液压传动执行元件
- 格式:ppt
- 大小:2.63 MB
- 文档页数:15
液压传动工作原理
液压传动是利用液体传递能量的一种传动方式,它通过液压油在封闭的管路中传递压力,从而实现机械运动。
液压传动具有结构简单、传动平稳、传动效率高等优点,因此在工程机械、冶金设备、船舶、航空航天等领域得到广泛应用。
液压传动的工作原理主要包括液压油的压力传递、液压缸的工作原理和液压泵的工作原理。
首先,液压传动的工作原理是基于液压油的压力传递。
当液压泵启动时,液压油被抽入油箱,形成一定的压力。
通过管道连接,液压油的压力可以传递到需要进行动力传递的液压执行元件上,从而驱动液压缸或液压马达进行工作。
其次,液压缸是液压传动中的重要执行元件,它的工作原理是利用液压油的压力来推动活塞进行直线运动。
当液压油进入液压缸的一侧时,液压缸的活塞受到液压油的压力作用而向另一侧运动,从而驱动相关机械装置进行工作。
最后,液压泵作为液压传动系统中的动力源,其工作原理是通过机械装置将液压油从油箱中抽入,并形成一定的压力,然后将压力传递到液压系统中。
液压泵的工作原理决定了液压传动系统的工作效率和稳定性。
总的来说,液压传动工作原理是基于液压油的压力传递和液压执行元件的工作原理,通过液压泵将液压油的压力传递到需要进行动力传递的元件上,从而实现机械运动。
液压传动系统的工作原理决定了其在工程机械、冶金设备、船舶、航空航天等领域的广泛应用,具有重要的意义和价值。
液压执行元件各有什么用途液压执行元件是液压系统中的核心部件,主要用于将液压能转化为机械能,实现各种工程机械的运动。
常见的液压执行元件包括液压缸、液压马达和液压伺服阀等。
它们各有不同的用途,具体如下:1. 液压缸:液压缸是最常见和应用广泛的液压执行元件,主要用于产生线性运动。
它通常由缸体、活塞、活塞杆和密封件等部件组成。
液压缸可用于各种工程机械,如挖掘机、铲车和推土机等,实现各种行程和推力的精确控制。
2. 液压马达:液压马达是将液压能转化为旋转运动的液压执行元件。
它通常由马达本体、齿轮或液压马达柱塞等组成。
液压马达广泛应用于各种需要转动运动的工程机械,如起重机、钻机和混凝土泵等。
3. 液压伺服阀:液压伺服阀是用于控制和调节液压系统中流量和压力的重要元件。
通过调节阀芯的位置和开口大小,实现对液压能的精确控制。
液压伺服阀广泛应用于液压系统中的动态控制和自动化控制系统。
4. 液压驻车制动器:液压驻车制动器主要用于工程机械和汽车等的停车制动。
它通过液压系统产生的压力来使制动器盘片紧密贴合,从而实现对车辆的牵制和停止。
5. 液力变矩器:液力变矩器是用于传递和调节动力的液压执行元件。
它通常由泵轮、涡轮和导向器等组成,可以实现变矩器的连续变比。
液力变矩器广泛应用于各种需要动力变速的工程机械和汽车等。
6. 液压传动件:液压传动件主要用于传递液压能和机械能的变换。
常见的液压传动件包括管路、接头和油管等。
液压传动件在液压系统中起到连接各个液压元件的作用,实现液压能的传递和分配。
总结来说,液压执行元件在工程机械、汽车等领域中起到至关重要的作用。
它们能够将液压能有效地转化为机械能,实现各种运动和动力传递。
液压执行元件的应用不仅提高了机械设备的工作效率和精度,还增加了操作的便利性和安全性。
液压与气压传动知识点复习总结〔很全〕一,根本慨念1,液压传动装置由动力元件,控制元件,执行元件,辅助元件和工作介质〔液压油〕组成2,液压系统的压力取决于负载,而执行元件的速度取决于流量,压力和流量是液压系统的两个重要参数 其功率N=PQ3, 液体静压力的两个根本特性是:静压力沿作用面法线方向且垂直于受压面;液体中任一点压力大小与方位无关.4,流体在金属圆管道中流动时有层流和紊流两种流态,可由临界雷诺数〔Re=2000~2200〕判别,雷诺数〔Re 〕其公式为Re=VD/υ,〔其中D 为水力直径〕, 圆管的水力直径为圆管的经。
