九年级数学下册一元二次方程同步练习题2含答案
- 格式:doc
- 大小:321.68 KB
- 文档页数:3
第二章一元二次方程测试题(1)姓名学号一、选择题(每小题3分,共30分)1.下列方程属于一元二次方程的是().(A)(x2-2)·x=x2(B)ax2+bx+c=0 (C)x+1x=5 (D)x2=02.方程x(x-1)=5(x-1)的解是().(A)1 (B)5 (C)1或5 (D)无解3.已知x=2是关于x的方程32x2-2a=0的一个根,则2a-1的值是().(A)3 (B)4 (C)5 (D)64.把方程x2-4x-6=0配方,化为(x+m)2=n的形式应为().(A)(x-4)2=6 (B)(x-2)2=4 (C)(x-2)2=0 (D)(x-2)2=105.下列方程中,无实数根的是().(A)x2+2x+5=0 (B)x2-x-2=0(C)2x2+x-10=0 (D)2x2-x-1=06.当代数式x2+3x+5的值为7时,代数式3x2+9x-2的值是().(A)4 (B)0 (C)-2 (D)-47.方程(x+1)(x+2)=6的解是().(A)x1=-1,x2=-2 (B)x1=1,x2=-4 (C)x1=-1,x2=4 (D)x1=2,x2=3 8.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3,x2=1,•那么这个一元二次方程是().(A)x2+3x+4=0 (B)x2-4x+3=0 (C)x2+4x-3=0 (D)x2+3x-4=09.某市计划经过两年时间,绿地面积增加44%,•这两年平均每年绿地面积的增长率是().(A)19% (B)20% (C)21% (D)22%10.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,•制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5 400cm2,设金色纸边的宽为xcm,•那么x满足的方程是().(A)x2+130x-1 400=0 (B)x2+65x-350=0(C)x2-130x-1 400=0 (D)x2-65x-350=0二、填空题(每小题3分,共24分)11.方程2x2-x-2=0的二次项系数是________,一次项系数是________,•常数项是________.12.若方程ax2+bx+c=0的一个根为-1,则a-b+c=_______.13.已知x2-2x-3与x+7的值相等,则x的值是________.14.请写出两根分别为-2,3的一个一元二次方程_________.15.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是________.16.已知x 2+y 2-4x+6y+13=0,x ,y 为实数,则x y =_________.17.已知三角形的两边分别是1和2,第三边的数值是方程2x 2-5x+3=0的根,则这个三角形的周长为_______.18.若-2是关于x 的一元二次方程(k 2-1)x 2+2kx+4=0的一个根,则k=________.三、解答题(共46分)19.解方程:8x 2=24x (x+2)2=3x+6 (7x-1)2=9x 2 (3x-1)2=10x 2+6x=1 -2x 2+13x-15=0. 22x =- 2211362x x -=20.(本题8分)李先生存入银行1万元,先存一个一年定期,•一年后将本息自动转存另一个一年定期,两年后共得本息1.045 5万元.存款的年利率为多少?(•不考虑利息税)21.(本题8分)现将进货为40元的商品按50元售出时,就能卖出500件.•已知这批商品每件涨价1元,其销售量将减少10个.问为了赚取8 000元利润,售价应定为多少?这时应进货多少件?第二章 一元二次方程测试题(2)一、选择题(每小题3分,共30分)1.方程(y+8)2=4y+(2y-1)2化成一般式后a ,b ,c 的值是( )A .a=3,b=-16,c=-63;B .a=1,b=4,c=(2y-1)2C .a=2,b=-16,c=-63;D .a=3,b=4,c=(2y-1)22.方程x 2-4x+4=0根的情况是( )A .有两个不相等的实数根;B .有两个相等的实数根;C .有一个实数根;D .没有实数根3.方程y 2+4y+4=0的左边配成完全平方后得( )A .(y+4)2=0B .(y-4)2=0C .(y+2)2=0D .(y-2)2=04.设方程x 2+x-2=0的两个根为α,β,那么(α-1)(β-1)的值等于( )A .-4B .-2C .0D .25.下列各方程中,无解的方程是( )A ..3(x-2)+1=0 C .x 2-1=0 D .1x x -=26.已知方程,则方程的实数解为( )A .3B .0C .0,1D .0,37.已知2y 2+y-2的值为3,则4y 2+2y+1的值为( )A.10 B.11 C.10或11 D.3或118.方程x2+2px+q=0有两个不相等的实根,则p,q满足的关系式是() A.p2-4q>0 B.p2-q≥0 C.p2-4q≥0 D.p2-q>09.已知关于x的一元二次方程(m-1)x2+x+m2+2m-3=0的一个根为0,则m 的值为()A.1 B.-3 C.1或-3 D.不等于1的任意实数10.已知m是整数,且满足210521mm->⎧⎨->-⎩,则关于x的方程m2x2-4x-2=(m+2)x2+3x+4的解为()A.x1=-2,x2=-32B.x1=2,x2=32C.x=-67D.x1=-2,x2=32或x=6 7二、填空题(每题3分,共30分)11.一元二次方程x2+2x+4=0的根的情况是________.12.方程x2(x-1)(x-2)=0的解有________个.13.如果(2a+2b+1)(2a+2b-2)=4,那么a+b的值为________.14.已知二次方程3x2-(2a-5)x-3a-1=0有一个根为2,则另一个根为________.15.关于x的一元二次方程x2+bx+c=0的两根为-1,3,则x2+bx+c•分解因式的结果为_________.16.若方程x2-4x+m=0有两个相等的实数根,则m的值是________.17.若b(b≠0)是方程x2+cx+b=0的根,则b+c的值为________.18.一元二次方程(1-k)x2-2x-1=•0•有两个不相等的实根数,•则k•的取值范围是______.19.若关于x的一元二次方程x2+bx+c=0没有实数根,则符合条件的一组b,c 的实数值可以是b=______,c=_______.20.等腰三角形ABC中,BC=8,AB,AC的长是关于x的方程x2-10x+m=0的两根,则m•的值是________.三、解答题21.(12分)选用适当的方法解下列方程:(1)(x+1)(6x-5)=0;(2)2x2;(3)2(x+5)2=x(x+5);(42=0.22.(5分)不解方程,判别下列方程的根的情况:(1)2x2+3x-4=0;(2)16y2+9=24y;(3x2x+2=0;(4)3t2t+2=0;(5)5(x2+1)-7x=0.23.(4分)已知一元二次方程a x2+bx+c=0(a≠0)的一个根是1,且a,b满足,•求关于y的方程14y2-c=0的根.24.(4分)已知方程x2+kx-6=0的一个根是2,求它的另一个根及k的值.25.(4分)某村的粮食年产量,在两年内从60万千克增长到72.6万千克,问平均每年增长的百分率是多少?26.(5分)为了合理利用电力资源,缓解用电紧张状况,我市电力部门出台了使用“峰谷电”的政策及收费标准(见表).已知王老师家4月份使用“峰谷电”95kMh,缴电费43.40元,问王老师家4月份“峰电”和“谷电”各用了多少kMh?27.(6分)印刷一张矩形的张贴广告(如图),•它的印刷面积是32dm2,•上下空白各1dm,两边空白各0.5dm,设印刷部分从上到下的长是xdm,四周空白处的面积为Sd m2.(1)求S与x的关系式;(2)当要求四周空白的面积为18dm2时,求用来印刷这张广告的纸张的长和宽各是多少?。
解一元二次方程专项练习题(带答案)1、用配方法解下列方程:(1) 025122=++x x (2) 1042=+x x(3) 1162=-x x (4)0422=--x x2、用配方法解下列方程:(1) 01762=+-x x (2) x x 91852=-(3) 52342=-x x (4)x x 2452-=3、用公式法解下列方程:(1) 08922=+-x x (2) 01692=++x x(3) 38162=+x x (4)01422=--x x4、运用公式法解下列方程:(1) 01252=-+x x (2) 7962=++x x(3) 2325x x =+ (4) 1)53)(2(=--x x5、用分解因式法解下列方程:(1)01692=++x x (2) x x x 22)1(3-=-(3))32(4)32(2+=+x x (4)9)3(222-=-x x6、用适当方法解下列方程:(1) 22(3)5x x -+= (2) 230x ++=(3) 2)2)(113(=--x x ; (4) 4)2)(1(13)1(+-=-+x x x x7、 解下列关于x 的方程:(1) x 2+2x -2=0 (2) 3x 2+4x -7=(3) (x +3)(x -1)=5 (4) (x -2)2+42x =08、解下列方程(12分)(1)用开平方法解方程:4)1(2=-x (2)用配方法解方程:x 2 —4x +1=0(3)用公式法解方程:3x 2+5(2x+1)=0 (4)用因式分解法解方程:3(x -5)2=2(5-x )9、用适当方法解下列方程:(1)0)14(=-x x (2)027122=++x x(3)562+=x x (4)45)45(+=+x x x(5)x x 314542=- (6)0242232=-+-x x(7)12)1)(8(=-++x x (8)14)3)(23(+=++x x x解一元二次方程专项练习题 答案1、【答案】(1)116±-; (2) 142±-; (3) 523±; (4) 51± 2、【答案】(1)11=x ,612=x (2)31=x ,562=-x(3)41=x ,4132=-x (4)5211±-=x3、【答案】 (1) 4179±=x (2) 3121=-=x x (3) 411=x ,432=-x (4)262±=x4、【答案】 (1) x 1=561,5612--=+-x (2). x 1=-3+7,x 2=-3-7(3)21=x ,312=-x (4)61311±=x 5、【答案】(1)3121=-=x x (2)11=x ,322=-x(3)231=-x ,212=x (4)31=x ,92=x6、【答案】(1)11=x ,22=x (2)321=-=x x (3)4,3521==x x ; (4)3,221-==x x7、【答案】(1)x =-1±3; (2)x 1=1,x 2=-37(3)x 1=2,x 2=-4; (4)25.x 1=x 2=-2 8、【答案】解:(1) 1,321-==x x (2)32,3221-=+=x x(3)3105,310521--=+-=x x (4)313,521==x x 。
