七年级数学上册1.5.3 近似数
- 格式:doc
- 大小:72.01 KB
- 文档页数:5
人教版数学七年级上册1.5.3《近似数》教学设计1一. 教材分析《近似数》是人教版数学七年级上册1.5.3的内容,本节课主要介绍近似数的概念及其求法。
学生在学习本节课之前,已经掌握了有理数的概念和运算法则,因此,本节课是在已有知识基础上的拓展和应用。
通过本节课的学习,学生能够理解近似数的概念,掌握求近似数的方法,并能应用于实际问题中。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的概念和运算法则有一定的了解。
但是,对于近似数这一概念,学生可能比较陌生,因此需要通过实例和操作来帮助学生理解和掌握。
此外,学生可能对于求近似数的方法和应用有一定的困难,需要通过大量的练习和实际问题来培养学生的应用能力。
三. 教学目标1.了解近似数的概念,能正确地求一个数的近似值。
2.能够将近似数的概念和方法应用于实际问题中。
3.培养学生的数学思维能力和解决问题的能力。
四. 教学重难点1.近似数的概念及其求法。
2.近似数在实际问题中的应用。
五. 教学方法1.采用实例教学法,通过具体的例子来帮助学生理解和掌握近似数的概念和方法。
2.采用问题驱动法,通过提出实际问题来引导学生思考和应用近似数的概念和方法。
3.采用分组讨论法,让学生在小组内进行讨论和交流,培养学生的合作能力和解决问题的能力。
六. 教学准备1.准备相关的实例和练习题,用于引导学生进行思考和练习。
2.准备一些实际问题,用于让学生进行应用和拓展。
3.准备多媒体教学设备,用于展示和讲解实例和问题。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾有理数的概念和运算法则,为新课的学习做好铺垫。
2.呈现(15分钟)通过实例引入近似数的概念,让学生直观地感受近似数的存在。
然后,讲解近似数的求法,引导学生理解并掌握。
3.操练(10分钟)让学生进行近似数的计算练习,巩固所学知识。
可以设置一些不同难度级别的练习题,让学生根据自己的实际情况选择练习。
4.巩固(10分钟)通过一些实际问题,让学生应用近似数的概念和方法进行解答。
人教版七年级数学上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版七年级数学上册 1.5.3的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能够运用近似数解决实际问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于概念的接受能力较强。
但是,对于近似数的概念和求法可能还存在一定的困惑。
因此,在教学过程中,需要通过具体实例和操作活动,帮助学生理解和掌握近似数的概念和求法。
三. 教学目标1.了解近似数的概念,能够正确地求一个数的近似数。
2.能够运用近似数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.情境教学法:通过具体实例和操作活动,引导学生理解和掌握近似数的概念和求法。
2.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题的能力。
3.小组合作学习法:通过小组讨论和合作,培养学生的团队协作能力和沟通能力。
六. 教学准备1.教学课件:制作课件,包括近似数的定义、求法及应用的实例。
2.教学素材:准备一些实际问题,用于巩固和拓展学生的知识。
3.计时器:用于控制教学过程中的时间。
七. 教学过程1.导入(5分钟)利用课件展示一些与近似数相关的实例,如天气预报中的温度、身高体重等,引导学生思考和探索近似数的概念和求法。
2.呈现(10分钟)利用课件呈现近似数的定义和求法,结合具体实例进行讲解,让学生理解和掌握近似数的概念和求法。
3.操练(10分钟)学生分组进行操作活动,利用所学知识求一些数的近似数,并交流分享各自的解题过程和方法。
4.巩固(10分钟)利用课件呈现一些实际问题,学生独立解决,巩固所学知识,提高解决问题的能力。
