六足机器人的设计,毕业论文
- 格式:doc
- 大小:1.14 MB
- 文档页数:35
燕山大学本科毕业设计(论文)文献综述课题名称:学院(系):年级专业:学生姓名:指导教师:完成日期:一、课题国内外现状步行机器人,简称步行机 ,是一种智能型机器人 , 它是涉及到生物科学 , 仿生学 , 机构学 , 传感技术及信息处理技术等的一门综合性高科技 . 在崎岖路面上 ,步行车辆优于轮式或履带式车辆 .腿式系统有很大的优越以及较好的机动性 , 崎岖路面上乘坐的舒适性 ,对地形的适应能力强 .所以 ,这类机器人在军事运输 , 海底探测 , 矿山开采 , 星球探测 , 残疾人的轮椅 , 教育及娱乐等众多行业 ,有非常广阔的应用前景 , 多足步行机器人技术一直是国内外机器人领域的研究热点之一。
步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个阶段[5]:第一阶段, 以机械和液压控制实现运动的机器人。
第二阶段, 以电子计算机技术控制的机器人。
第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。
闰尚彬,韩宝玲,罗庆生针对仿生六足步行机器人关节较多,其步态轨迹规划和关节控制量计算都较为复杂的现状,采用Solidworks软件与MSC.ADAMS 软件相结合的方式对六足仿生步行机器人的样机模型进行了运动学仿真与分析.通过仿真,验证了所设计的三角步态的适用性和所选择的三次样条曲线作为机器人足端点轨迹曲线方案的可行性.韩宝玲王秋丽罗庆生基于六足仿生步行机器人机构学特性的研究,采用数值分析法求解了机器人步行足的足端工作空间,利用虚拟样机技术计算了机器人的灵活度,从两方面综合衡量六足仿生步行机器人的工作能力,并以六足步行机器人各腿节比例关系的确定为例,介绍了六足步行机器人结构优化的具体方案.苏军陈学东田文罡研究六足步行机器人全方位行走步态,分析其静态稳定性;规划了典型直线行走步态和定点转弯步态,确定了直线行走步态最大跨步和定点转弯步态最大转角;进行了步态控制算法模拟仿真及实地步行实验。
目录1 引言1.1新型六足机器人研究目的和意义 (1)1.2新型六足机器人研究概况及发展趋势 (1)1.3课题研究内容 (2)2 机械结构与芯片简介2.1机器人机械结构 (3)2.2机器人运动原理 (3)2.3驱动装置选择 (5)2.4机器人实物图 (6)2.5硬件结构介绍 (7)2.6单片机芯片介绍 (8)2.7编码解码芯片介绍 (13)3 控制系统结构设计3.1上位机控制 (16)3.1.1 程序语言及串口通讯 (16)3.1.2 人机交互界面 (17)3.2 基于无线的智能控制 (19)3.2.1 无线发射模块 (19)3.2.2 无线接收模块 (23)4 结论 (29)参考文献 (30)致谢 (31)新型六足机器人1 引言1.1新型六足机器人研究目的和意义本文六足机器人是一种基于仿生学原理研制开发的新型足式机器人。
新型机器人比传统的轮式机器人有更好的移动性,它采用类拟生物的爬行机构进行运动,自动化程度高,具有丰富的动力学特性。
此外,足式机器人相比其它机器人具有更多的优点:它可以较易地跨过比较大的障碍(如沟、坎等),并且机器人足所具有的大量的自由度可以使机器人的运动更加灵活,对凹凸不平的地形的适应能力更强;足式机器人的立足点是离散的,跟地面的接触面积较小,因而可以在可达到的地面上选择最优支撑点,即使在表面极度不规则的情况下,通过严格选择足的支撑点,也能够行走自如。
因此,足式步行机器人的研究已成为机器人学中一个引人注目的研究领域,由于六足机器人强大的运动能力,可以提供给运动学、仿生学和机械构造原理研究有力的工具[1]。
在研究昆虫运动方式、关节承力、稳定姿态调整的过程中,可以运用本机器人对设想的虫体姿态、运动过程进行模拟,最大程度地接近真实,将理论和实践联系起来,从而更好地观察昆虫运动模式的优点,以及探究哪些现象能够运用到机械设计的实践中去。