一元二次方程练习题题号一、填空题二、选择题三、多项选择四、简答题五、计算题总分得分一、填空题(每空5分,共30分)1、关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m= .2、已知关于x的一元二次方程x2﹣2x+k=0有两个不相等的实数根,则k的取值范围是.3、已知圆锥底面圆的半径为6cm,它的侧面积为60πcm2,则这个圆锥的高是4、已知m、n是关于x的一元二次方程x2﹣2ax+a2+a﹣2=0的两实根,那么m+n的最大值是5、若α、β是一元二次方程x2+2x﹣6=0的两根,则α2+β2= .6、一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,则= .二、选择题(每空5 分,共35分)7、下列选项中一元二次方程的是()A.x=2y﹣3 B.2(x+1)=3 C.2x2+x﹣4 D.5x2+3x﹣4=0 8、一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=29、将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm10、某服装店原计划按每套200元的价格销售一批保暖内衣,但上市后销售不佳,为减少库存积压,两次连续降价打折处理,最后价格调整为每套128元.若两次降价折扣率相同,则每次降价率为()A.8%B.18%C.20%D.25%11、如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为()A.1米 B.2米 C.3米 D.4米12、已知直角三角形的两条直角边的长恰好是方程的两根,则此直角三角形的斜边长为( ).A. B.3 C. D.1313、要组织一次篮球邀请赛,参赛的每个队之间都要比赛一场,计划安排15场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为()A.x(x+1)=15 B.x(x﹣1)=15 C.x(x+1)=15 D.x(x﹣1)=1514、由一元二次方程x2+px+q=0的两个根为p、q,则p、q等于()A.0B.1C.1或-2D.0或1评卷人得分评卷人得分三、多项选择(每空5 分,共5分)15、方程的两根分别为,,且,则的取值范围是.四、简答题(每题10 分,共110 分)16、试求实数(≠1),使得方程的两根都是正整数.17、已知关于的一元二次方程有两个实数根和.(1)求实数的取值范围;(2)当时,求的值.18、如图,在矩形ABCD中,AB=4cm,BC=cm,点P从点A出发以1cm/s的速度移动到点B;点P出发几秒后,点P、A的距离是点P、C距离的倍?19、某汽车销售公司6月份销售某厂家的汽车,在一定范围内,每部汽车的进价与销售量有如下关系:若当月仅售出1部汽车,则该部汽车的进价为27万元,每多售出1部,所有售出的汽车的进价均降低0.1万元/部,月底厂家根据销售量一次性返利给销售公司,销售量在10部以内(含10部),每部返利0.5万元;销售量在10部以上,每部返利1万元.(1)若该公司当月售出3部汽车,则每部汽车的进价为万元;(2)如果汽车的售价为28万元/部,该公司计划当月盈利12万元,那么需要售出多少部汽车?(盈利=销售利润+返利)20、某花圃用花盆培育某种花苗,经试验发现每盆花的盈利与每盆花中花苗的株数有如下关系:每盆植入花苗4株时,平均单株盈利5元;以同样的栽培条件,若每盆每增加1株花苗,平均单株盈利就会减少0.5元.要使每盆花的盈利为24元,且尽可能地减少成本,则每盆花应种植花苗多少株?21、一个足球被从地面向上踢出,它距地面高度可以用二次函数刻画,其中表示足球被踢出后经过的时间.(1)解方程,并说明其根的实际意义;(2)求经过多长时间,足球到达它的最高点?最高点的高度是多少?22、随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2014年底拥有家庭轿车64辆,2016年底家庭轿车的拥有量达到100辆.(1)若该小区2014年底到2016年底家庭轿车拥有量的年平均增长率都相同,求该小区到2017年底家庭轿车将达到多少辆?(2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,求该小区最多可建室内车位多少个?23、某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售价每涨价1元,月销售量就减少10千克.评卷人得分评卷人得分(1) 写出月销售利润y(单位:元) 与售价x(单位:元/千克)之间的函数解析式.(2)当售价定为多少时会获得最大利润?求出最大利润.(3) 商店想在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少?24、.要制作一个如图所示(图中阴影部分为底与盖,且SⅠ=SⅡ)的钢盒子,在钢片的四个角上分别截去两个相同的正方形与两个相同的小长方形,然后折合起来既可,求有盖盒子的高x.25、如图,中间用相同的白色正方形瓷砖,四周用相同的黑色长方形瓷砖铺设矩形地面,请观察图形并解答下列问题.(1)问:在第6个图中,黑色瓷砖有__________块,白色瓷砖有__________块;(2)某商铺要装修,准备使用边长为1米的正方形白色瓷砖和长为1米、宽为0.5米的长方形黑色瓷砖来铺地面.且该商铺按照此图案方式进行装修,瓷砖无须切割,恰好能完成铺设.已知白色瓷砖每块100元,黑色瓷砖每块50元,贴瓷砖的费用每平方米15元.经测算总费用为15180元.请问两种瓷砖各需要买多少块?26、已知:平行四边形ABCD的两边AB、BC的长是关于的方程的两个实数根.(1)试说明:无论取何值方程总有两个实数根(2)当为何值时,四边形ABCD是菱形?求出这时菱形的边长;(3)若AB的长为2,那么平行四边形ABCD的周长是多少?五、计算题(每题5分,共35 分)27、用恰当的方法解下列方程:28、解方程:29、x2﹣7x﹣18=0.30、2x2+12x﹣6=031、解方程:.评卷人得分参考答案一、填空题1、﹣2 .【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.【点评】此题要注意一元二次方程的二次项系数不得为零.2、k<3 .【考点】根的判别式.【分析】根据一元二次方程的根的判别式,建立关于k的不等式,求出k的取值范围.【解答】解:∴a=1,b=﹣2,c=k,方程有两个不相等的实数根,∴△=b2﹣4ac=12﹣4k>0,∴k<3.故填:k<3.3、8 cm.【考点】圆锥的计算.【专题】计算题.【分析】设圆锥的母线长为l,由于圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长,则l•2π•6=60π,然后利用勾股定理计算圆锥的高.【解答】解:设圆锥的母线长为l,根据题意得l•2π•6=60π,解得l=10,所以圆锥的高==8(cm).故答案为8.【点评】本题考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的弧长等于圆锥底面圆的周长,扇形的半径等于圆锥的母线长.也考查了勾股定理.4、4 .【考点】根与系数的关系;根的判别式.【专题】计算题.【分析】先根据判别式的意义确定a≤2,再根据根与系数的关系得到m+n=2a,然后利用a的取值范围确定m+n的最大值.【解答】解:根据题意得△=4a2﹣4(a2+a﹣2)≥0,解得a≤2,因为m+n=2a,所以m+n≤4,所以m+n的最大值为4.故答案为4.【点评】本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=﹣,x1x2=.也考查了一元二次方程根的判别式.5、16 .【考点】根与系数的关系.【分析】利用根与系数的关系可得出α+β和αβ,且α2+β2=(α+β)2﹣2αβ,代入计算即可.【解答】解:∵α、β是一元二次方程x2+2x﹣6=0的两根,∴α+β=﹣2,αβ=﹣6,∴α2+β2=(α+β)2﹣2αβ=(﹣2)2﹣2×(﹣6)=4+12=16,故答案为:16.【点评】本题主要考查一元二次方程根与系数的关系,把α2+β2化成(α+β)2﹣2αβ是解题的关键.6、﹣.【考点】根与系数的关系.【分析】由根与系数的关系可得x1+x2=﹣m,x1•x2=2m,继而求得答案.【解答】解:∵一元二次方程x2+mx+2m=0(m≠0)的两个实根分别为x1,x2,∴x1+x2=﹣m,x1•x2=2m,∴==﹣.二、选择题7、D【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、是二元一次方程,故此选项错误;B、是一元一次方程,故此选项错误;C、不是方程,故此选项错误;D、符合一元二次方程的定义,故此选项正确;故选:D.【点评】本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.8、D【考点】解一元二次方程-因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.9、D【考点】一元二次方程的应用.【分析】设正方形铁皮的边长应是x厘米,则做成没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据长方体的体积计算公式列方程解答即可.【解答】解:正方形铁皮的边长应是x厘米,则没有盖的长方体盒子的长、宽为(x﹣3×2)厘米,高为3厘米,根据题意列方程得,(x﹣3×2)(x﹣3×2)×3=300,解得x1=16,x2=﹣4(不合题意,舍去);答:正方形铁皮的边长应是16厘米.故选:D.10、C【分析】设每次降价的百分率为x,则第一次降价后的售价为200(1﹣x)元,第二次降价后的售价为200(1﹣x)(1﹣x)元,根据第二降价后的售价为128元建立方程求出其解即可.【解答】解:设每次降价的百分率为x,由题意,得200(1﹣x)2=128,解得:x1=0.2,x2=1.8(不符合题意,舍去).答:每次降价的百分率为20%.故选C.【点评】本题考查了列一元二次方程解降低率的问题的运用,一元二次方程的解法的运用,解答时根据降低率的数量关系建立方程是关键,检验根是否符合题意是容易忘记的过程.11、C【考点】一元二次方程的应用.【专题】几何图形问题.【分析】设道路的宽为x,利用“道路的面积”作为相等关系可列方程20x+33x﹣x2=20×33﹣510,解方程即可求解.解题过程中要根据实际意义进行x的值的取舍.【解答】解:设道路的宽为x,根据题意得20x+33x﹣x2=20×33﹣510整理得x2﹣53x+150=0解得x=50(舍去)或x=3所以道路宽为3米.故选C.【点评】本题考查的是一元二次方程的实际运用.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.12、C13、B【考点】由实际问题抽象出一元二次方程.【分析】关系式为:球队总数×每支球队需赛的场数÷2=15,把相关数值代入即可.【解答】解:每支球队都需要与其他球队赛(x﹣1)场,但2队之间只有1场比赛,所以可列方程为:x(x﹣1)=15.故选B.【点评】本题考查了由实际问题抽象出一元二次方程,解决本题的关键是得到比赛总场数的等量关系,注意2队之间的比赛只有1场,最后的总场数应除以2.14、C三、多项选择15、.四、简答题16、解:因式分解得:,………….5分所以或. ………….7分因为,所以,,………….9分因为两根都是正整数,所以,. ………….12分17、解:(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根,∴△=(2m-1)2-4×1×m2=-4m+1≥0,∴m ≤;(2)当x12-x22=0时,即(x1+x2)(x1-x2)=0,∴x1-x2=0或x1-x2=0当x1+x2=0,依据一元二次方程根与系数的关系可得x1+x2=-(2m-1)∴-(2m-1)=0,∴m=又∵由(1)一元二次方程x2+(2m-1)x+m2=0有两个实数根时的取值范围是m ≤,∴m=不成立,故m无解;当时x1-x2=0,x1=x2,方程有两个相等的实数根,∴△=(2m-1)2-4×1×m2=-4m+1=0,∴m=综上所述,当x1-x2=0时,m=。