人教版七年级数学上册:1.5.3《近似数》说课稿一. 教材分析《近似数》是人教版七年级数学上册第一章第五节的一部分,主要介绍了近似数的概念、求法以及应用。
这一节的内容是在学生掌握了实数、小数和分数的基础上进行的,为后续学习百分数、概率等知识打下了基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数、小数和分数的概念有了初步的了解。
但学生在求近似数方面可能还存在一些困难,例如不理解四舍五入的原理,对于近似数的应用也还不够清晰。
因此,在教学过程中,需要注重引导学生理解四舍五入的原理,并通过实际例子让学生感受近似数在生活中的应用。
三. 说教学目标1.知识与技能:让学生理解近似数的概念,掌握求近似数的方法,能运用近似数解决实际问题。
2.过程与方法:通过观察、实践、探究等活动,培养学生的动手操作能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生勇于探究、积极思考的科学精神。
四. 说教学重难点1.重点:近似数的概念、求法及应用。
2.难点:理解四舍五入的原理,以及如何运用近似数解决实际问题。
五.说教学方法与手段1.教学方法:采用问题驱动法、案例教学法、小组合作学习法等。
2.教学手段:利用多媒体课件、实物模型、数学软件等辅助教学。
六. 说教学过程1.导入新课:通过一个生活中的实际问题,引发学生对近似数的思考,从而导入新课。
2.知识讲解:讲解近似数的概念,并通过例题演示求近似数的方法。
3.实践操作:让学生动手操作,尝试自己求近似数,并解释四舍五入的原理。
4.应用拓展:通过实际例子,让学生感受近似数在生活中的应用。
5.总结反思:让学生总结本节课所学内容,反思自己在求近似数方面的不足。
七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点内容。
可以设计如下板书:•概念:与实际非常接近的数•求法:四舍五入•应用:解决实际问题八. 说教学评价教学评价可以从学生的学习态度、课堂参与度、作业完成情况、考试成绩等方面进行。
人教版数学七年级上册1.5.3《近似数》教学设计一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习数学的基础知识,对于培养学生的逻辑思维能力和解决问题的能力具有重要意义。
二. 学情分析七年级的学生已经掌握了实数、有理数等基础知识,具备了一定的逻辑思维能力。
但他们对近似数的概念和求法可能还比较陌生,需要通过实例和练习来理解和掌握。
三. 教学目标1.理解近似数的概念,掌握求近似数的方法。
2.能够运用近似数解决实际问题,提高解决问题的能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.实例教学:通过具体的实例来引导学生理解和掌握近似数的概念和求法。
2.小组讨论:学生进行小组讨论,培养学生的团队合作能力和逻辑思维能力。
3.练习巩固:通过布置练习题,让学生在实践中运用所学知识,巩固所学内容。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示实例和练习题。
2.练习题:准备一些相关的练习题,用于巩固所学内容。
七. 教学过程1.导入(5分钟)通过一个实际问题引入近似数的概念,如“一张地图上的两个城市之间的距离是300公里,请问这个距离是精确值还是近似值?”让学生思考和讨论,引出近似数的概念。
2.呈现(10分钟)介绍近似数的定义和求法,通过PPT展示实例和图示,让学生理解和掌握近似数的概念和求法。
3.操练(10分钟)布置练习题,让学生在课堂上进行练习,运用所学知识求近似数。
教师进行个别指导和讲解,帮助学生掌握求近似数的方法。
4.巩固(10分钟)让学生分组讨论,运用近似数解决实际问题。
教师进行巡回指导,给予学生反馈和指导。
5.拓展(10分钟)让学生思考和讨论近似数在实际生活中的应用,如购物、测量等。
分享自己的经验和体会,进一步加深对近似数概念的理解。
6.小结(5分钟)对本节课的内容进行小结,强调近似数的概念和求法,提醒学生注意近似数在实际问题中的应用。