这对于以上学科的研究和探索都是十分有意义的。
当然,我们还可以作为教学器械,通过研究昆虫爬行时各脚的运动情况,用机械形式表达出来,也可以作为仿生玩具及探险、搜救设备,还可以进入细小管道、地洞中勘察。
六足爬虫机器人设计引言六足爬虫机器人是一种多足机器人,通过模仿昆虫和节肢动物的运动方式,能够在不平坦的地形上移动。
本文将介绍六足爬虫机器人的设计概念、机械结构、传感技术和控制系统。
设计概念六足爬虫机器人的设计概念是模仿昆虫的运动方式,并结合机器人技术,实现在复杂地形上的高效移动。
六足机器人的六条腿能够保持稳定的支撑面积,使机器人能够在不稳定的地面上保持平衡。
同时,六足爬虫机器人具有最小的接地面积,在狭窄的空间中也能自由运动。
机械结构六足爬虫机器人的机械结构主要由六条腿、身体和连接部件组成。
每条腿由多个关节连接,使机器人能够具备多自由度的运动能力。
身体部分包括能够容纳电源、传感器和控制器的空间。
连接部件起到连接腿和身体的作用,确保机器人的结构牢固。
机器人的材料选择需要兼顾强度和重量。
常用的材料包括轻质金属合金和碳纤维复合材料。
机器人的外形应减少空气阻力,提高机器人的运动效率。
传感技术六足爬虫机器人的传感技术包括视觉传感器、力传感器和惯性传感器。
视觉传感器能够感知周围环境,并获取地形信息,识别障碍物。
通过计算机视觉算法,机器人能够做出相应的决策,选择最优的路径。
力传感器可以测量机器人与地面的接触力,以克服地形的不平坦性。
力传感器还可以检测机器人是否受到外部碰撞,保护机器人和提供安全性。
惯性传感器用于测量机器人的加速度、角速度和姿态信息。
通过与其他传感器数据的融合,机器人可以实现高精度的姿态控制和运动轨迹规划。
控制系统六足爬虫机器人的控制系统由硬件控制单元和软件控制算法组成。
硬件控制单元包括微处理器、驱动电路和通信模块。
微处理器负责接收传感器数据、执行控制算法,并输出控制信号。
驱动电路用于驱动机器人的电动关节。
通信模块可与外部设备进行数据传输和远程控制。
软件控制算法包括路径规划、动力学模型和运动控制。
路径规划算法根据环境信息和目标位置,生成机器人的移动路径。
动力学模型可以模拟机器人的运动特性,并优化运动参数。
燕山大学本科毕业设计(论文)文献综述课题名称:步行机器人的研究学院(系):机械工程学院年级专业: 05级机电1班学生姓名:指导教师:完成日期: 2009年3月2号一、课题国内外现状多足步行机器人是一种具有冗余驱动、多支链、时变拓扑运动机构, 是模仿多足动物运动形式的特种机器人, 是一种足式移动机构。
所谓多足一般指四足及四足其以上, 常见的多足步行机器人包括四足步行机器人、六足步行机器人、八足步行机器人等[4]。
步行机器人历经百年的发展, 取得了长足的进步, 归纳起来主要经历以下几个阶段[5]:第一阶段, 以机械和液压控制实现运动的机器人。
第二阶段, 以电子计算机技术控制的机器人。
第三阶段, 多功能性和自主性的要求使得机器人技术进入新的发展阶段。
雷静桃等在文献[1]中对美国、日本等机器人研究大国及我国的多足步行机器人研究发展进行了综述,对多足步行机器人急需解决的问题进行了论述,并对未来可能的研究发展方向进行了展望。
刘静等在文献[10]中分析了国内外腿式机器人的研究现状,讨论了腿式机器人在机械结构、稳定性和控制算法方面的现有研究方法,给出了腿式机器人研究存在的问题,展望了腿式机器人的发展方向.安丽桥等在文献[9]中介绍了一种应用两个电机驱动的六脚足式步行机器人,并对该机器人的运动机理与步态进行了分析,经样机实验,所设计的机器人可实现前进、后退、遇障转弯等功能,具有结构简单,控制便捷,行走稳定的特点。
曾桂英等在文献[2]中提出了一种采用液压驱动的缩放式腿机构的结构设计, 并针对六足行走方式, 完成了液压驱动原理设计及PLC控制设计。