九年级数学一元二次方程测试题及参考答案九年级数学一元二次方程测试题及参考答案学习是一个边学新知识边巩固的过程,对学过的知识一定要多加练习,这样才能进步。
因此,小编精心为大家整理了这篇九年级数学一元二次方程测试题及参考答案,供大家参考。
一、选择题(每小题3分,共30分)1、已知方程x2-6x+q=0可以配方成(x-p)2=7的形式,那么x2-6x+q=2可以配方成下列的( )A、(x-p)2=5B、(x-p)2=9C、(x-p+2)2=9D、(x-p+2)2=52、已知m是方程x2-x-1=0的一个根,则代数式m2-m的值等于( )A、-1B、0C、1D、23、若、是方程x2+2x-2019=0的两个实数根,则2+3+的值为( )A、2019B、2019C、-2019D、40104、关于x的方程kx2+3x-1=0有实数根,则k的取值范围是( )A、k-B、k- 且k0C、k-D、k- 且k05、关于x的一元二次方程的两个根为x1=1,x2=2,则这个方程是( )二、填空题(每小题3分,共30分)11、若关于x的方程2x2-3x+c=0的一个根是1,则另一个根是 .12、一元二次方程x2-3x-2=0的解是 .13、如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值是 .14、等腰△ABC中,BC=8,AB、AC的长是关于x的方程x2-10x+m=0的两根,则m的值是 .15、2019年某市人均GDP约为2019年的1.2倍,如果该市每年的人均GDP增长率相同,那么增长率为 .16、科学研究表明,当人的下肢长与身高之比为0.618时,看起来最美,某成年女士身高为153cm,下肢长为92cm,该女士穿的高根鞋鞋根的最佳高度约为 cm.(精确到0.1cm) 17、一口井直径为2m,用一根竹竿直深入井底,竹竿高出井口0.5m,如果把竹竿斜深入井口,竹竿刚好与井口平,则井深为 m,竹竿长为 m.18、直角三角形的周长为2+ ,斜边上的中线为1,则此直角三角形的面积为 .19、如果方程3x2-ax+a-3=0只有一个正根,则的值是 .20、已知方程x2+3x+1=0的两个根为、,则 + 的值为 .三、解答题(共60分)21、解方程(每小题3分,共12分)(1)(x-5)2=16 (2)x2-4x+1=0(3)x3-2x2-3x=0 (4)x2+5x+3=022、(8分)已知:x1、x2是关于x的方程x2+(2a-1)x+a2=0的两个实数根,且(x1+2)(x2+2)=11,求a的值.23、(8分)已知:关于x的方程x2-2(m+1)x+m2=0(1) 当m取何值时,方程有两个实数根?(2) 为m选取一个合适的整数,使方程有两个不相等的实数根,并求这两个根.24、(8分)已知一元二次方程x2-4x+k=0有两个不相等的实数根(1) 求k的取值范围(2) 如果k是符合条件的最大整数,且一元二次方程x2-4x+k=0与x2+mx-1=0有一个相同的根,求此时m的值.25、(8分)已知a、b、c分别是△ABC中A、B、C所对的边,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,试判断△ABC的形状.26、(8分)某工程队在我市实施棚户区改造过程中承包了一项拆迁工程,原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%,从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2求:(1)该工程队第二天第三天每天的拆迁面积比前一天增长的百分数相同,求这个百分数.27、(分)某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克(1) 现该商场要保证每天盈利6000元,同时又要顾客得到实惠,那么每千克应涨价多少元?(2) 若该商场单纯从经济角度看,每千克这种水果涨价多少元,能使商场获利最多?小编再次提醒大家,一定要多练习哦!希望这篇九年级数学一元二次方程测试题及参考答案,能够帮助你巩固学过的相关知识。
九年级数学一元二次方程同步练习题九年级数学的一元二次方程的知识点即将学完,教师们需要准备哪些同步练习题内容呢?下面是为大家带来的关于九年级数学一元二次方程同步练习题,希望会给大家带来帮助。
九年级数学一元二次方程同步练习题:1. 若是关于二的一元二次方程的一个解,则的值是( )A. 6B. 5C. 2D. -62. 在用配方法解一元二次方程时,可配方得( )3. 若,则关于的一元二次方程的根的情况是( )A. 没有实数根B. 有两个相等的实数根C. 有两个不相等的实数根D. 无法判断4. 若关于的方程有实数根,则整数的最大值是( )A. 7B. 8C. 9D.105. 若是关于的一元二次方程的解,则 .6. 请写出一个一元二次方程,要求满足下列两个条件:①有两个不等实根;②其中有一个根为2.所写方程可以是 .7. 方程的解是 .8. 若关于的一元二次方程有两个实数根,则的取值范围是 .9. 解下列方程:10. 已知关于的一元二次方程有两个不相等的实数根.(1) 求实数的最大整数值;(2) 在(1)的条件下,方程的实数根是、,求代数式的值.11. 某宾馆要添置一批空调.有一种品牌空调,在甲、乙两家电器商店销售,挂牌价均为2000元/台.甲商店用如下方法促销:每多买一台,则所买各台的单价均再减20元,但最低不能低于每台1690元;乙商店一律按挂牌价的90%销售.若此宾馆恰好花费24 080元在同一家商店购买了一定数量的空调,请问是在哪家商店购买的?购买数量是多少?12. 某三角形的两边的长分别为3和6,第三边的长是方程了的一个根,则这个三角形的周长是( )A. 9B. 11C. 13D. 11或1313. 已知一元二次方程的较小根为,则下面对的估计正确的是( )A. -2< <-1B. -3< <-2C. 2< <3D. -1< <014. 在某次聚会上,每两人都握了一次手,所有人共握手10次,设有二人参加这次聚会,则列出方程正确的是( )15. 某企业2013年底缴税40万元,2015年底缴税将达到48. 4万元.设这两年该企业交税的年平均增长率为,根据题意,可列方程为 .16. 等腰△ABC中,BC=8,AB,AC的长分别是关于的方程的根,则的值是 .17. 已知整数,若△ABC的边长均满足关于的方程,则△ABC 的周长是 .18. 如图,邻边不相等的矩形花圃ABCD.它的一边AD利用已有的围墙,围成另外三边的栅栏的总长是6 若矩形的面积为4 ,则AB 的长是 .(可利用的围墙长度超过6 )19. 已知:关于二的方程 .(1) 求证:方程总有实数根;(2) 若方程有两个实数根,求当取哪些整数时,方程的两个实数根均为负数.20. 设是不小于是-1的实数,使得关于的方程有两个不相等的实数根、 .(1) 若,求的值;(2) 求的最大值.21. 某桶装水经营部每天的房租、人员工资等固定成本为250元,每桶水的进价是5元,规定销售单价不得高于12元,也不得低于7元,经调查发现日均销售量(桶)与销售单价(元)的函数图象如图所示.(1) 求日均销售量(桶)与销售单价二(元)的函数关系式;(2) 若该经营部希望日均获利1350元,请你根据以上信息,就该桶装水的销售单位或销信数量,提出一个用一元二次方程解决的问题,并写出解答过程.22. 如图,在等腰梯形ABCD中,AB=DC=5 ,AD=4 , BC=10.点E在下底边BC上,点F在腰AB上.(1) 若EF平分等腰梯形ABCD的周长,设BE的长为x,试用含x的代数式表示△BEF的面积;(2) 是否存在线段EF将等腰形ABCD的周长和面积同时平分?若存在,求出此时BE的长;若不存在,请说明理由;(3)是否存在线段EF将等腰梯形ABCD的周长和面积同时分成1:2的两部分?若存在,求此时BE的长;若不存在,请说明理由.九年级数学一元二次方程同步练习题答案:1. A2. C3. A4. B5. -26. (答案不唯一)7. ,8. 且9. (1) ,(2) ,(3) ,(4) ,10. (1):一元二次方程有两个不相等的实数根, .解得, .实数的最大整数值为1. (2) . 此时方程为 . , . .11. 设该宾馆购买台,若在甲商店购买,则需要花费元,若在乙商店购买,则需要花费元. ①若该宾馆是在甲商店花费24 080元购买的空调,则有20x)=24 080,解得或 . 当时,每台的单价为2 000-20X14=1720>1690(元),符合题意;当x=86时,每台的单价为2 000--20 X 86=280<1690(元),不符合题意,舍去. ②若该宾馆是在乙商店花费24080元购买的空调,则有1800 =24 080,解得= ,不符合题意,舍去.答:该宾馆是在甲商店购买的空调,购买了14台.12. C13. A14. B15.16. 25或1617. 6或12或1018. 119. (1) 证明:分类讨论: 若,则原方程为一元一次方程,即,解得,方程有实数;根;若,则原方程为一元二次方程,,方程有两个不相等的实数根. 综上所述,方程总有实数根. (2) 方程有两个实数根,方程为一元二次方程. ,, . 方程有两个负整数根,是负整数.即是3的约数,或 .但当k=1或3时,根不是负整数,或-3.13. (1) (2)最大值为314. (1) 结合题图中的函数图像可设日均销售量(桶)与销售单价(元)的函数关系式为,根据题意,得解得,,所以日均销售量(桶)与销售单价(元)的函数关系式为(2)问题:“若该经营部希望日均获利1350元,那么日均应销售多少桶水?”根据题意,得,解得,(不合题意,舍去),当时,(桶).答:若该经营部希望日均获利1350元,那么日均应销售400桶水.22. (1) 由题意得梯形的周长为24,高为4,面积为28. ,则 .过点作于点,过点作于点 ., .由平分等腰梯形的周长可得,(2) 存在.等腰梯形的面积为28,,解得,(不合题意,舍去),在线段将等腰梯形的周长与面积同时平分,此时 .(3) 不存在.假设存在,显然有,且,整理得,,不存在这样的实数,即不存在线段将等腰梯形的周长和面积同时分成1:2的两部分.看过九年级数学一元二次方程同步练习题的还。
