活动中却可以搬动自己大几十倍的物体,其有序的合作能力可以与人类的集体完成浩大的工程非常相似,它们之前可以进行信息的交流,各自负责自己的任务,整个运作过程统一有序,在一只蚂蚁找食物的过程中,在自己走过的足迹上洒下某种物质,以传达信息给伙伴,吸引同伴向自己走过的路径上靠拢,当有一只蚂蚁找到食物后,它还可以沿着自己走过的路径返回,这样一来找到食物的蚂蚁走过的路径上信息传递物质的量就比较大,更多的蚂蚁就可能以更大的机率来选择这条路径,越来越多的蚂蚁都集中在这条路径上,蚂蚁就会成群结队在蚁窝与食物间的路径上工作。
当然,信息传递物质会随着时间的推移而消失掉一部分,留下一部分,其含量是处于动态变化之中,起初,在没有蚂蚁找到食物的时候,其实所有从蚁窝出发的蚂蚁是保持一种随机的运动状态而进行食物搜索的,因此,这时,各蚂蚁间信息传递物质的参考其实是没有价值的,当有一只蚂蚁找到食物后,该蚂蚁一般就会向着出发地返回,这样,该蚂蚁来回一趟在自己的路径上留下的信息传递物质就相对较多,蚂蚁向着信息传递物质比较高的路径上运动,更多的蚂蚁就会选择找到食物的路径,而蚂蚁有时不一定向着信息传递物质量高的路径走,可能搜索其它的路径。
这样如果搜索到更短的路径后,蚂蚁又会往更短的路径上靠拢,最终多数蚂蚁在最短路径上工作。
【基于蚁群算法和遗传算法的机器人路径规划研究】该算法的特点:(1)自我组织能力,蚂蚁不需要知道整体环境信息,只需要得到自己周围的信息,并且通过信息传递物质来作用于周围的环境,根据其他蚂蚁的信息素来判断自己的路径。
蚁群算法简述及实现1 蚁群算法的原理分析蚁群算法是受自然界中真实蚁群算法的集体觅食行为的启发而发展起来的一种基于群体的模拟进化算法,属于随机搜索算法,所以它更恰当的名字应该叫“人工蚁群算法”,我们一般简称为蚁群算法。
M.Dorigo等人充分的利用了蚁群搜索食物的过程与著名的TSP问题的相似性,通过人工模拟蚁群搜索食物的行为来求解TSP问题。
蚂蚁这种社会性动物,虽然个体行为及其简单,但是由这些简单个体所组成的群体却表现出及其复杂的行为特征。
这是因为蚂蚁在寻找食物时,能在其经过的路径上释放一种叫做信息素的物质,使得一定范围内的其他蚂蚁能够感觉到这种物质,且倾向于朝着该物质强度高的方向移动。
蚁群的集体行为表现为一种正反馈现象,蚁群这种选择路径的行为过程称之为自催化行为。
由于其原理是一种正反馈机制,因此也可以把蚁群的行为理解成所谓的增强型学习系统(Reinforcement Learning System)。
引用M.Dorigo所举的例子来说明蚁群发现最短路径的原理和机制,见图1所示。
假设D 和H之间、B和H之间以及B和D之间(通过C)的距离为1,C位于D和B的中央(见图1 (a))。
现在我们考虑在等间隔等离散世界时间点(t=0,1,2……)的蚁群系统情况。
假设每单位时间有30只蚂蚁从A到B,另三十只蚂蚁从E到D,其行走速度都为1(一个单位时间所走距离为1),在行走时,一只蚂蚁可在时刻t留下浓度为1的信息素。
为简单起见,设信息素在时间区间(t+1,t+2)的中点(t+1.5)时刻瞬时完全挥发。
在t=0时刻无任何信息素,但分别有30只蚂蚁在B、30只蚂蚁在D等待出发。
它们选择走哪一条路径是完全随机的,因此在两个节点上蚁群可各自一分为二,走两个方向。
但在t=1时刻,从A到B的30只蚂蚁在通向H的路径上(见图1 (b))发现一条浓度为15的信息素,这是由15只从B走向H的先行蚂蚁留下来的;而在通向C的路径上它们可以发现一条浓度为30的信息素路径,这是由15只走向BC的路径的蚂蚁所留下的气息与15只从D经C到达B留下的气息之和(图1 (c))。
蚁群算法公式蚁群算法(AntColonyAlgorithm)是一种基于自然生态的数学优化模型,是一个迭代的搜索算法,用来解决动态规划问题。
这种算法是在蚂蚁群体行为的理论的基础上发展出来的,通过模拟蚂蚁如何寻找最佳的路径来寻找最优解。
它是一种用于解决复杂优化问题的自然计算算法,它可以分析解决复杂系统中大量变量和限制条件所建立的非线性优化问题。