第一章有理数1.5.3近似数一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.据统计,2017年某市实现地区生产总值2279.55亿元,用四舍五入法将2279.55精确到0.1的近似值为A.2280.0 B.2279.6C.2279.5 D.2279【答案】B【解析】2279.55≈2279.6(精确到0.1),故选B.2.按括号内的要求用四舍五入法取近似数,下列正确的是A.403.53≈403(精确到个位)B.2.604≈2.60(精确到十分位)C.0.0234≈0.0(精确到0.1)D.0.0136≈0.014(精确到0.0001)【答案】C3.用四舍五入法,把3.14159精确到千分位,取得的近似数是A.3.14 B.3.142 C.3.141 D.3.1416【答案】B【解析】把3.14159精确到千分位约为3.142,故选B.学&科网4.用四舍五入法按要求对1.06042取近似值,其中错误的是A.1.1(精确到0.1)B.1.06(精确到0.01)C.1.061(精确到千分位)D.1.0604(精确到万分位)【答案】C【解析】1.06042≈1.1(精确到0.1);1.06042≈1.06(精确到0.01);1.06042≈1.060(精确到千分位);1.06042≈1.0604(精确到万分位).故选C.5.四舍五入得到的近似数6.49万,精确到A.万位B.百分位C.百位D.千位【答案】C【解析】近似数6.49万精确到百位.故选C.学&科网二、填空题:请将答案填在题中横线上.6.把0.70945四舍五入精确至百分位是__________.【答案】0.71【解析】0.70945≈0.71(精确至百分位).故答案为:0.71.7.209506精确到千位的近似值是__________.【答案】2.10×105【解析】209506≈2.10×105(精确到千位).故答案为:2.10×105.8.8.4348精确到千分位的近似数是__________.【答案】8.435【解析】8.4348精确到千分位的近似数为8.435.故答案为:8.435.9.近似数3.20×106精确到__________位.【答案】万【解析】3.20×106精确到万位.故答案为:万.三、解答题:解答应写出文字说明、证明过程或演算步骤.10.用激光技术测得地球和月球之间的距离为377985654.32米,请按要求分别取得这个数的近似值,并分别写出相应的有效数字.(1)精确到千位;(2)精确到千万位;(3)精确到亿位.【答案】(1)3.77986×108米,(2)3.8×108米,(3)4×108米.11.下列各数精确到什么位?请分别指出来.(1)0.016;(2)1680;(3)1.20;(4)2.49万.【答案】(1)0.016精确到千分位;(2)1680精确到个位;(3)1.20精确到百分位;(4)2.49万精确到百位.学&科网【解析】(1)0.016精确到千分位;(2)1680精确到个位;(3)1.20精确到百分位;(4)2.49万精确到百位.12.车工小王加工生产了两根轴,当他把轴交给质检员验收时,质检员说:“不合格,作废!”小王不服气地说:“图纸要求精确到2.60m,一根为2.56m,另一根为2.62m,怎么不合格?”(1)图纸要求精确到2.60m,原轴的范围是多少?(2)你认为是小王加工的轴不合格,还是质检员故意刁难?【答案】(1)2.595m≤x<2.605m,(2)产品不合格。
七年级数学上册 1. 5.3近似数(1)一.选择1.在国家“一带一路”倡议下,我国与欧洲开通了互利互惠的中欧班列,行程最长,途径城市和国家最多的一趟专列全程长13 000 km,将13 000用科学记数法表示为( )A.13x10³B.1.3 X10³C.13x10⁴D.1.3x10⁴2.一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距离,即1.496亿千米,用科学记数法表示1.496亿是( )A.1.496x10⁷B.14.96x10⁷C.0.149 6x10⁸D.1.496x10⁸3.据统计,地球上的海洋面积约为361 000 000 km².该数字用科学记数法表示为3. 61×,则n的值为( )A.6B.7C.8D.94.