第二十二章 一元二次方程测试1 一元二次方程的有关概念及直接开平方法学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法.课堂学习检测一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______.4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______. 5.若{ EMBED Equation.3 |x xm -m +-222)(-3=0是关于x 的一元二次方程,则m 的值是______.6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3) (4) A .1个 B .2个 C .3个 D .4个 8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ). A .2个 B .3个 C .4个 D .5个 9.x 2-16=0的根是( ). A .只有4 B .只有-4 C .±4 D .±8 10.3x 2+27=0的根是( ).A .x 1=3,x 2=-3B .x =3C .无实数根D .以上均不正确 三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0. 13. 14.(2x +1)2=(x -1)2.综合、运用、诊断一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx2+x-k=0有一个根是-1,则k的值为______.二、选择题18.下列方程:(x+1)(x-2)=3,x2+y+4=0,(x-1)2-x(x+1)=x,其中是一元二次方程的有( ).A.2个B.3个C.4个D.5个19.形如ax2+bx+c=0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A.a是任意实数B.与b,c的值有关C.与a的值有关D.与a的符号有关20.如果是关于x的方程2x2+3ax-2a=0的根,那么关于y的方程y2-3=a的解是( ).A.B.±1 C.±2 D.21.关于x的一元二次方程(x-k)2+k=0,当k>0时的解为( ).A.B.C.D.无实数解三、解答题(用直接开平方法解下列方程)22.(3x-2)(3x+2)=8.23.(5-2x)2=9(x+3)2.24.25.(x-m)2=n.(n为正数)拓广、探究、思考26.若关于x的方程(k+1)x2-(k-2)x-5+k=0只有唯一的一个解,则k=______,此方程的解为______.27.如果(m-2)x|m|+mx-1=0是关于x的一元二次方程,那么m的值为( ).A.2或-2 B.2 C.-2 D.以上都不正确28.已知关于x的一元二次方程(m-1)x2+2x+m2-1=0有一个根是0,求m的值.29.三角形的三边长分别是整数值2cm,5cm,k cm,且k满足一元二次方程2k2-9k-5=0,求此三角形的周长.测试2 配方法与公式法解一元二次方程学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程.课堂学习检测一、填空题1._________=(x-__________)2.2.+_________=(x-_________)2.3._________=(x-_________)2.4.+_________=(x-_________)2.5.关于x的一元二次方程ax2+bx+c=0(a≠0)的根是______.6.一元二次方程(2x+1)2-(x-4)(2x-1)=3x中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A.B.C.D.8.用配方法解方程x2+2x=8的解为( ).A.x1=4,x2=-2 B.x1=-10,x2=8C.x1=10,x2=-8 D.x1=-4,x2=29.用公式法解一元二次方程,正确的应是( ).A.B.C.D.10.方程mx2-4x+1=0(m<0)的根是( ).A.B.C.D.三、解答题(用配方法解一元二次方程)11.x2-2x-1=0.12.y2-6y+6=0.四、解答题(用公式法解一元二次方程)13.x2+4x-3=0.14.五、解方程(自选方法解一元二次方程)15.x2+4x=-3.16.5x2+4x=1.综合、运用、诊断一、填空题17.将方程化为标准形式是______________________,其中a=______,b=______,c=______.18.关于x的方程x2+mx-8=0的一个根是2,则m=______,另一根是______.二、选择题19.若关于x的二次三项式x2-ax+2a-3是一个完全平方式,则a的值为( ).A.-2 B.-4 C.-6 D.2或620.4x2+49y2配成完全平方式应加上( ).A.14xy B.-14xyC.±28xy D.021.关于x的一元二次方程的两根应为( ).A.B.,C.D.三、解答题(用配方法解一元二次方程)22.3x2-4x=2.23.x2+2mx=n.(n+m2≥0).四、解答题(用公式法解一元二次方程)24.2x-1=-2x2.25.26.2(x-1)2-(x+1)(1-x)=(x+2)2.拓广、探究、思考27.解关于x的方程:x2+mx+2=mx2+3x.(其中m≠1)28.用配方法说明:无论x取何值,代数式x2-4x+5的值总大于0,再求出当x取何值时,代数式x2-4x+5的值最小?最小值是多少?测试3 一元二次方程根的判别式学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测一、填空题1.一元二次方程ax2+bx+c=0(a≠0)根的判别式为 =b2-4ac,(1)当b2-4ac______0时,方程有两个不相等的实数根;(2)当b2-4ac______0时,方程有两个相等的实数根;(3)当b2-4ac______0时,方程没有实数根.2.若关于x的方程x2-2x-m=0有两个相等的实数根,则m=______.3.若关于x的方程x2-2x-k+1=0有两个实数根,则k______.4.若方程(x-m)2=m+m2的根的判别式的值为0,则m=______.二、选择题5.方程x2-3x=4根的判别式的值是( ).A.-7 B.25 C.±5 D.56.一元二次方程ax2+bx+c=0有两个实数根,则根的判别式的值应是( ).A.正数B.负数C.非负数D.零7.下列方程中有两个相等实数根的是( ).A.7x2-x-1=0 B.9x2=4(3x-1)C.x2+7x+15=0 D.8.方程有( ).A.有两个不等实根B.有两个相等的有理根C.无实根D.有两个相等的无理根三、解答题9.k为何值时,方程kx2-6x+9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.10.若方程(a-1)x2+2(a+1)x+a+5=0有两个实根,求正整数a的值.11.求证:不论m取任何实数,方程都有两个不相等的实根.综合、运用、诊断一、选择题12.方程ax2+bx+c=0(a≠0)根的判别式是( ).A.B.C.b2-4ac D.abc13.若关于x的方程(x+1)2=1-k没有实根,则k的取值范围是( ).A.k<1 B.k<-1 C.k≥1 D.k>114.若关于x的方程3kx2+12x+k+1=0有两个相等的实根,则k的值为( ).A.-4 B.3 C.-4或3 D.或15.若关于x的一元二次方程(m-1)x2+2mx+m+3=0有两个不等的实根,则m的取值范围是( ).A.B.且m≠1C.且m≠1 D.16.如果关于x的二次方程a(1+x2)+2bx=c(1-x2)有两个相等的实根,那么以正数a,b,c 为边长的三角形是( ).A.锐角三角形B.钝角三角形C.直角三角形D.任意三角形二、解答题17.已知方程mx2+mx+5=m有相等的两实根,求方程的解.18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax+c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根)1.x(x-3)=0.______ 2.(2x-7)(x+2)=0.______3.3x2=2x.______ 4.x2+6x+9=0.______5.______ 6.______7.(x-1)2-2(x-1)=0.______.8.(x-1)2-2(x-1)=-1.______二、选择题9.方程(x-a)(x+b)=0的两根是( ).A.x1=a,x2=b B.x1=a,x2=-bC.x1=-a,x2=b D.x1=-a,x2=-b10.下列解方程的过程,正确的是( ).A.x2=x.两边同除以x,得x=1.B.x2+4=0.直接开平方法,可得x=±2.C.(x-2)(x+1)=3×2.∵x-2=3,x+1=2,∴x1=5,x2=1.D.(2-3x)+(3x-2)2=0.整理得3(3x-2)(x-1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x(x-2)=2(x-2).12.*13.x2-3x-28=0.14.x2-bx-2b2=0.*15.(2x-1)2-2(2x-1)=3.*16.2x2-x-15=0.四、解答题17.x取什么值时,代数式x2+8x-12的值等于2x2+x的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x-2)2=(2x+5)2.______________________.二、选择题20.方程x(x-2)=2(2-x)的根为( ).A.-2 B.2 C.±2 D.2,2 21.方程(x-1)2=1-x的根为( ).A.0 B.-1和0 C.1 D.1和0 22.方程的较小的根为( ).A.B.C.D.三、用因式分解法解下列关于x的方程23.24.4(x+3)2-(x-2)2=0.25.26.abx2-(a2+b2)x+ab=0.(ab≠0)四、解答题27.已知关于x的一元二次方程mx2-(m2+2)x+2m=0.(1)求证:当m取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m的值.测试5 一元二次方程解法综合训练学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力.课堂学习检测一、填空题(写出下列一元二次方程的根)1.3(x-1)2-1=0.__________________2.(2x+1)2-2(2x+1)=3.__________________3.3x2-5x+2=0.__________________4.x2-4x-6=0.__________________二、选择题5.方程x2-4x+4=0的根是( ).A.x=2 B.x1=x2=2 C.x=4 D.x1=x2=46.的根是( ).A.x=3 B.x=±3 C.x=±9 D.7.的根是( ).A.B.C.x1=0,D.8.(x-1)2=x-1的根是( ).A.x=2 B.x=0或x=1C.x=1 D.x=1或x=2三、用适当方法解下列方程9.6x2-x-2=0.10.(x+3)(x-3)=3.11.x2-2mx+m2-n2=0.12.2a2x2-5ax+2=0.(a≠0)四、解下列方程(先将你选择的最佳解法写在括号中)13.5x2=x.(最佳方法:______)14.x2-2x=224.(最佳方法:______)15.6x2-2x-3=0.(最佳方法:______)16.6-2x2=0.(最佳方法:______)17.x2-15x-16=0.(最佳方法:______)18.4x2+1=4x.(最佳方法:______)19.(x-1)(x+1)-5x+2=0.(最佳方法:______)综合、运用、诊断一、填空题20.若分式的值是0,则x=______.21.关于x的方程x2+2ax+a2-b2=0的根是____________.二、选择题22.方程3x2=0和方程5x2=6x的根( ).A.都是x=0 B.有一个相同,x=0C.都不相同D.以上都不正确23.关于x的方程abx2-(a2+b2)x+ab=0(ab≠0)的根是( ).A.B.C.D.以上都不正确三、解下列方程24.(x+1)2+(x+2)2=(x+3)2.25.(y-5)(y+3)+(y-2)(y+4)=26.26.27.kx2-(k+1)x+1=0.四、解答题28.已知:x2+3xy-4y2=0(y≠0),求的值.29.已知:关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有两相等实数根.求证:a+c=2b.(a,b,c是实数)拓广、探究、思考30.若方程3x2+bx+c=0的解为x1=1,x2=-3,则整式3x2+bx+c可分解因式为__________ ____________.31.在实数范围内把x2-2x-1分解因式为____________________.32.已知一元二次方程ax2+bx+c=0(a≠0)中的两根为请你计算x1+x2=____________,x1·x2=____________.并由此结论解决下面的问题:(1)方程2x2+3x-5=0的两根之和为______,两根之积为______.(2)方程2x2+mx+n=0的两根之和为4,两根之积为-3,则m=______,n=______.(3)若方程x2-4x+3k=0的一个根为2,则另一根为______,k为______.(4)已知x1,x2是方程3x2-2x-2=0的两根,不解方程,用根与系数的关系求下列各式的值:①②③|x1-x2|;④⑤(x1-2)(x2-2).测试6 实际问题与一元二次方程学习要求会灵活地应用一元二次方程处理各类实际问题.课堂学习检测一、填空题1.实际问题中常见的基本等量关系。