5,液体粘度随工作压力增加而增大,随温度增加减少;气体的粘度随温度上升而变大, 而受压力影响小;运动粘度与动力粘度的关系式为ρμν=, 6,流体在等直径管道中流动时有沿程压力损失和局部压力损失,其与流动速度的平方成正比.22ρλv l d p =∆, 22v p ρξ=∆. 层流时的损失可通过理论求得λ=64eR ;湍流时沿程损失其λ与Re 及管壁的粗糙度有关;局部阻力系数ξ由试验确定。
7,忽略粘性和压缩性的流体称理想流体, 在重力场中理想流体定常流动的伯努利方程为γρυ++22P h=C(常数),即液流任意截面的压力水头,速度水头和位置水头的总和为定值,但可以相互转化。
它是能量守恒定律在流体中的应用;小孔流量公式q=C d A t ρp ∆2,其与粘度根本无关;细长孔流量q=∆ld μπ1284P 。
平板缝隙流量q=p lbh ∆μ123,其与间隙的 三次方成正比,与压力的一次与方成正比. 8,流体在管道流动时符合连续性原理,即2111V A V A =,其速度与管道过流面积成反比.流体连续性原理是质量守衡定律在流体中的应用.9,在重力场中,静压力根本方程为P=P gh O ρ+; 压力表示:.绝对压力=大气压力+表压力; 真空度=大气压力-绝对压力. 1Mp=10pa 6,1bar=105pa.10,流体动量定理是研究流体控制体积在外力作用下的动量改变,通常用来求流体对管道和阀件的作用力;其矢量表达式为:F=)(12V V q dtdmv -=ρ;=F 222z y x f f f ++. f z y x f f ,,分别是F 在三个坐标上的图影。
第四章、液压执行元件第一节液压马达一、液压马达的特点及分类液压马达是把液体的压力能转换为机械能的装置,从原理上讲,液压泵可以作液压马达用,液压马达也可作液压泵用。
但事实上同类型的液压泵和液压马达虽然在结构上相似,但由于两者的工作情况不同,使得两者在结构上也有某些差异。
例如:1.液压马达一般需要正反转,所以在内部结构上应具有对称性,而液压泵一般是单方向旋转的,没有这一要求。
2.为了减小吸油阻力,减小径向力,一般液压泵的吸油口比出油口的尺寸大。
而液压马达低压腔的压力稍高于大气压力,所以没有上述要求。
3.液压马达要求能在很宽的转速范围内正常工作,因此,应采用液动轴承或静压轴承。
因为当马达速度很低时,若采用动压轴承,就不易形成润滑滑膜。
4.叶片泵依靠叶片跟转子一起高速旋转而产生的离心力使叶片始终贴紧定子的内表面,起封油作用,形成工作容积。
若将其当马达用,必须在液压马达的叶片根部装上弹簧,以保证叶片始终贴紧定子内表面,以便马达能正常起动。
5.液压泵在结构上需保证具有自吸能力,而液压马达就没有这一要求。
6.液压马达必须具有较大的起动扭矩。
所谓起动扭矩,就是马达由静止状态起动时,马达轴上所能输出的扭矩,该扭矩通常大于在同一工作压差时处于运行状态下的扭矩,所以,为了使起动扭矩尽可能接近工作状态下的扭矩,要求马达扭矩的脉动小,内部摩擦小。
由于液压马达与液压泵具有上述不同的特点,使得很多类型的液压马达和液压泵不能互逆使用。
液压马达按其额定转速分为高速和低速两大类,额定转速高于500r/min的属于高速液压马达,额定转速低于500r/min的属于低速液压马达。
高速液压马达的基本型式有齿轮式、螺杆式、叶片式和轴向柱塞式等。
它们的主要特点是转速较高、转动惯量小,便于启动和制动,调速和换向的灵敏度高。
通常高速液压马达的输出转矩不大(仅几十牛·米到几百牛·米),所以又称为高速小转矩液压马达。
高速液压马达的基本型式是径向柱塞式,例如单作用曲轴连杆式、液压平衡式和多作用内曲线式等。
液压执行元件是将液压泵提供的液压能转变成机械能并拖动外界负载作功的能量转换装置。
它包括液压缸和液压马达。
§5-1 液压马达一·液压马达分类和特点✓按结构类型可分为齿轮式,叶片式,柱塞式。