工信部发布《中国数字经济发展与就业白皮书(2018)》显示,2017年湖北数字经济总量为1,21万亿元,列全国第七位、中部第一位,“1.21万”用科学记数法表示为( )A.1.21x10B.12.1x10C.1.21X10⁴D.0.121x 10⁵5.下列表述中的数为准确数的是( )A.七年级有440名学生B.月球离地球的距离约为38万千米C.小明同学身高大约143 cmD.估计今天气温为26℃6.关于近似数3.20x10⁵的精确度,说法正确的是( )A.精确到百分位B.精确到十分位C.精确到千位D.精确到万位7.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观,其落差约为30米,年平均流量为1010立方米/秒,若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A.6.06x 10⁴立方米/时B.3.136x10⁶立方米/时C.3.636×10⁶立方米/时D.36.36x10⁵立方米/时8.截至2018年5月,中国人民银行公布的数据显示,我国外汇的储备规模约为3. 11×10⁴亿美元,则3.11x10⁴亿表示的原数为( )A.2311000亿B.31100亿C.3110亿D.311亿9.5月18日,新华社电讯:我国利用世界唯一的“蓝鲸1号”,在南海实现了可燃冰(即天然气水合物)的安全可控开采,据介绍,“蓝鲸l号”拥有27 354台设备,约40 000根管路,约50 000个MCC报验点,电缆拉放长度估计1200千米,其中准确数是( )A.27 354B.40 000C.50 000D.1 20010.下列各近似数精确到万位的是( )A.3 500B.4亿5千万C.3.5x10⁴D.4x10⁴二.按要求做题1.将下列用科学记数法表示的数还原成原数.(1) 1.2x10⁵; (2)2.3×10⁷; (3)3.6x 10⁸; (4) -4.2x 10⁶.2.用四舍五入法,按括号中的要求对下列各数取近似数:(1) 4.304 9(精确到0.01);(2) 46 850 000(精确到万位);(3) 13亿(精确到十万位).3.下列由四舍五人得到的近似数,各精确到哪一位?(1)12亿;(2)2.4万;(3)5.10万.答案:一.1.D 13 000= 1.3x10⁴.2.D 1.496亿=149 600 000= 1.496×100 000 000= 1.496x 10⁸.故选D.3.C 因为361 000 000是9位整数,所以n= 9-1=8.故选C.4.C 1.21万=12 100=1.21x10⁴,故选C.5. A选项A.七年级有440名学生,440为准确数,所以A选项符合题意:选项B,月球离地球的距离约为38万千米,38为近似数,所以B选项不符合题意;选项C,小明同学身高大约143 cm.143为近似数,所以C选项不符合题意;选项D.估汁今天气温为26 ℃,26为近似数,所以D选项不符合题意,故选A.6.C 3.20的最后一位对应的是千位,因而这个数精确到千位.7.C8.B 3.11x10⁴亿=31100亿.9.A根据准确数与近似数的概念分别进行排除,准确数只有27 354.10.D A精确到个位,B精确到千万位,C精确到千位,D精确到万位,故选D.二.1.解析(1) 1.2x10⁵= 120 000.(2) 2.3x10⁷= 23 000 000.(3) 3.6x10⁸= 360 000 000.( 4) -4.2x10⁶= -4 200 000.2.解析(1) 4.304 9≈4.30.(2)46 850 000=4.685x10⁷.(3) 13亿=1.3x10⁹= 1.300 0x10⁹.3.解析(1)12亿精确到亿位.(2)2.4万精确到千位.(3)5.10万精确到百位.。
人教版数学七年级上册1.5.3《近似数》精品教学设计2一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法以及应用。
通过本节课的学习,学生能够理解近似数的概念,掌握求近似数的方法,并能够运用近似数解决实际问题。
教材中包含了丰富的例题和练习题,有助于学生巩固所学知识。
二. 学情分析七年级的学生已经具备了一定的数学基础,对于实数的概念和运算有一定的了解。