蚁群算法是一种基于概率的搜索算法,它采用“相互学习”的方式,通过种群间的信息共享,形成一个多维度的相互关联的搜索空间。
由于蚁群算法可以获得更多关于搜索空间的信息,它比传统的优化算法更有效地搜索最优解。
蚁群算法是一种非治疗性的优化算法,它可以用来解决多种复杂的优化问题,如全局优化、组合优化、最佳化框架优化以及机器学习等。
蚁群算法是基于规则的智能算法,它包括四个主要部分:蚁群、时间、规则和变量。
在运行蚁群算法的过程中,先生成一组初始解,再根据算法的规则(也可称为搜索引擎)进行蚁群迭代,每次迭代会更新解的模型和搜索空间的参数,直到达到最优解。
蚁群算法的核心公式如下:第一步:更新ij:ρij = (1-ρ)*ij +*Δρij其中,ρji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第二步:更新ρij:Δρij = q/Lij + (1-q)*Δρij其中,Lij表示节点i到j路径的长度q为一个参数,表示蚂蚁搜索行为的一致性Δρji为一个参数,表示节点i到j路径的通过数量第三步:更新tij:tij = (1-ρ)*tij +*Δtij其中,tji表示节点i到j转移的概率ρ为一个参数,表示蚂蚁搜索行为的一致性Δtij为一个参数,表示节点i到j路径的通过次数以上就是蚁群算法的核心公式,它结合了蚂蚁的行为,通过迭代的方式,找到最佳的路径,路径的长度由节点之间转移的概率决定,路径的变化则由节点之间通过的次数来决定。
TSP 及蚁群算法在数学建模中的应用关键词:TSP 蚁群算法 数学建模摘要:TSP ,即Traveling Salesman Problem ,也就是旅行商问题,是最基本的路线问题。
该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。
由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.本文通过对蚁群算法和TSP 的分析利用2012年西南交大新秀杯数学建模大赛的试题进行应用研究加以阐述TSP ,即Traveling Salesman Problem ,也就是旅行商问题,是最基本的路线问题。
该问题是在寻求单一旅行者由起点出发,通过所有给定的需求点之后,最后再回到原点的最小路径成本。
赋权连通图(,)G V E ,在权图G 中,i v ∈()V G 对应示意图中的固定停车点及需求点,0v 表示始发站所在地,j e ∈()E G 对应示意图中路径.边权()j e ω∈对应示意图中的路径长度.建立的数学模型如下: {}0(),(),(G),(),e E G e N v V v T V v V ωω∀∈∃∈∃∈∃∈⨯∈求G 中回路12,,,(1)k L L L k >,使得满足: (1)0(),1,2,,;i v V L i k ∈=(2)1()();k i i V L V G ==(3)1()()min(i n i e E L e ω=∈=∑∑目标为总距离最短)或 1()()max ()()min(i i j k e E L e V L e v ωω≤≤∈∈⎧⎫⎪⎪+=⎨⎬⎪⎪⎩⎭∑∑目标为时间最短) 为了讨论方便,先给出图论中相关的一些定义.定义1 经过图G 的每个顶点正好一次的圈,称为G 的哈密顿环路,也称Hamilton 圈.定义2 在加权图(,)G V E =中(1)权最小的哈米顿圈称为最佳Hamilton 圈;(2)经过每个顶点至少一次且权最小的闭通路称为TSP 回路问题.由定义2可知,寻找TSP 回路的问题.TSP 回路的问题可转化为最佳Hamilton 圈的问题.方法是由给定的图(,)G V E =构造一个以V 为顶点集的完备图(,)G V E ''=,E '中每条边(,)x y 的权等于顶点x 与y 在图中最短路径的权,即111min{,}m m m m ij im mj ij d d d d ---=+在图论中有以下定理:定理1 加权图G 的校车回来的权和G '的最佳Hamilton 圈的权相同; 定理2 在加权完备图中求最佳Hamilton 圈的问题是NPC 问题.由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象:某一路径上单位时间走过的蚂蚁越多,表明该路线的可用性越好,则后来者选择该路径的概率就越大.蚂蚁个体之间就是通过这种信息的交流寻找最优的到达食物源的线路.蚁群算法具有实现简单、正反馈、分布式的优点.蚁群算法是一种本质上并行的算法。