人教版数学九年级下册第二十二章一元二次函数习题练习(附答案)一、选择题1.已知抛物线y=x2+bx+c的顶点坐标为(1,-3),则抛物线对应的函数解析式为()A.y=x2-2x+2 B.y=x2-2x-2 C.y=-x2-2x+1 D.y=x2-2x+12.已知y=ax2(a≠0)的图象不经过第四象限,图象上有A(-1,y1),B(-,y2),C(2,y3)三点,则y1、y2、y3的大小关系为()A.y1<y2<y3B.y1>y2>y3C.y2>y1>y3D.y3>y1>y23.将二次函数y=2x2的图象向右平移2个单位,得到该二次函数的表达式是()A.y=2(x+2)2B.y=2(x-2)2C.y=2x2+2D.y=2x2-24.将抛物线y=-2x2+1向下平移1个单位后所得到的抛物线为()A.y=-2(x+1)2+1 B.y=-2(x-1)2+1C.y=-2x2 D.y=-2x2+25.已知二次函数y=ax2-bx-2(a≠0)的图象的顶点在第四象限,且过点(-1,0),当a-b为整数时,ab的值为()A.或1 B.或1C.或 D.或6.二次函数y=-x2+mx的图象如图所示,对称轴为直线x=2,若关于x的一元二次方程-x2+mx-t=0(t 为实数)在1<x<5的范围内有解,则t的取值范围是()A.t>-5 B. -5<t<3 C. 3<t≤4 D. -5<t≤47.在下列二次函数中,其图象对称轴为x=2的是()A.y=2x2-4 B.y=2(x-2)2 C.y=2x2+2 D.y=2(x+2)28.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件售价为x元(x为非负整数),则若要使每星期的利润最大且每星期的销量较大,x应为多少元?()A. 41 B. 42 C. 42.5 D. 439.如图所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,其边长x应为()A.m B. 6m C. 15m D.m10.已知正比例函数y=x与二次函数y=ax2+bx+c的图象如图所示,则二次函数y=ax2+(b-1)x+c的图象可能是()A. B. C. D.二、填空题11.二次函数y=(x-1)2+1,当2≤y<5时,相应x的取值范围为____________.12.将二次函数y=2(x+1)2-3的图象向右平移3个单位,再向上平移1个单位,那么平移后的二次函数的顶点坐标是____________.13.如图是二次函数y=ax2+bx-1图象的一部分,其对称轴为x=-1,且过点(-3,0),则(a+b+1)(2-a-b)=_______________.14.形如:y=ax2+bx+c(a≠0)的函数叫二次函数,它的图象是一条抛物线.类比一元一次方程的解可以看成两条直线的交点的横坐标;则一元二次方程x2+x-3=0的解可以看成抛物线y=x2+x-3与直线y=0(x轴)的交点的横坐标;也可以看成是抛物线y=x2与直线y=___________的交点的横坐标;也可以看成是抛物线y=____________与直线y=-x的交点的横坐标.15.若二次函数y=-ax2,当x=2时,y=;则当x=-2时,y的值是___________.16.若二次函数y=x2-3x-4的图象如图所示,则方程x2-3x-4=0的解是__________;不等式x2-3x-4>0的解集是______________;不等式x2-3x-4<0的解集是________________.17.若将抛物线y=x2-2x+1沿着x轴向左平移1个单位,再沿y轴向下平移2个单位,则得到的新抛物线的顶点坐标是____________.18.抛物线y=−x2+5在y轴左侧的部分是________(填“上升”或“下降”)的.三、解答题19.已知抛物线y=(x-m)2-(x-m),其中m是常数.(1)求证:不论m为何值,该抛物线与x 轴一定有两个公共点;(2)若该抛物线的对称轴为直线x=.①求该抛物线的函数解析式;②把该抛物线沿y轴向上平移多少个单位长度后,得到的抛物线与x轴只有一个公共点.20.在同一坐标系中画出y=-2x2+1和y=-2x2的图象,并说出它们的关系,对称轴和顶点坐标.21.在平面直角坐标系中,有抛物线y=x2+1,已知点A(0,2),P(m,n)是抛物线上一动点,过O、P的直线交抛物线于点D,若AP=2AD,求直线OP的解析式.22.已知关于x的方程mx2+2(m-1)x+m-1=0有两个实数根,且m为非负整数.(1)求m的值;(2)将抛物线C1:y=mx2+2(m-1)x+m-1向右平移a个单位,再向上平移b个单位得到抛物线C2,若抛物线C2过点A(2,b)和点B(4,2b+1),求抛物线C2的表达式;(3)将抛物线C2绕点(n+1,n)旋转180°得到抛物线C3,若抛物线C3与直线y=x+1有两个交点且交点在其对称轴两侧,求n的取值范围.答案解析1.【答案】B【解析】A、y=x2-2x+2=(x-1)2+1,顶点坐标为(1,1),不合题意;B、y=x2-2x-2=(x-1)2-3,顶点坐标为(1,-3),符合题意;C、y=-x2-2x+2=-(x+1)2+3,顶点坐标为(-1,3),不合题意;D、y=x2-2x+1=(x-1)2,顶点坐标为(1,0),不合题意.2.【答案】A【解析】∵y=ax2(a≠0)的图象不经过第四象限,∴a>0,在二次函数y=ax2(a≠0),对称轴y 轴,图象上有A(-1,y1),B(-,y2),C(2,y3)三点, |-1|<|-|<|2|,则y1、y2、y3的大小关系为y1<y2<y3.3.【答案】B【解析】二次函数y=2x2的图象向右平移2个单位,得y=2(x-2)2.4.【答案】C【解析】由“上加下减”的原则可知,抛物线y=-2x2+1向下平移1个单位,所得到的抛物线是y=-2x2+1-1,即y=-2x2.5.【答案】A【解析】依题意知a>0,>0,a+b-2=0,故b>0,且b=2-a,a-b=a-(2-a)=2a-2,于是0<a <2,∴-2<2a-2<2,又a-b为整数,∴2a-2=-1或0或1,故a=或1或,b=或1或,∴ab=或1.6.【答案】D【解析】如图,关于x的一元二次方程-x2+mx-t=0的解就是抛物线y=-x2+mx与直线y=t的交点的横坐标,当x=1时,y=3,当x=5时,y=-5,由图象可知关于x的一元二次方程-x2+mx-t=0(t为实数)在1<x<5的范围内有解,直线y=t在直线y=-5和直线y=4之间包括直线y=4,∴-5<t≤4.7.【答案】B【解析】A、y=2x2-4的对称轴为x=0,所以选项A错误;B、y=2(x-2)2的对称轴为x=2,所以选项B正确;C、y=2x2+2的对称轴为x=0,所以选项C错误;D、y=2(x+2)2对称轴为x=-2,所以选项D错误;8.【答案】B【解析】由题意得,涨价为(x-40)元,(0≤x≤5且x为整数),每星期少卖10(x-40)件,∴每星期的销量为150-10(x-40)=550-10x,设每星期的利润为y元,则y=(x-30)×(550-10x)=-10(x-42.5)2+1562.5,∵x为非负整数,∴当x=42或43时,利润最大为1560元,又∵要求销量较大,∴x取42元.答:若要使每星期的利润最大且每星期的销量较大,x应为42元.9.【答案】D【解析】根据题意得y=30-(5-x)-x(12-),整理得y=-x2+12x,=-[x2-5x+()2-],=-(x-)2+15,∵−<0∴长方形面积有最大值,此时边长x应为m.10.【答案】C【解析】如图,∵点P在抛物线上,设点P(x,ax2+bx+c),又因点P在直线y=x上,∴x=ax2+bx+c,∴ax2+(b-1)x+c=0;由图象可知一次函数y=x与二次函数y=ax2+bx+c交于第一象限的P、Q两点,∴方程ax2+(b-1)x+c=0有两个正实数根,∴函数y=ax2+(b-1)x+c的图象与x轴有两个交点,并且这两个交点都在x轴的正半轴上,符合条件的只有选项C.11.【答案】-1<x≤0或2≤x<3【解析】当y=2时,(x-1)2+1=2,解得x=0或x=2,当y=5时,(x-1)2+1=5,解得x=3或x=-1,又抛物线对称轴为x=1,∴-1<x≤0或2≤x<3.12.【答案】(2,-2)【解析】二次函数y=2(x+1)2-3的图象的顶点坐标是(-1,-3),则向右平移3个单位,再向上平移1个单位的函数图象的顶点坐标是(2,-2).13.【答案】2【解析】∵二次函数的对称轴为x=-1,且过点(-3,0),∴二次函数与x轴的另一个交点坐标为(1,0),∴a+b-1=0,故a+b=1,则a+b+1=2,2-a-b=2-(a+b)=2-1=1,故(a+b+1)(2-a-b)=2×1=2.14.【答案】-x+3,x2-3【解析】依题意,一元二次方程x2+x-3=0可以看成是抛物线y=x2与直线y=-x+3的交点的横坐标;也可以看成是抛物线y=x2-3与直线y=-x的交点的横坐标.15.【答案】【解析】∵当x=2时,y=,∴-4a=,解得a=-.∴y=x2∴当x=-2时,y=.16.【答案】x1=4,x2=-1;x>4或x<-1;-1<x<4【解析】方程x2-3x-4=0的解是x1=4,x2=-1;不等式x2-3x-4>0的解集是x>4或x<-1;不等式x2-3x-4<0的解集是-1<x<4.17.【答案】(0,-2)【解析】∵y=x2-2x+1=(x-1)2,∴抛物线y=x2-2x+1的顶点坐标为(1,0),∵抛物线y=x2-2x+1沿着x轴向左平移1个单位,再沿y轴向下平移2个单位,∴平移后得抛物线的顶点坐标为(0,-2).18.【答案】上升【解析】抛物线y=−x2+5的开口向下,对称轴为y轴,对称轴左侧y随x增大而增大,∴y轴左侧的部分上升.19.【答案】(1)证明:y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,∵△=(2m+1)2-4(m2+m)=1>0,∴不论m为何值,该抛物线与x轴一定有两个公共点;(2)解:①∵x=-=,∴m=2,∴抛物线解析式为y=x2-5x+6;②设抛物线沿y轴向上平移k个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2-5x+6+k,∵抛物线y=x2-5x+6+k与x轴只有一个公共点,∴△=52-4(6+k)=0,∴k=,即把该抛物线沿y轴向上平移个单位长度后,得到的抛物线与x轴只有一个公共点.