但学生在求近似数方面可能存在一些困难,如对近似数的概念理解不深,求近似数的方法不明确等。
因此,在教学过程中,需要注重引导学生理解近似数的概念,并通过大量的练习让学生熟练掌握求近似数的方法。
三. 教学目标1.知识与技能:理解近似数的概念,掌握求近似数的方法,能够运用近似数解决实际问题。
2.过程与方法:通过观察、操作、思考、交流等活动,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 教学重难点1.近似数的概念及其求法。
2.运用近似数解决实际问题。
五. 教学方法采用问题驱动法、案例教学法、合作学习法等多种教学方法,引导学生主动探究、合作交流,培养学生的数学思维能力和解决问题的能力。
六. 教学准备1.准备相关的教学素材,如PPT、例题、练习题等。
2.准备教学工具,如黑板、粉笔、投影仪等。
七. 教学过程导入(5分钟)教师通过一个生活中的实例引入近似数的概念,如“天气预报中提到的气温是多少度?”引导学生思考近似数在实际生活中的应用。
呈现(10分钟)教师通过PPT呈现近似数的概念和求法,引导学生观察、思考,并通过举例让学生理解近似数的概念。
操练(10分钟)教师给出一些具体的例子,让学生动手操作,求出近似数。
学生在求近似数的过程中,教师进行个别指导,帮助学生掌握求近似数的方法。
巩固(10分钟)教师给出一些练习题,让学生独立完成,检验学生对近似数的理解和掌握程度。
人教版数学七年级上册1.5.3《近似数》教案一. 教材分析《近似数》是人教版数学七年级上册第1.5.3节的内容,主要介绍了近似数的概念、求法及其应用。
本节内容是学生学习实数部分的重要一环,对于培养学生的数感、逻辑思维能力以及实际应用能力具有重要意义。
通过学习本节内容,学生能够理解近似数的概念,掌握求近似数的方法,并能运用近似数解决实际问题。
二. 学情分析七年级的学生已经具备了一定的实数基础,对于数的运算、比较大小等有一定的了解。
但近似数的概念和求法对于他们来说是一个新的领域,需要通过实例和练习来逐步理解和掌握。
此外,学生对于实际应用问题的解决能力还有待提高,因此在教学过程中,需要注重培养学生的实际应用能力。
三. 教学目标1.了解近似数的概念,掌握求近似数的方法。
2.能够运用近似数解决实际问题,提高实际应用能力。
3.培养学生的数感、逻辑思维能力,提高学生的学习兴趣。
四. 教学重难点1.近似数的概念和求法。
2.运用近似数解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,通过实例和问题引导学生理解和掌握近似数的概念和求法。
2.利用多媒体辅助教学,通过动画和图像直观地展示近似数的概念和求法。
3.采用小组合作学习的方式,让学生在讨论和交流中共同解决问题,提高合作能力。
4.注重练习和实际应用,通过解决实际问题提高学生的实际应用能力。
六. 教学准备1.多媒体教学设备。
2.近似数的教学PPT。
3.实际应用问题相关的案例和数据。
4.练习题和测试题。
七. 教学过程1.导入(5分钟)利用多媒体展示一些与近似数相关的实例,如天气预报中的温度、身高、体重等,引导学生思考:这些数据是如何得到的?它们与准确数有何区别?2.呈现(10分钟)介绍近似数的概念,讲解求近似数的方法,如四舍五入、进一法、去尾法等,并通过实例进行演示。
3.操练(10分钟)让学生分组讨论,每组选择一个实际问题,运用所学的方法求近似数,并解释结果的意义。
人教版七年级数学上册:1.5.3 《近似数》教学设计一. 教材分析人教版七年级数学上册1.5.3《近似数》是学生在学习了有理数、实数等基础知识后,对数的进一步理解。
本节内容主要介绍近似数的概念、求法及其应用,通过学习,使学生掌握求近似数的方法,能够准确地运用近似数进行计算和估算,为后续的学习和实际应用打下基础。
二. 学情分析七年级的学生已经具备了一定的数学基础,对实数、有理数等概念有了初步的了解。
但学生在求近似数方面可能还存在一定的困难,因此,在教学过程中,需要注重引导学生理解近似数的概念,以及如何准确地求出近似数。
三. 教学目标1.理解近似数的概念,掌握求近似数的方法。
2.能够准确地运用近似数进行计算和估算。