✓液压马达按转速分为高速小扭矩和低速大扭矩两大类。
高速小转矩马达基本类型:齿轮式、叶片式、柱塞式等。
主要特点:转速较高,转动惯量小,便于启动和制动,调节灵敏度高,输出转矩不大(仅几十Nm到几百Nm。
主要缺点:起动扭矩较低,低速稳定性差,最低转速偏高。
低速大转矩马达基本型式:径向柱塞式、多作用叶片马达等。
如: 静平衡马达、曲轴连杆式马达、多作用曲线马达等。
主要特点:排量大,体积大,转速低,因此可直接与工作机构连接,不需要减速装置,使传动机构大为简化,通常低速液压马达输出转矩较大(可达几千Nm到几万Nm。
缺点:转动惯量大,制动较为困难。
液压马达与液压泵比较,液压马达具有以下特点液压马达应该能够正、反转,因而要求其内部结构对称,进油口和出油口一样大,叶片马达的叶片径向布置;液压马达的转速范围需要足够大,特别对它的最低稳定转速有一定的要求。
因此,它通常采用滚动轴承或滑动轴承;液压马达由于在输入压力油条件下工作,因此不必具备自吸能力,但液压马达应有较大的起动扭矩。
二·高速液压马达的工作原理◆与液压泵具有同样的基本结构要素。
常用的高速液压马达的结构与同类型的液压泵很相似。
◆齿轮式、叶片式、柱塞式液压马达的工作原理。
定量泵变量泵1.齿轮式液压马达的工作原理2.叶片式液压马达的工作原理3.轴向柱塞式液压马达的工作原理三 液压马达的基本参数和基本性能1.压力(MPa )⑴工作压力:液压马达实际工作时输入口的压力。
⑵额定压力: 液压马达长期连续运转能正常工作所允许使用的最高工作压力。
⑶极限压力:液压马达在短时间内超载所允许使用的最高压力。
2. 排量和流量⑴排量V (m3/r )(mL/r )在不考虑泄漏的情况下,液压马达每转一转所输入的液体体积。
1液压传动系统和气压传动系统主要有以下四部分组成1动力元件2执行元件3控制元件4 辅助元件2答:液压传动的主要优点:在输出相同功率的条件下,液压转动装置体积小、重量轻、结构紧凑、惯性小、并且反应快3是依据帕斯卡原理实现力的传递力4轴向柱塞泵:由于径向尺寸小,转动惯量小,所以转速高,流量大,压力高,变量方便,效率也较高;但结构复杂,价格较贵,油液需清洁,耐冲击振动性比径向柱塞泵稍差。
51.溢流阀是维持阀前的压力恒定的压力控制阀;2.减压阀是用节流的方法使出口低于进口压力并保持出口压力恒定的压力控制阀;3.顺序阀是进油压力达到预调值时,阀门开放使液流畅通6液压泵的特点 1具有若干密封且有可以周期性变化的空间 3 油箱内液体的绝对压力必须恒等于或大于大气压力 3 具有相应的配流装置7但叶片泵、四、名词解释1.帕斯卡原理(静压传递原理)(在密闭容器内,施加于静止液体上的压力将以等值同时传到液体各点。
)2.系统压力(系统中液压泵的排油压力。
)3.运动粘度(动力粘度μ和该液体密度ρ之比值。
)4.液动力(流动液体作用在使其流速发生变化的固体壁面上的力。
)5.层流(粘性力起主导作用,液体质点受粘性的约束,不能随意运动,层次分明的流动状态。
)6.紊流(惯性力起主导作用,高速流动时液体质点间的粘性不再约束质点,完全紊乱的流动状态。
)7.沿程压力损失(液体在管中流动时因粘性摩擦而产生的损失。
)8.局部压力损失(液体流经管道的弯头、接头、突然变化的截面以及阀口等处时,液体流速的大小和方向急剧发生变化,产生漩涡并出现强烈的紊动现象,由此造成的压力损失)9.液压卡紧现象(当液体流经圆锥环形间隙时,若阀芯在阀体孔内出现偏心,阀芯可能受到一个液压侧向力的作用。
当液压侧向力足够大时,阀芯将紧贴在阀孔壁面上,产生卡紧现象。
)10.液压冲击(在液压系统中,因某些原因液体压力在一瞬间突然升高,产生很高的压力峰值,这种现象称为液压冲击。
液压传动系统的组成
液压传动系统由五个部分组成:动力元件、执行元件、控制元件、辅助元件和液压油(工作介质)。
液压传动可以输出较大的推力或大转矩,可实现低速大吨位...