【解析】(1)先把抛物线解析式化为一般式,再计算△的值,得到△=1>0,于是根据△=b2-4ac 决定抛物线与x轴的交点个数即可判断不论m为何值,该抛物线与x轴一定有两个公共点;(2)①根据对称轴方程得到=-=,然后解出m的值即可得到抛物线解析式;②根据抛物线的平移规律,设抛物线沿y轴向上平移k 个单位长度后,得到的抛物线与x轴只有一个公共点,则平移后抛物线解析式为y=x2-5x+6+k,再利用抛物线与x轴的只有一个交点得到△=52-4(6+k)=0,然后解关于k的方程即可.20.【答案】解:y=-2x2+1和y=-2x2的图象,如图:,y=-2x2的图象向上平移1个单位得y=-2x2+1的函数图象;y=-2x2的对称轴是y轴,顶点坐标是(0,0);y=-2x2+1的对称轴是y轴,顶点坐标是(0,1).【解析】根据描点法,可得函数图象,根据函数的a、b相同,可得函数的图象相同,根据对称轴公式,可得对称轴,根据顶点坐标公式,可得函数图象的顶点坐标.21.【答案】解:∵P(m,n)是抛物线y=x2+1上一动点,∴m2+1=n,∴m2=4n-4,∵点A(0,2),∴AP===n,∴点P到点A的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,∵AP=2AD,∴PF=2DE,∴OF=2OE,设OE=a,则OF=2a,∴×(2a)2+1=2(a2+1),解得a=,∴a2+1=×2+1=,∴点D的坐标为(,),设OP的解析式为y=kx,则k=,解得k=,∴直线OP的解析式为y=x.【解析】根据点P在抛物线上用n表示出m2,再利用勾股定理列式求出AP,从而得到点P到点A 的距离等于点P的纵坐标,过点D作DE⊥x轴于E,过点P作PF⊥x轴于F,根据AP=2AD判断出PF=2DE,得到OF=2OE,设OE=a,表示出OF=2a,然后代入抛物线解析式并列出方程求出a的值,再求出点D的坐标,最后利用待定系数法求一次函数解析式解答.22.【答案】解:(1)∵方程mx2+2(m-1)x+m-1=0有两个实数根,∴m≠0且△≥0,则有4(m-1)2-4m(m-1)≥0且m≠0∴m≤1且m≠0又∵m为非负整数,∴m=1.(2)抛物线C1:y=x2平移后,得到抛物线C2:y=(x-a)2+b,∵抛物线C2过点A(2,b),b=(2-a)2+b,可得a=2,同理:2b+1=(4-a)2+b,可得b=3,∴C2:y=(x-2)2+3(或y=x2-4x+7).(3)将抛物线C2:y=(x-2)2+3绕点(n+1,n)旋转180°后得到的抛物线C3顶点为(2n,2n-3),把x=2n代入直线y=x+1得,y=×2n+1=n+1,由题意得2n-3>n+1,即n>4.【解析】(1)直接利用根的判别式求出m的取值范围,进而得出答案;(2)利用(1)中所求得出平移后解析式,进而将A,B点代入求出即可;(3)将抛物线C2:y=(x-2)2+3绕点(n+1,n)旋转180°后得到的抛物线C3顶点为(2n,2n-3),进而将横坐标代入直线解析式求出n的取值范围即可.。
第1课时 用配方法解简单的一元二次方程1.一元二次方程x 2-16=0的根是( )A .x =2B .x =4C .x 1=2,x 2=-2D .x 1=4,x 2=-4 2.对于形如(x +m )2=n 的方程,下列说法正确的是( )A .可以直接开平方得x =-m ±nB .可以直接开平方得x =-n ±mC .当n ≥0时,直接开平方得x =-m ±nD .当n ≥0时,直接开平方得x =-n ±m 3.一元二次方程(x +6)2-9=0的解是( )A .x 1=6,x 2=-6B .x 1=x 2=-6C .x 1=-3,x 2=-9D .x 1=3,x 2=-9 4.已知关于x 的一元二次方程(x +1)2-m =0有实数根,则m 的取值范围是( ) A .m ≥-34B .m ≥0C .m ≥1D .m ≥25.若一元二次方程(x +6)2=5可转化为两个一次方程,其中一个一次方程是x +6= 5,则另一个一次方程是________________.6.若把x 2+2x -2=0化为(x +m )2+k =0的形式(m ,k 为常数),则m +k 的值为( ) A .-2 B .-4 C .2 D .47.用配方法解关于x 的方程x 2+px +q =0时,方程可变形为( ) A .(x +p2)2=p 2-4q4 B .(x +p2)2=4q -p 24 C .(x -p 2)2=p 2-4q 4 D .(x -p 2)2=4q -p248.代数式x 2+4x +7的最小值是________.9.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m -4,则b a=________. 10.小明用配方法解一元二次方程x 2-4x -1=0的过程如下所示:解:x 2-4x =1,① x 2-4x +4=1,② (x -2)2=1,③ x -2=±1,④ x 1=3,x 2=1.⑤ (1)小明解方程的方法是________,他的求解过程从第________步开始出现错误,这一步的运算依据应该是____________________;(2)解这个方程.11.用直接开平方法解下列方程:(1)(2x +1)2-6=0; (2)(x -2)2+4=0. (3)x 2+4x -2=0; (4)x 2-x -1=0;(5)x 2-3x =3x +7; (6)x 2+2x +2=6x +4.7.若a 2+2a +b 2-6b +10=0,求a 2-b 2的值.8.定义一种运算“*”:当a ≥b 时,a *b =a 2+b 2;当a <b 时,a *b =a 2-b 2,则方程x *2=12的解是________.20.将4个数a ,b ,c ,d 排成两行两列,两边各加一条竖直线记成⎪⎪⎪⎪⎪⎪ab cd ,我们将其称为二阶行列式,并定义⎪⎪⎪⎪⎪⎪a b c d =ad -bc .若⎪⎪⎪⎪⎪⎪x +1 1-x x -1 x +1=6,则x =________. 公式法1.用公式法解-x 2+3x =1时,需先求出a ,b ,c 的值,则a ,b ,c 依次为( ) A .-1,3,-1 B .1,-3,-1 C .-1,-3,-1 D .-1,3,12.用公式法解方程:(1)x 2-2x =1; (2)4x 2-3=12x . (3)3x 2+4x -4=0; (4)2x 2+1=4x.3.2017·广元方程2x 2-5x +3=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .无实数根D .两根异号 4.2017·安顺若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则m 的值可以是( ) A .0 B .-1 C .2 D .-35.2017·长春若关于x 的一元二次方程x 2+4x +a =0有两个相等的实数根,则a 的值是________. 6.2017·潍坊若关于x 的一元二次方程kx 2-2x +1=0有实数根,则k 的取值范围是________. 7.已知关于x 的方程x 2+2 kx -1=0有两个不相等的实数根,则k 的取值范围是( )A .k ≥0B .k >0C .k ≥-1D .k >-1 8.关于x 的一元二次方程x 2+4kx -1=0的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法判断12.已知三角形两边的长分别是3和4,第三边的长是方程x 2-12x +35=0的根,则该三角形的周长是( )A .14B .12C .12或14D .以上都不对13.2017·通辽若关于x 的一元二次方程(k +1)x 2+2(k +1)x +k -2=0有实数根,则k 的取值范围在数轴上表示正确的是( )图2-3-114.中国古代数学家杨辉的《田亩比类乘除捷法》有这么一道题:“直田积八百六十四步,只云长阔共六十步,问长多阔几何.”意思是:一块矩形田地的面积为864平方步,只知道它的长与宽共60步,问它的长比宽多多少步.经过计算,你的结论是:长比宽多( )A .12步B .24步C .36步D .48步15.若在实数范围内定义一种运算“*”,使a *b =(a +1)2-ab ,则方程(x +2)*5=0的解为( ) A .x =-2 B .x 1=-2,x 2=3C .x 1=-1+32,x 2=-1-32D .x 1=-1+52,x 2=-1-5216.已知关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根,求m 的值.17.已知关于x 的一元二次方程x 2-2(m +1)x +m 2=0.(1)当m 取何值时,方程有两个不相等的实数根?(2)为m 选取一个合适的整数值,使方程有两个不相等的实数根,并求出这两个根.18证明:关于x的方程(a2-8a+20)x2+2ax+1=0,不论a为何值,该方程都是一元二次方程.19.已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由;(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(3)如果△ABC是等边三角形,试求这个一元二次方程的根.20.在△ABC中,∠B=90°,AB=6 cm,BC=8 cm,点P从点A开始沿AB边向点B以1 cm/s的速度移动,点Q 从点B开始沿BC边向点C以2 cm/s的速度移动.点P,Q分别从点A,B同时出发,当其中一点到达终点时,另一点也随之停止移动.(1)经过几秒钟,△PBQ的面积为8 cm2?(2)经过几秒钟,P,Q两点间的距离为53 cm?1.A . 2.D . 3.B 4.C [5.解:(1)x 2-2x -1=0,x =2±(-2)2-4×1×(-1)2×1=1±2,∴x 1=1+2,x 2=1- 2. (2)4x 2-12x -3=0,x =12±(-12)2-4×4×(-3)2×4=12±8 38 =3±2 32, ∴x 1=32+3,x 2=32- 3.6.B 7.D . 8.49.k ≤1且k ≠0 10.A 11.A . 12.B13.A 14.A 15.D16.解:∵关于x 的方程x 2+(2m -1)x +4=0有两个相等的实数根, ∴Δ=(2m -1)2-4×1×4=0,∴2m -1=±4, ∴m =52或m =-32.17.解:(1)∵关于x 的一元二次方程x 2-2(m +1)x +m 2=0有两个不相等的实数根, ∴Δ>0,即[-2(m +1)]2-4m 2>0, 解得m >-12.(2)∵m >-12,∴可取m =0,此时方程为x 2-2x =0,解得x 1=0,x 2=2.(答案不唯一) 18.解:(1)△ABC 是等腰三角形. 理由:∵x =-1是方程的根,∴(a +c )×(-1)2+2b ×(-1)+(a -c )=0, ∴a +c -2b +a -c =0,∴a -b =0, 即a =b ,∴△ABC 是等腰三角形. (2)△ABC 是直角三角形.理由:∵方程有两个相等的实数根, ∴(2b )2-4(a +c )(a -c )=0, ∴4b 2-4a 2+4c 2=0, 即a 2=b 2+c 2,∴△ABC 是直角三角形. (3)当△ABC 是等边三角形时,(a +c )x 2+2bx +(a -c )=0可整理为2ax 2+2ax =0, ∴x 2+x =0, 解得x 1=0,x 2=-1.