3.培养学生的数感,提高学生的数学思维能力。
四. 教学重难点1.近似数的概念及其求法。
2.运用近似数进行计算和估算。
五. 教学方法采用情境教学法、启发式教学法和小组合作学习法。
通过生活实例引入近似数的概念,引导学生主动探究求近似数的方法,并在小组合作中互相交流、讨论,从而达到理解掌握的目的。
六. 教学准备1.教学课件:制作课件,展示近似数的定义、求法及应用。
2.教学素材:准备一些生活实例,用于引入近似数的概念。
3.练习题:准备一些练习题,用于巩固所学知识。
七. 教学过程1.导入(5分钟)利用生活实例,如购物时找零、测量身高等,引导学生思考:什么是近似数?为什么要用近似数?从而引出本节内容。
2.呈现(10分钟)介绍近似数的定义,通过课件展示,使学生对近似数有直观的认识。
接着讲解求近似数的方法,如四舍五入、进一法、去尾法等,并给出具体例子,让学生明白各种方法的适用场景。
3.操练(10分钟)学生在课堂上进行近似数的计算练习,教师巡回指导,解答学生疑问。
练习题可包括简单的生活实例和计算题,让学生在实际操作中掌握求近似数的方法。
4.巩固(10分钟)学生分组进行小组讨论,总结近似数的求法及其应用。
教师引导学生归纳总结,加深对知识点的理解。
编号:000222217954555385825983331
学校:玄国虎市冥中之镇肖家塞小学*
教师:古因丰*
班级:大力士参班*
1.5.3 近似数
【知识与技能】
1.了解近似数的概念.
2.会按精确度要求取近似数.
3.给一个近似数,会说出它精确到哪一位.
【过程与方法】
通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力.
【情感态度】
通过师生合作,联系实际,激发学生学好数学的热情.
【教学重点】
近似数和精确度的意义.
【教学难点】
由给出的近似数求其精确度,按给出的精确度求近似数.
一、情境导入,初步认识
我们常会遇到这样的问题:
(1)七年级(2)班有42名同学;
(2)每个三角形都有3个内角.
这里的42、3都是与实际完全符合的准确数.我们还会遇到这样的问题:
(3)我国的领土面积约为960万平方千米;
(4)王强的体重约是49千克.
960万、49是准确数吗?这里的960万、49都不是准确数,而是由四舍五入得来的,与实际数很接近的数.
我国的领土面积约为960万平方千米,表示我国的领土面积大于或等于959.5万平方千米而小于960.5万平方千米.
王强的体重约为49千克,表示他的体重大于或等于48.5千克而小于49.5
千克.
我们把像960万、49这些与实际数很接近的数称为近似数.
近似数产生的主要原因在于:①在计算时,有时只能得到近似数,如10÷3得近似商3.33;②在度量时,由于受测量工具和测量技术的局限性影响,一般只能得到近似数.如现有最小刻度分别是厘米、毫米的尺子各一把,用它们分别测量同一个人的身高就会得到不完全相同的结果;③在计算和测量中有时并不需要很准确的数,只需要一个近似数即可.如地球的表面积约为5.1亿平方千米,某市约有50万人等,这里的5.1亿、50万都是近似数.
在实际问题中,我们经常要用近似数,使用近似数就有一个近似程度的问题,也就是精确度的问题.
我们都知道,π=3.14159…….
我们对这个数取近似数:
如果结果只取整数,那么按四舍五入的法则应为3,就叫做精确到个位;
如果结果取1位小数,则应为3.1,就叫做精确到十分位(或叫精确到0.1);
如果结果取2位小数,则应为3.14,就叫做精确到百分位(或叫精确到0.01);
一般地,一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位.
二、典例精析,掌握新知
例1指出下列问题中出现的数,哪些是准确数?哪些是近似数?
(1)某中学七年级有897人;
(2)小华的身高为1.6m;
(3)一本书共有178页;
(4)临园口每天的车流量大约有30000辆;
(5)地球的平均半径约为6370km;
(6)某小区在入冬以后有38户人家向物业部门报修暖气.
【分析】在实际生活中,我们会遇到很多数字,在有些实际问题中我们不可能得到准确数字,如(5)中地球的半径,这时我们研究问题时一般都取近似数字.