蚁群算法原理及应用蚁群算法是一种仿生学算法,源于观察蚂蚁在寻找食物时的行为。
蚂蚁会释放一种叫做信息素的化学物质,他们通过感知周围环境中信息素的浓度来确定前进的方向,从而找到最短路径。
这种行为激发了人们的兴趣,并产生了一种算法,叫做蚁群算法。
蚁群算法是一种基于人工智能和模拟生物学行为的算法,其模型模拟了蚂蚁群的生物行为。
这个算法利用了如下两个原则:正反馈原则和负反馈原则。
正反馈原则表示,当一只蚂蚁找到一个食物源时,它会释放更多的信息素。
这就会吸引更多的蚂蚁来到这个地方。
这样就会形成一个正反馈环路,吸引更多的蚂蚁前来寻找食物源。
负反馈原则则是取决于路径的长度。
当一只蚂蚁走过一个路径时,它会释放少量的信息素。
这对于后来的蚂蚁没有吸引力,因为它们寻找的是最短路径。
因此,这个算法会抑制过度访问较长的路径。
蚁群算法的应用是多种多样的。
它最初被用于解决数字优化问题,如让搜索引擎更加快速地搜索结果。
蚁群算法还被用于处理路径优化问题,如在工业生产中优化物流方式、优化进程流程等等。
它也可以被用于解决网络优化问题,如希望让多个节点之间的通信更加协调顺畅。
此外,蚁群算法也可以在机器学习领域中用于无监督聚类。
蚁群算法的这个特性能够自动聚类数据,而不是强制类别。
蚁群算法的优点是可以在没有先验知识的情况下,通过不断自我修正来确定最优解。
其他优点包括执行优化和决策,具备分布式处理和并行特性,算法简单,无需专业知识和特殊设备,便于应用和推广。
然而,它的缺点也是显而易见的。
它可能容易受到局部最优解的影响。
当蟻群搜索路径被卡住在局部最优解上时,很难跳出这个局部最优值陷阱。
因此,对算法参数的准确调节和合理设置具有至关重要的意义。
总之,蚁群算法是一种非常有效的算法,可以广泛应用于各种不同的领域。
它的潜力非常巨大,因此它也成为了很多优化和决策问题中的首选工具。
虽然它还存在一些不足,但蚁群算法的复杂度和效率适用于许多实际应用问题。
一、蚁群算法的背景信息蚁群优化算法(ACO)是一种模拟蚂蚁觅食行为的模拟优化算法,它是由意大利学者Dorigo M等人于1991年首先提出,之后,又系统研究了蚁群算法的基本原理和数学模型,并结合TSP优化问题与遗传算法、禁忌搜索算法、模拟退火算法、爬山法等进行了仿真实验比较,为蚁群算法的发展奠定了基础,并引起了全世界学者的关注与研究蚁群算法是一种基于种群的启发式仿生进化系统。
蚁群算法最早成功应用于解决著名的旅行商问题(TSP),该算法采用了分布式正反馈并行计算机制,易于与其他方法结合,而且具有较强的鲁棒性。
二、蚁群算法的原理[1]蚁群算法是对自然界蚂蚁的寻径方式进行模似而得出的一种仿生算法。
蚂蚁在运动过程中,能够在它所经过的路径上留下一种称之为外激素(pheromo ne)的物质进行信息传递,而且蚂蚁在运动过程中能够感知这种物质,并以此指导自己的运动方向,因此由大量蚂蚁组成的蚁群集体行为便表现出一种信息正反馈现象 :某一路径上走过的蚂蚁越多,则后来者选择该路径的概率就越大。
基本的ACO模型由下面三个公式描述:a g(2-1;m号("1)二05®)+》蚯(2-2;(如果第k个蚂蚁经过了由i到j的路轻)〈2-3)btagJBJ.CDdTYykrLaoiO 式(2-1)、式(2-2)和式(2-3)中:m为蚂蚁个数;n为迭代次数;i为蚂蚁所在位置;j为蚂蚁可以到达的置;为蚂蚁可以到达位置的集合;为启发性信息(3-8>(3-9>Dlog. iirykii_2O1CJ式(3-9)中根据进行信息素更新的蚂蚁的类别可以是已知的最优解的路径长度或者是本次循环中的最优解的路径长度。