马东兴等在文献[11]中研究了一种背部带关节的新型四足机器人,通过三维建模软件Pro /E和机械系统动力学仿真分析软件ADAMS建立了四足机器人虚拟样机,规划了四足机器人的步态,并且利用ADAMS仿真软件对该四足机器人进行了步态仿真,同时利用单个AT89C52单片机成功实现对四足机器人5个舵机的独立控制以及舵机的速度控制。
目录插表清单 (III)插图清单 .................................................................................................................................................................... I V 第一章绪论 . (1)1.1机器人的发展历史 (1)1.2机器人的定义和基本组成 (2)1.2.1机器人的定义 (2)1.2.2机器人的基本组成: (2)1.3移动机器人概述 (3)1.4移动机器人分类 (3)1.5多足机器人的发展现状 (5)1.6本设计的主要工作 (7)1.7本章小结 (7)第二章六足仿生机器人的结构分析及设计 (8)2.1“六足纲”昆虫的运动原理 (8)2.1.1步态的参数描述 (8)2.1.2三角步态运动原理 (9)2.2六足仿生机器人机械结构分析 (9)2.3本章小结 (10)第三章六足仿生机器人的步态分析和设计 (11)3.1六足步行机器人坐标定义 (11)3.2六足机器人的稳定性分析 (13)3.3.1 稳定性分析 (13)3.3.2稳定裕量计算 (13)3.4六足仿生机器人的直线运动步态设计 (15)3.4.1步态规划 (15)3.4.2步态动作分析 (15)3.5“三角步态”定点转弯步态设计 (18)3.6本章小结 (20)第四章六足仿生机器人的控制系统设计 (21)4.1功能分解 (21)4.2控制系统的硬件设计 (22)4.2.1微处理器AT89S52简介 (22)4.2.2 舵机模块设计 (23)4.2.3 避障模块设计 (24)4.3控制系统软件设计 (26)4.3.1单个舵机控制方法 (27)4.3.2多舵机控制 (31)4.3.3六足仿生机器人全方位步态程序设计 (36)4.4软件的抗干扰及可靠性设计 (39)4.5本章小结 (40)第五章软硬件联调 (41)5.1K EIL C51开发系统基本知识 (41)5.2P ROTEUS 仿真软件基本知识 (41)5.2.1 Proteus介绍 (41)5.2.2 Proteus的仿真 (42)5.2.3 Proteus PCB (42)5.3调试结果 (42)5.2相关数值测试 (43)5.3本章小结 (44)第六章结束语 (45)6.1论文总结 (45)6.2论文写作的感想 (45)6.3本章小结 (45)参考文献 (46)致谢辞 (47)表 1-1机器人Fred Delcomyn的参数 (6)表 2-1 本设计机器人相关参数 (9)表 4-1 I/O引脚分配表 (23)表4-2 时基脉冲与舵机角度对应表 (24)表 4-2 探测障碍物的传感器与单片机引脚对应关系表 (25)表 4-3舵机与六足机器人足对应关系表 (36)表 4-4 舵机与单片机端口的对应关系表 (36)表 5-1 关系数值表 (44)图 1-1Fred Delcomyn六足仿生机器人 (6)图 1-2Gengh机器人 (6)图 1-3 DRROB系列高级机器人 (7)图 2-1 本设计的六足仿生机器人 (10)图 2-2机器人腿部实物 (10)图 3-1腿部组图简图 (11)图 3-2 机器人腿部坐标示意图 (12)图 3-3 腿部简图 (12)图 3-4步行机器人任一时刻姿态图 (13)图 3-5三角步态稳定图 (14)图 3-6 六足步态示意图 (15)图 3-7(A、B、C、D)定点转弯步态示意图 (16)图 4-1 基本功能框图 (21)图 4-2 PDIP封装图 (23)图 4-3微动开关示意图 (25)图 4-4 微动开关安装位置图 (25)图 4-5 硬件设计仿真图 (26)图 4-6 系统软件的总体流程 (27)图 4-7 舵盘的位置线性变化图 (28)图 4-8 舵机的控制脉冲图 (28)图 4-9 控制脉冲程序流程图 (29)图 4-10 8路信号舵机控制脉冲图 (31)图 4-11 12个舵机控制流程图 (33)图 4-12 舵机位置示意图 (36)图 4-13 直行程序流程图 (37)图 4-14 转弯程序流程图 (38)图 4-15 避障程序流程图 (39)图 5-1 硬件仿真结果图 (44)第一章绪论机器人的应用越来越广泛,几乎渗透到人们生活的各个领域。