解:(1)(3)(6)中给出的数字是准确数;(2)(4)(5)中给出的数字是近似数.
例2按括号内的要求,用四舍五入法对下列各数取近似数:(教材第46页例6)
(1)0.0158(精确到0.001);
(2)304.35(精确到个位);
(3)1.804(精确到0.1);
(4)1.804(精确到0.01).
解:(1)0.0158≈0.016;
(2)304.35≈304;
(3)1.804≈1.8;
(4)1.804≈1.80.
【教学说明】教师提醒学生精确到0.1就是精确到十分位,精确到0.01就是精确到百分位,精确到0.001就是精确到千分位,精确到0.0001就是精确到万分位.
试一试教材第46页练习.
例3下列由四舍五入法得到的近似数,各精确到哪一位?
(1)132.4;(2)0.0572;(3)2.40万
解:(1)132.4精确到十分位(精确到0.1);
(2)0.0572精确到万分位(精确到0.0001);
(3)2.40万精确到百位.
【教学说明】教师提醒学生由于2.40万的单位是万,所以不能说它精确到百分位.
例4一辆卡车最多能装4吨沙子,现有沙子79吨.
(1)至少需要多少辆这样的卡车才能运完沙子?
(2)这些沙子能装满多少辆这样的卡车?
【分析】题目中所要求的是运沙子的卡车辆数,必须取整数.
解:(1)因为79÷4=19.75,所以至少需要20辆这样的卡车才能运完这些沙子.
(2)因为79÷4=19.75,所以这些沙子能装满19辆这样的卡车.
【教学说明】取近似数常用的是“四舍五入”法,但在实际问题中就不一定能用“四舍五入”法,而要用“去尾法”或“进一法”来取近似数.本例中(1)是采用的“进一法”,(2)是采用的“去尾法”.“进一法”和“去尾法”在小学时曾学过,所以设计本例的目的在于让学生回顾所学知识,并让学生知道取近似数并不是只有“四舍五入”这一种方法.
三、运用新知,深化理解
1.请你列举出生活中准确值和近似值的实例.
2.下列各题中的数,哪些是精确数?哪些是近似数?
(1)某中学共有98个教学班;
(2)我国约有13亿人口.
3.用四舍五入法,按括号里的要求对下列各数取近似值:
(1)0.65148(精确到千分位);
(2)1.5673(精确到0.01);
(3)0.03097(精确到0.0001).
4.下列由四舍五入得到的近似数,各精确到哪一位?
(1)54.8;(2)0.00204;(3)3.6万.
【教学说明】上面4题都是有关近似数的题,比较简单,可由学生口答.
【答案】1.略.
2.(1)精确值;(2)近似值.
3.(1)0.65148≈0.651;(2)1.5673≈1.57;(3)0.03097≈0.0310.
4.(1)精确到十分位;(2)精确到十万分位;(3)精确到千位.
四、师生互动,课堂小结
引导学生回忆相关概念,并由学生表述,互相指点.
1.布置作业::从教材习题1.5中选取.
2.完成练习册中本课时的练习.
3.选做题.
(1)下列由四舍五入得到的近似数各精确到哪一位?
①32;②17.93;③0.084;④7.250;
⑤1.35×104;⑥0.45万;⑦2.004;⑧3.1416.
(2)23.0是由四舍五入得来的近似数,则下列各数中哪些数不可能是真值?
①23.04②23.06③22.99④22.85
【答案】3.(1)①精确到个位;
②精确到百分位;
③精确到千分位;
④精确到千分位;
⑤精确到百位;
⑥精确到百位;
⑦精确到千分位;
⑧精确到万分位.
(2)②和④.
本课时教学应多角度选择生活事例作为情境,激发学生参与学习的热情,以学生身边最熟悉的数据引导学生认识概念,再在习题的解答和纠错中准确接受新知识.同时,可鼓励学生积极查阅资料,收集分析数据,形成数感.。