3) 强电负性的取代基,将使聚合热升高。
155.6 kJ/mol-1
17
4) 氢键和溶剂化将使聚合热降低。
CH2=CHCOOH 66.9 kJ/mol-1 CH2=CH(CH3)COOH 42.3 kJ/mol-1
CH2=CHCONH2
60.2 kJ/mol-1
CH2=CH(CH3)CONH2
35.1 kJ/mol-1
CH2 CH X + YS CH2 CH Y + S X
29
ii) 向单体转移 链自由基将独电子转移到单体上,产生的单体自由 基开始新的链增长,而链自由基本身因链转移提早终 止,结果使聚合度降低,但转移后自由基数目并未减 少,活性也未减弱,故聚合速率并不降低。向单体转 移的速率与单体结构有关。如氯乙烯单体因 C-Cl 键能 较弱而易于链转移。
阳离子聚合
取代基 X:
NO2
CN
COOCH3
阴离子聚合
CH
CH2
C6H5
CH3
OR
自由基聚合
11
由取代基的体积、数量和位置等因素所引起的空 间位阻作用,对单体的聚合能力有显著影响,但对聚 合机理选择性的影响较小。
1、对于1,1-双取代烯类单体CH2=CXY,一般能按基团性质 进行相应机理的聚合,因分子结构对称性更差,极化程度增 加,因此更容易聚合。取代基体积较大时例外,如1,1-二苯 乙烯不能聚合。 2、1,2双取代的烯类化合物XCH=CHY ,因结构对称,极化 程度低,位阻效应大,一般不能聚合或只能形成二聚体。 3、三取代、四取代的烯类化合物一般不能聚合,但氟代乙 烯例外。例如:氟乙烯、1,1-二氟乙烯、1,2-二氟乙烯、三氟 乙烯、四氟乙烯均可聚合。
不饱和结构,两者各半。