常州信息职业技术学院学生毕业设计(论文)报告设计(论文)题目:基于单片机的六足机器人控制毕业设计(论文)任务书一、课题名称:基于单片机的六足机器人控制软件设计二、主要技术指标:前进速度:25cm/s感应障碍物距离:1米反应时间≤0.1s走直线偏差≤±5º舵机控制精度0.75º三、工作内容和要求:1:研究AT89S51单片机的结构,引脚功能,工作原理。
2:研究六足机器人的控制移动,传感器的作用距离,舵机的精度。
3:根据AT89S51的性质和六足机器人的参数,利用KEIL软件编写,调试程序。
4:下载程序到机器人,并根据实际情况对软件进行完善。
5:总结经验,完成设计报告四主要参考文献:1温宗周《单片机原理及接口技术》北京航空航天大学2009.82 彭为、黄科《单片机典型系统设计精讲》电子工业出版社2006.53刘春《自动控制计数》中国劳动社会保障出版社20044李众《单片机技术与项目训练》常州信息职业技术学院2009.7学生(签名)年月日指导教师(签名)年月日教研室主任(签名)年月日系主任(签名)年月日毕业设计(论文)开题报告基于单片机的六足机器人控制软件设计Control software of the six foot robot based on SCM目录摘要Abstract一前言 (1)二单片机的选择 (2)2.1单片机的介绍 (2)2.2 单片机的应用 (3)2.3 单片机发展趋势 (5)2.4 AT89S5151单片机特点 (6)2.5 AT89S51单片机引脚功能 (7)三六足机器人简介 (8)3.1 六足机器人原理 (18)3.2控制面板简介 (9)3.3 舵机简介 (11)3.4 传感系统 (12)四六足机器人的控制 (13)4.1 六足机器人控制程序编写 (13)4.2 六足机器人控制程序下载 (23)五结束语 (24)答谢辞参考文献摘要轮式移动机器人是机器人研究领域的一项重要内容.它集机械、电子、检测技术与智能控制于一体。
“长通杯”电子设计大赛设计论文机器“小强”竞速报告指导教师:***摘要:随着科技的发展,机器人正逐渐走进我们的生活,各种机器人活动蓬勃开展,越来越多的人步入了机器人爱好者的行列。
蟑螂机器人具有较好的地形自适应能力,能完成多种机器人工作,其研究具有重要的科学意义和实际应用价值。
由于崎岖地形的不规则性和多足机器人机构的复杂性,有效地协调控制机器人六条腿的运动,使之沿着最优路径到达目的地,是一个很具挑战性的问题。
本文对六足机器人工作原理及舵机控制进行深入的讨论。
六足机器人具有以下几个特点:(1)控制结构简单;(2)行走平稳;(3)肢体数目属于冗余设计,这样即使部分肢体损坏无法工作,其他肢体仍可以完成行走。
关键词:六足机器人步态规划舵机控制多足步行Abstract:With the development of technology, robots are gradually moving into our life,various robot activities flourished, more and more people into the ranks of robot enthusiasts. Cockroach robot has good terrain adaptability, multiple robots can complete the work, their research has important scientific