(2)信息素浓度的限制。
为了防止某条路径上的信息素出现大或者过小的极端情况,设定信息素浓度区间为。
通过这种方式使得在某条路径上的信息素浓度增大到超过区间上限或者减小到低于区间下限时,算法采用强制手段对其进行调整,以此提高算法的有效性。
第三章基本蚁群算法原理3.1 自然界中的蚂蚁在蚂蚁寻找食物的过程中,总能找到一条从蚁穴到随机分布的距离很远的食物源之间的最短路径。
仿生学家经过研究发现,蚂蚁没有视觉,但是在寻找食物的行进过程中,会不断分泌一种化学刺激物——信息素,蚂蚁之间通过它来相互通信。
信息素量与路径长度有关,路径越长,释放的信息素浓度就越低。
信息素可以吸引后来的蚂蚁沿信息素浓度高的路径行进。
某一路径上走过的蚂蚁越多,留下的信息素就越多,后来者选择该路径的概率就越大,蚂蚁个体之间就是通过这种信息的交流搜索食物,这样,由大量蚂蚁组成的蚁群的集体行为便表现出一种信息正反馈现象,整个蚁群最终会选择出最短路径行进。
图3.1 现实蚂蚁寻找食物如图3.1(a)所示,蚂蚁在点A和E之间的路径上行走,路径突然被出现的障碍物截断,如3.1(b)所示。
因此,蚂蚁从A至E步行至位置B (或以相反的方向在位置D处)必须决定是否要向左或向右转。
一开始蚂蚁按同等概率选择路径,不论路径长短。
第一只蚂蚁到达B点(或D)具有相同的概率向左或向右转。
由于路径BCD比BHD短,以路径BCD第一个到达的蚂蚁比以路径BHD到达的早。
由于一半蚂蚁是以偶然的方式通过DCBA障碍的或者已经通过路径BCD到达的,于是,一个蚂蚁从E 到D返回会在路径DCB上找到一个更强有力的线索。
因此他们极大概率上选择通过路径DCB而不是DHB。
因此,单位时间内通过路径BCD的蚂蚁要比通过路径BHD的蚂蚁多的多,如图3.1(c)。
这将导致较短路径上的信息素量增长地比较长路径上的快得多,因此单一蚂蚁路径的选择很快偏向于较短路径。
最后的结果是很快所有的蚂蚁会选择较短的路径[1]。
不仅如此,作为一种化学物质,信息素还具有挥发性,这使得寻径初期距离较长的路径和长期没有经过的路径对蚂蚁的影响逐渐减小。
可见,在整个寻找食物的过程中,虽然单个蚂蚁的选择能力有限,但是通过信息素的作用是整个蚁群行为具有非常高的自组织性,蚂蚁之间交换着路径信息,最终通过蚁群的集体自催化行为找出最优路径[3,4]。
蚁群算法的数学模型蚂蚁在运动过程中,运动转移的方向由各条路径上的信),2,1(k m k ⋅⋅⋅=息量浓度决定。
为方便记录可用来记录第 k ),,2,1(t m k abu k ⋅⋅⋅=只蚂蚁当前已走过的所有节点,这里可以称存放节点的表为禁忌表;这个存放节点的集合会随着蚂蚁的运动动态的调整。
在算法的搜索过程中,蚂蚁会智能地选择下一步所要走的路径。
设 m 表示蚂蚁总数量,用表示节点 i 和节点 )1,,1,0,(d -⋅⋅⋅=n j i ij j 之间的距离,表示在 t)(ij t τ时刻连线上的信息素浓度。
在初始时刻,m 只蚂蚁会被随机地放置ij ,各路径上的初始信息素浓度是相同的。
在 t 时刻,蚂蚁 k 从节点i 转移到节点 j 的状态转移概率为 ⎪⎪⎩⎪⎪⎨⎧=∈=∑∈other p allowed t t t t k ij k allowed k ij ij ij ij k ij ,0j ,)()()()(p k βαβαητητ()1-2 其中,表示蚂蚁 k {}k k tabu c allowed -=下一步可以选择的所有节点,C为全部节点集合;为信息启发式因子,在算法中代表轨迹相对重α要程度,反映路径上的信息量对蚂蚁选择路径所起的影响程度,该值越大,蚂蚁间的协作性就越强;可称为期望启发式因子,在算β法中代表能见度的相对重要性。
是启发函数,在算法中表示由节ij η点i 转移到节点 j的期望程度,通常可取。
在算法运行时每只蚂蚁将根据(2-ij ij d /1=η1)式进行搜索前进。
在蚂蚁运动过程中,为了避免在路上残留过多的信息素而使启发信息被淹没,在每只蚂蚁遍历完成后,要对残留信息进行更新处理。