详解1.D 2.C3.C [解析] (x +6)2=9,∴x +6=±3, ∴x 1=-3,x 2=-9.故选C. 4.B5.x +6=- 5 [解析] 直接开平方,得x +6=± 5. 6.解:(1)移项,得(2x +1)2=6,直接开平方,得2x +1=±6,即2x =-1±6, 解得x 1=-1+62,x 2=-1-62.(2)移项,得(x -2)2=-4, ∵(x -2)2≥0,-4<0, ∴该方程无实数根.7.B [解析] x 2+2x -5=0,x 2+2x =5,x 2+2x +1=5+1,(x +1)2=6.故选B. 8.D9.B [解析] 由x 2-4x +p =(x +q )2=x 2+2qx +q 2,得2q =-4,p =q 2, 解得p =4,q =-2.10.a 1=2+11,a 2=2-11 11.解:(1)移项,得x 2+4x =2. 配方,得x 2+4x +4=6. 整理,得(x +2)2=6, ∴x +2=±6,即x 1=-2+6,x 2=-2- 6. (2)移项,得x 2-x =1. 配方,得x 2-x +14=54.整理,得(x -12)2=54,∴x -12=±52,即x 1=1+52,x 2=1-52.(3)原方程可化为x 2-6x =7. 配方,得x 2-6x +9=7+9. 整理,得(x -3)2=16, ∴x -3=±4, 即x 1=7,x 2=-1.(4)移项,得x 2+2x -6x =4-2. 合并同类项,得x 2-4x =2. 配方,得x 2-4x +22=2+22. 整理,得(x -2)2=6,所以x -2=6或x -2=-6, 即x 1=2+6,x 2=2- 6.12.A [解析] x 2+2x =2,x 2+2x +1=3,(x +1)2=3,所以m =1,k =-3,所以m +k =1-3=-2. 故选A.13.A [解析] 首先进行移项,再进行配方,方程左右两边同时加上一次项系数一半的平方,即可变形成左边是完全平方式,右边是常数的形式.14.3 [解析] x 2+4x +7=x 2+4x +4+3=(x +2)2+3≥3,则原式的最小值为3. 15.4 [解析] 利用直接开平方法得到x =±ba,得到方程的两个根互为相反数,所以m +1+2m -4=0,解得m =1,则方程的两个根分别是2与-2,则有b a =2,然后两边平方得到ba=4. 16.解:(1)小明解方程的方法是配方法,他的求解过程从第②步开始出现错误,这一步的运算依据应该是等式的基本性质.故答案为:配方法,②,等式的基本性质. (2)x 2-4x =1,x 2-4x +4=1+4,(x -2)2=5,x -2=±5, x =2±5,∴x 1=2+5,x 2=2- 5.17.解:∵a 2+2a +b 2-6b +10=0, ∴(a 2+2a +1)+(b 2-6b +9)=0,即(a +1)2+(b -3)2=0, ∴a =-1,b =3,∴a 2-b 2=(-1)2-32=-8. 18.解:设道路的宽为x m , 由题意得(32-2x )(20-x )=570, 整理,得x 2-36x +35=0, 解得x 1=1,x 2=35.∵x =35>20,∴不合题意,舍去. 答:道路的宽为1 m.19.x 1=2 2,x 2=-4 [解析] 当x ≥2时,x *2=x 2+22=12, 解得x 1=2 2,x 2=-2 2. 因为x ≥2,所以x =22; 当x <2时,x *2=x 2-22=12, 解得x 1=4,x 2=-4. 因为x <2,所以x =-4.综上可知,方程的解为x 1=2 2,x 2=-4.20.± 2 [解析] 定义⎪⎪⎪⎪⎪⎪a b cd =ad -bc ,若⎪⎪⎪⎪⎪⎪x +1 1-x x -1 x +1=6, 则(x +1)2-(x -1)(1-x )=6, 化简得x 2=2, 即x =± 2.。
人教版九年级数学第21章一元二次方程同步训练一、选择题1. 已知关于x的一元二次方程x2+mx-8=0的一个实数根为2,则另一实数根及m的值分别为()A. 4,-2B. -4,-2C. 4,2D. -4,22. 一元二次方程x(x-2)=2-x的根是()A. -1B. 2C. 1和2D. -1和23. 2018·福建已知关于x的一元二次方程(a+1)x2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是()A.1一定不是关于x的方程x2+bx+a=0的根B.0一定不是关于x的方程x2+bx+a=0的根C.1和-1都是关于x的方程x2+bx+a=0的根D.1和-1不都是关于x的方程x2+bx+a=0的根4. 下列一元二次方程中,没有实数根的是()A.x2-2x=0 B.x2+4x-1=0C.2x2-4x+3=0 D.3x2=5x-25. 某景点的参观人数逐年增加,据统计,2014年为10.8万人次,2016年为16.8万人次.设参观人次的平均年增长率为x,则()A. 10.8(1+x)=16.8B. 16.8(1-x)=10.8C. 10.8(1+x)2=16.8D. 10.8[(1+x)+(1+x)2]=16.86. 若方程(x+3)2=m的解是有理数,则实数m不能..取下列四个数中的()A.1 B.4 C.14 D.127. 某专卖店销售一种机床,三月份每台售价为2万元,共销售60台.根据市场调查知:这种机床每台售价每增加0.1万元,每个月就会少售出1台.四月份该专卖店想将销售额提高25%,则这种机床每台的售价应定为()A.3万元B.5万元C.8万元D.3万元或5万元8. 在一幅长为80 cm,宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示.如果要使整个挂图的面积是5400 cm2,设金色纸边的宽为x cm,那么x满足的方程是()A.x2+130x-1400=0 B.x2+65x-350=0C.x2-130x-1400=0 D.x2-65x-350=0二、填空题9. 填空:(1)x2+4x+(____)=(x+____)2;(2)x2+(____)x+254=⎝⎛⎭⎪⎫x-522;(3)x2-73x+(______)=(x-______)2;(4)x2-px+(______)=(x-______)2.10. 用配方法解方程x2-2x-5=0时,将方程化为(x-m)2=n的形式,则m=________,n=________.11. 根据一元二次方程根的定义,解答下列问题:一个三角形两边的长分别为3 cm和7 cm,第三边的长为a cm,且整数a满足a2-10a+21=0,求这个三角形的周长.解:由题意可得4<a<10.(第一步)∵a是整数,∴a可取5,6,7,8,9.(第二步)当a=5时,代入a2-10a+21=52-10×5+21≠0,故a=5不是方程的根.同理可知a=6,a=8,a=9都不是方程的根,只有a=7是方程的根.(第三步) ∴这个三角形的周长是3+7+7=17(cm).上述过程中,第一步的根据是________________________________,第三步应用了____________的数学思想,确定a的值是根据______________.12. 2018·内江已知关于x的方程ax2+bx+1=0的两根为x1=1,x2=2,则方程a(x+1)2+b(x+1)+1=0的两根之和为________.13. 如图,在一张矩形纸板的四个角上分别剪掉2个小正方形和2个矩形(阴影部分即剪掉的部分),剩余的部分可以折成一个有盖的长方体盒子(纸板的厚度忽略不计).若矩形纸板的长、宽分别为40 cm和30 cm,且折成的长方体盒子的表面积为950 cm2,则此长方体盒子的体积为________cm3.14. 在△ABC中,BC=2,AB=2 3,AC=b,且关于x的方程x2-4x+b=0有两个相等的实数根,则AC边上的中线长为________.三、解答题15. 某地区2014年投入教育经费2900万元,2016年投入教育经费3509万元.(1)求2014年至2016年该地区投入教育经费的年平均增长率.(2)按照义务教育法规定,教育经费的投入不低于国民生产总值的百分之四,结合该地区国民生产总值的增长情况,该地区到2018年需投入教育经费4250万元.如果按(1)中教育经费投入的增长率,到2018年该地区投入的教育经费是否能达到4250万元?请说明理由.(参考数据: 1.21=1.1, 1.44=1.2, 1.69=1.3, 1.96=1.4)16. 已知关于x的一元二次方程x2-(k+3)x+3k=0.(1)求证:不论k取何实数,该方程总有实数根;(2)若等腰三角形ABC的一边长为2,另两边长恰好是方程的两个根,求△ABC 的周长.17. 已知:如图,在△ABC中,∠B=90°,AB=5 cm,BC=7 cm.点P从点A 开始沿AB边向点B以1 cm/s的速度运动,同时点Q从点B开始沿BC边向点C以2 cm/s的速度运动.当一个点到达终点时,另一点也随之停止运动,设运动的时间为x s (x>0).(1)求经过几秒后,△PBQ 的面积等于6 cm 2. (2)求经过几秒后,PQ 的长度等于5 cm .(3)在运动过程中,△PBQ 的面积能否等于8 cm 2?如果能,求出运动时间;如果不能,请说明理由.人教版 八年级数学 第21章 一元二次方程 同步训练-答案一、选择题1. 【答案】D 【解析】设方程x 2+mx -8=0的两根分别为x 1,2,根据根与系数关系有x 1+2=-m ,2x 1=-8,解得x 1=-4,m =2.2. 【答案】D 【解析】x(x -2)=2-x ⇒x(x -2)+(x -2)=0⇒(x -2)(x +1)=0⇒x 1=2,x 2=-1.3. 【答案】D[解析] ∵关于x 的一元二次方程(a +1)x 2+2bx +(a +1)=0有两个相等的实数根,∴⎩⎨⎧a +1≠0,Δ=(2b )2-4(a +1)2=0, ∴b =a +1或b =-(a +1).当b =a +1时,有a -b +1=0,此时-1是方程x 2+bx +a =0的根; 当b =-(a +1)时,有a +b +1=0,此时1是方程x 2+bx +a =0的根. ∵a +1≠0,∴a +1≠-(a +1),∴1和-1不都是关于x 的方程x 2+bx +a =0的根.4. 【答案】C5. 【答案】C【解析】∵设平均年增长率为x ,2014年为10.8万人次,则2015年为10.8(1+x)万人次,2016年为10.8(1+x)2万人次,∴根据题意得,10.8(1+x)2=16.8.6. 【答案】D7. 【答案】D [解析] 设这种机床每台的售价定为x 万元, 则x ⎝ ⎛⎭⎪⎫60-x -20.1=2×60×(1+25%), 解得x 1=3,x 2=5.8. 【答案】B二、填空题9. 【答案】(1)42 (2)-5 (3)4936 76(4)p 24 p 210. 【答案】16 [解析] x 2-2x -5=0,x 2-2x =5,x 2-2x +1=5+1,(x -1)2=6,所以m =1,n =6.11. 【答案】三角形任意两边之和大于第三边,任意两边之差小于第三边分类讨论 方程根的定义12. 【答案】1[解析] 设x +1=t ,方程a (x +1)2+b (x +1)+1=0的两根分别是x 3,x 4, ∴at 2+bt +1=0.由题意可知:t 1=1,t 2=2, ∴t 1+t 2=3, ∴x 3+x 4+2=3, ∴x 3+x 4=1.13. 