动力元件:即液压泵,其职能是将原动机的机械能转换为液体的压力动能(表现为压力、流量),其作用是为液压系统提供压力油,是系统的动力源。
执行元件:指液压缸或液压马达,其职能是将液压能转换为机械能而对外做功,液压缸可驱动工作机构实现往复直线运动(或摆动),液压马达可完成回转运动...
控制元件:指各种阀利用这些元件可以控制和调节液压系统中液体的压力、流量和方向等,以保证执行元件能按照人们预期的要求进行工作。
辅助元件:包括油箱、滤油器、管路及接头、冷却器、压力表等。
它们的作用是提供必要的条件使系统正常工作并便于监测控制。
液压与气压传动系统的组成液压与气压传动系统是现代工程中常用的两种传动系统。
液压传动系统通过液体传递力和能量,而气压传动系统通过气体传递力和能量。
它们在工业生产、机械设备以及汽车等领域都有广泛的应用。
本文将详细介绍液压与气压传动系统的组成。
一、液压传动系统的组成液压传动系统主要由以下几个组成部分构成:1. 液压能源装置:液压能源装置主要由液压泵、液压马达或液压发电机等组成。
液压泵通过机械或电动驱动,将机械能转化为液压能。
液压泵有多种类型,常见的有齿轮泵、柱塞泵和液压泵等。
2. 液压执行元件:液压执行元件主要由液压缸和液压马达等组成。
液压缸将液压能转化为机械能,通过液压缸的伸缩来实现力的传递和工作的执行。
液压马达则将液压能转化为机械能,通过旋转来实现力的传递和工作的执行。
3. 液压控制元件:液压控制元件主要由液压阀、液压缸和液压马达等组成。
液压阀用于控制液压系统的压力、流量和方向等参数,实现对液压系统的控制。
液压缸和液压马达则用于实现对液压执行元件的控制,以实现工作的执行。
4. 液压传动介质:液压传动介质主要是液体,通常使用的是油作为液压传动介质。
液压传动介质具有良好的润滑性和密封性能,能够在液压系统中有效地传递力和能量。
二、气压传动系统的组成气压传动系统主要由以下几个组成部分构成:1. 气压能源装置:气压能源装置主要由气压泵和气压发生器等组成。
气压泵通过机械或电动驱动,将机械能转化为气压能。
气压发生器则通过压缩空气,将空气转化为气压能。
2. 气压执行元件:气压执行元件主要由气缸和气动马达等组成。
气缸将气压能转化为机械能,通过气缸的伸缩来实现力的传递和工作的执行。
气动马达则将气压能转化为机械能,通过旋转来实现力的传递和工作的执行。
3. 气压控制元件:气压控制元件主要由气动阀和气缸等组成。
气动阀用于控制气压系统的压力、流量和方向等参数,实现对气压系统的控制。
气缸则用于实现对气压执行元件的控制,以实现工作的执行。