由此,在t+n 时刻,路径(i,j)上信息调整如下(2-2)()())()(1t t n t ij ij ij ττρτ∆+⨯-=+ (2-3))()(1t t mk k ij ij ∑=∆=∆ττ 在式中,常数表示信息素挥发因子,表示路径上信息量的损耗程度,的大()1,0 ∈ρρ小关系到算法的全局搜索能力和收敛速度,则可用代表信息素残ρ-1留因子,表示一次寻找结束后路径(i,j)的信息素增量。
蚁群算法的数学模型
蚂蚁),2,1(k m k ⋅⋅⋅=在运动过程中,运动转移的方向由各条路径上的信息量浓度决定。
为方便记录可用),,2,1(t m k abu k ⋅⋅⋅=来记录第 k 只蚂蚁当前已走过的所有节点,这里可以称存放节点的表为禁忌表;这个存放节点的集合会随着蚂蚁的运动动态的调整。
在算法的搜索过程中,蚂蚁会智能地选择下一步所要走的路径。
设 m 表示蚂蚁总数量,用)1,,1,0,(d -⋅⋅⋅=n j i ij 表示节点 i 和节点 j 之间的距离,)(ij t τ表示在 t 时刻ij 连线上的信息素浓度。
在初始时刻,m 只蚂蚁会被随机地放置,各路径上的初始信息素浓度是相同的。
在 t 时刻,蚂蚁 k 从节点i 转移到节点 j 的状态转移概率为
⎪⎪⎩
⎪⎪⎨⎧=∈=∑∈other p allowed t t t t k ij k allowed k ij ij ij ij k ij ,0j ,)
()()()(p k βαβαητητ ()1-2 其中,{}k k tabu c allowed -=表示蚂蚁 k 下一步可以选择的所有节
点,C 为全部节点集合;α为信息启发式因子,在算法中代表轨迹相对重要程度,反映路径上的信息量对蚂蚁选择路径所起的影响程度,该值越大,蚂蚁间的协作性就越强;β可称为期望启发式因子,在算法中代表能见度的相对重要性。
ij η是启发函数,在算法中表示由节点i 转移到节点 j 的期望程度,通常可取ij ij d /1=η。
在算法运行时每只蚂蚁将根据(2-1)式进行搜索前进。
在蚂蚁运动过程中,为了避免在路上残留过多的信息素而使启发
信息被淹没,在每只蚂蚁遍历完成后,要对残留信息进行更新处理。
由此,在t+n 时刻,路径(i,j)上信息调整如下
()())()(1t t n t ij ij ij ττρτ∆+⨯-=+ (2-2)
)()(1t t m
k k ij ij ∑=∆=∆ττ (2-3)
在式中,常数 ()1,0
∈ρ表示信息素挥发因子,表示路径上信息量的损耗程度,ρ的大小关系到算法的全局搜索能力和收敛速度,则可用
ρ-1代表信息素残留因子,)(t k ij τ∆表示一次寻找结束后路径(i,j)的信
息素增量。
在初始时刻()00=∆ij τ,)(t k ij τ∆表示第 k 只蚂蚁在本次遍历结束后路径(i,j)的信息素。
由于信息素更新策略有所不同,学者Dorigo M 研究发现了三种不同的基本蚁群算法模型,分别记为“蚁周系统”(Ant-Cycle)模型、“蚁量系统”(Ant-Quantity)模型及“蚁密系统”(Ant-Density)模型,三种模型求解 )(t k ij τ∆方式存在不同。
“蚁周系统”(Ant-Cycle)模型
⎪⎩⎪⎨⎧=∆other L Q k k ij ,0,τ第k 只蚂蚁走过ij (2-4)
“蚁量系统”(Ant-Quantity)模型
⎪⎩⎪⎨⎧=∆other d Q ij k ij ,0,τ第k 只蚂蚁在t 和t+1之间走过ij (2-5)
“蚁密系统”(Ant-Density)模型
⎩⎨⎧=∆other Q k
ij
,0,τ第k 只蚂蚁在t 和t+1之间走过ij (2-6) 从上边各公式可以看出三种模型的主要区别是:“蚁量系统”和“蚁密系统”中,信息素是在蚂蚁完成一步后更新的,即采用的是局部信息;而在“蚁周系统”中路径中信息素是在蚂蚁完成一个循环后更新的,即应用的是整体信息。
在一系列标准测试问题上运行的实验表明,“蚁周系统”算法的性能优于其他两种算法。
因此,对蚂蚁系统的研究正朝着更好地了解“蚁周系统”特征的方向发展。