【答案】1500[解析] 设剪掉的小正方形的边长为x cm.根据题意,得2x 2+2×20x =30×40-950,整理,得x2+20x-125=0.解得x1=5,x2=-25(不合题意,舍去).当x=5时,长方体盒子的体积为x(30-2x)·(20-x)=5×(30-2×5)×(20-5)=1500,即此时长方体盒子的体积1500 cm3.故答案为1500.14. 【答案】2[解析] 因为关于x的方程x2-4x+b=0有两个相等的实数根,所以Δ=(-4)2-4b=16-4b=0,得AC=b=4.因为BC=2,AB=2 3,所以BC2+AB2=AC2,所以△ABC为直角三角形,AC为斜边,则AC边上的中线长为斜边的一半,为2.三、解答题15. 【答案】解:(1)设2014年至2016年该地区投入教育经费的年平均增长率为x,(1分) 由题意得:2900(1+x)2=3509,(3分)解得x1=0.1,x2=-2.1(不符合题意舍去).(4分)答:2014年至2016年该地区投入教育经费的年平均增长率为10%.(5分) (2)按10%的增长率,到2018年投入教育经费为3509(1+10%)2=4245.89(万元).(7分)因为4245.89<4250,(8分)所以教育经费不能达到4250万元.答:按此增长率到2018年该地区投入的教育经费不能达到4250万元.(9分) 16. 【答案】解:(1)证明:∵Δ=b2-4ac=[-(k+3)]2-4·3k=(k-3)2≥0,∴不论k取何实数,该方程总有实数根.(2)当△ABC的底边长为2时,方程有两个相等的实数根,则(k-3)2=0,解得k=3,方程为x2-6x+9=0,解得x1=x2=3,此时三角形的三边长分别为2,3,3,故△ABC的周长为2+3+3=8;当△ABC的一腰长为2时,方程有一根为2,把x=2代入方程,得22-2(k+3)+3k=0,解得k =2,方程为x 2-5x +6=0,解得x 1=2,x 2=3,此时三角形的三边长分别为2,2,3,故△ABC 的周长为2+2+3=7. 综上,△ABC 的周长为8或7.17. 【答案】解:由题意得AP =x cm ,BP =(5-x )cm ,BQ =2x cm. (1)∵△PBQ 的面积为6 cm 2, ∴12BP ·BQ =6,即12·(5-x )·2x =6, 整理,得x 2-5x +6=0,解得x 1=2,x 2=3. 答:经过2 s 或3 s 后,△PBQ 的面积等于6 cm 2. (2)在Rt △PBQ 中,BP 2+BQ 2=PQ 2.当PQ =5 cm 时,(5-x )2+(2x )2=52,整理,得5x 2-10x =0,解得x 1=0(舍去),x 2=2.答:经过2 s 后,PQ 的长度等于5 cm. (3)不能.理由:假设△PBQ 的面积为8 cm 2, 则12·(5-x )·2x =8. 整理,得x 2-5x +8=0.∵Δ=b 2-4ac =25-32=-7<0, ∴方程无实数根,∴△PBQ 的面积不能等于8 cm 2.。
一元二次方程100道计算题练习1、)4(5)4(2+=+x x 2、x x 4)1(2=+ 3、22)21()3(x x -=+4、31022=-x x 5、(x+5)2=16 6、2(2x -1)-x (1-2x )=07、x 2 =64 8、5x 2 - 52=0 9、8(3 -x )2 –72=010、3x(x+2)=5(x+2) 11、(1-3y )2+2(3y -1)=0 12、x 2+ 2x + 3=013、x 2+ 6x -5=0 14、x 2-4x+ 3=0 15、x 2-2x -1 =016、2x 2+3x+1=0 17、3x 2+2x -1 =0 18、5x 2-3x+2 =019、7x 2-4x -3 =0 20、 -x 2-x+12 =0 21、x 2-6x+9 =022、22(32)(23)x x -=- 23、x 2-2x-4=0 24、x 2-3=4x25、3x 2+8 x -3=0(配方法) 26、(3x +2)(x +3)=x +14 27、(x+1)(x+8)=-1228、2(x -3) 2=x 2-9 29、-3x 2+22x -24=0 30、(2x-1)2+3(2x-1)+2=031、2x 2-9x +8=0 32、3(x-5)2=x(5-x) 33、(x +2) 2=8x34、(x -2) 2=(2x +3)2 35、2720x x += 36、24410t t -+=37、()()24330x x x -+-= 38、2631350x x -+= 39、()2231210x --=40、2223650x x -+=补充练习:一、利用因式分解法解下列方程(x -2) 2=(2x-3)2 042=-x x 3(1)33x x x +=+x 2 ()()0165852=+---x x二、利用开平方法解下列方程51)12(212=-y 4(x-3)2=25 24)23(2=+x三、利用配方法解下列方程25220x x -+= 012632=--x x01072=+-x x四、利用公式法解下列方程-3x 2+22x -24=0 2x (x -3)=x -3. 3x 2+5(2x+1)=0五、选用适当的方法解下列方程(x +1) 2-3 (x +1)+2=0 22(21)9(3)x x +=- 2230x x --=21302x x ++= 4)2)(1(13)1(+-=-+x x x x--xx x(x+1)-5x=0. 3x(x-3) =2(x-1) (x+1).23(=)2)(11应用题:1、某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为扩大销售增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价一元,市场每天可多售2件,若商场平均每天盈利1250元,每件衬衫应降价多少元?2、两个正方形,小正方形的边长比大正方形的边长的一半多4 cm,大正方形的面积比小正方形的面积的2倍少32平方厘米,求大小两个正方形的边长.3、如图,有一块梯形铁板ABCD,AB∥CD,∠A=90°,AB=6 m,CD=4 m,AD=2 m,现在梯形中裁出一内接矩形铁板AEFG,使E在AB上,F在BC上,G在AD上,若矩形铁板的面积为5 m2,则矩形的一边EF长为多少?4、如右图,某小在长32米,区规划宽20米的矩形场地ABCD上修建三条同样宽的3条小路,使其中两条与AD平行,一条与AB平行,其余部分种草,若使草坪的面积为566米2,问小路应为多宽?5、某商店经销一种销售成本为每千克40元的水产品,据市场分析,若按每千克50元销售一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克,商店想在月销售成本不超过1万元的情况下,使得月销售利润达到8000元,销售单价应定为多少?6.某工厂1998年初投资100万元生产某种新产品,1998年底将获得的利润与年初的投资的和作为1999年初的投资,到1999年底,两年共获利润56万元,已知1999年的年获利率比1998年的年获利率多10个百分点,求1998年和1999年的年获利率各是多少? 思考:1、关于x 的一元二次方程()04222=-++-a x x a 的一个根为0,则a 的值为 。
九年级数学下册一元二次方程同步练习题2含
答案
一·判断题(下列方程中,是一元二次方程的在括号内划“√”,不是一元二次方程的,在括号内划“×”)
1.5x 2+1=0 ( )
2.3x 2+x 1+1=0 ( ) 3.4x 2=ax (其中a 为常数) ( )
4.2x 2
+3x =0 ( ) 5.5
132+x =2x ( ) 6.2
2)(x x + =2x ( )
7.|x 2+2x |=4 ( )
二·填空题
1.一元二次方程的一般形式是__________.
2.将方程-5x 2+1=6x 化为一般形式为__________.
3.将方程(x +1)2=2x 化成一般形式为__________.
4.方程2x 2=-8化成一般形式后,一次项系数为__________,常数项为__________.
5.方程5(x 2-2x +1)=-32x +2的一般形式是__________,其二次项是__________,一次项是__________,常数项是__________.
6.若ab ≠0,则
a 1x 2+b
1x =0的常数项是__________. 7.如果方程ax 2+5=(x +2)(x -1)是关于x 的一元二次方程,则a __________. 8.关于x 的方程(m -4)x 2+(m +4)x +2m +3=0,当m __________时,是一元二次方程,当
m __________时,是一元一次方程.
三·选择题
1.下列方程中,不是一元二次方程的是_________.
[ ]
A .2x 2
+7=0
B .2x 2+23x +1=0
C .5x 2+x 1+4=0
D .3x 2+(1+x ) 2+1=0
2.方程x 2
-2(3x -2)+(x +1)=0的一般形式是_________.
[ ]
A .x 2-5x +5=0
B .x 2+5x +5=0
C .x 2+5x -5=0
D .x 2+5=0
3.一元二次方程7x 2-2x =0的二次项·一次项·常数项依次是_________.
[ ]
A .7x 2,2x ,0
B .7x 2,-2x ,无常数项
C .7x 2,0,2x
D .7x 2,-2x ,0
4.方程x 2-3=(3-2)x 化为一般形式,它的各项系数之和可能是_________. [ ]
A .2
B .-2
C .32-
D .3221-+
5.若关于x 的方程(ax +b )(d -cx )=m (ac ≠0)的二次项系数是ac ,则常数项为_________.
[ ]
A .m
B .-bd
C .bd -m
D .-(bd -m )
6.若关于x 的方程a (x -1)2=2x 2
-2是一元二次方程,则a 的值是_________.
[ ]
A .2
B .-2
C .0
D .不等于2
7.若x =1是方程ax 2+bx +c =0的解,则_________.
[ ]
A .a +b +c =1
B .a -b +c =0
C .a +b +c =0
D .a -b -c =0
8.关于x 2=-2的说法,正确的是_________.
[ ]
A .由于x 2≥0,故x 2不可能等于-2,因此这不是一个方程
B .x 2=-2是一个方程,但它没有一次项,因此不是一元二次方程
C.x2=-2是一个一元二次方程
D.x2=-2是一个一元二次方程,但不能解
四·解答题
现有长40米,宽30米场地,欲在中央建一游泳池,周围是等宽的便道及休息区,且游泳池与周围部分面积之比为3∶2,请给出这块场地建设的设计方案,并用图形及相关尺寸表示出来。
参考答案
一·1.√ 2.× 3.√ 4.√ 5.√ 6.√ 7.√
二·1.ax2+bx+c=0(a≠0)
2.5x2+6x-1=0
3.x2+1=0 4.0 8
5.5x2-22x+3=0 5x2 -22x 3
6.0 7.≠1
8.≠4 =4
三·1.C 2.A 3.D 4.D 5.D 6.A 7.C 8.C
四·设计方案:即求出满足条件的便道及休息区的宽度.
若设便道及休息区宽度为x米,则游泳池面积为(40-2x)(30-2x)米2,便道及休息区面积为2[40x+(30-2x)x]米2,依题意,可得方程:
(40-2x)(30-2x)∶2[40x+(30-2x)x]=3∶2
由此可求得x的值,即可得游泳池长与宽.。