significance and practical value. As the rugged terrain of irregular multi-legged robot body complexity, effective coordination of the six-legged robot motion control, so that along the optimal path to reach the destination, is a challenging problem. This works on the six-legged robot and servo control of in-depth discussion. Hexapod robot has the following characteristics: (1) control structure is simple; (2) running smoothly; (3) the number of physical design is redundancy, so even if some body damage does not work, other body parts can still complete the walk.Keywords:Hexapod robot Gait planning Servo control Multi-leggedwalking正文:1.步态规划:六足步行机器人的步态是多样的,其中三角步态(或交替三角步态、3+3步态)步态是六足步行机器人实现步行的典型步态。
基于STM32仿生六足机器人_毕业设计毕业设计(论文) 基于STM32仿生六足机器人学院:电子与信息工程学院专业: XXXXXXXXXXXXXXXX学号: XXXXXXXXXXX作者: XXX指导老师: XXX基于STM32仿生六足机器人电子与信息工程学院 XXXXXXXXXXXX专业作者 XXX 指导教师 XXX【摘要】在科技高速发展的信息社会,机器人在工业,军事,探测等各个领域起着越来越重要和不可替代的位置,机器人研究成为目前世界各国研究的热点。
仿生六足机器人涉及仿生学、机械学、信息技术和传感技术等众多学科,是机器人研究的一大分支。
仿生六足机器人模仿生物界爬行动物的肢体结构,具有良好的机动性和自适应能力,在军事运输、矿山开采、星球探测等众多领域具有广阔前景。
本设计采用ARM内核结构(Cortex-M3)的STM32F103RBT6为主控芯片,通过内部定时器产生脉宽调制信号,以及使用74HC138进行分时复用来控制六足机器人的关节,即18个MG955舵机。
通过BMX-02蓝牙转串口模块连接手机和机器人,实现手机蓝牙遥控。
采用UN2003A电机驱动芯片驱动步进电机,并配合红外传感器使机器人实现智能避障。
由于该机器人拥有18自由度,肢体灵活,还可实现各种类似舞蹈的特殊动作。
【关键词】仿生六足机器人;STM32F103RBT6;舵机控制目录1绪论 (1)1.1课题研究背景意义 (1)1.2仿生六足机器人的现状 (1)1.3本设计系统结构 (2)1.4本论文的组织结构 (2)2肢体结构和步态规划 (3)2.1肢体结构设计 (3)2.2步态规划 (3)2.2.1三角步态 (3)2.3本章小结 (4)3硬件设计介绍与系统各部分工作原理 (5)3.1主控芯片STM32F103RBT6简介 (5)3.2STM32F103RBT6最小系统电路 (5)3.2.1主芯片原理图 (5)3.2.2晶振电路 (6)3.2.3复位电路 (6)3.2.4下载电路 (7)3.3舵机原理与控制 (7)3.3.1舵机内部结构 (7)3.3.2舵机的工作原理错误!未定义书签。
1 引言在加速科技进步中,机械制造业的发展起着关键的作用,其任务是在工业生产中迅速将工艺装备的独立单元变为自动化综合体(自动化工段,生产线和自动化车间),将来甚至实现自动化工厂。
这种自动化生产最重要的特点是具有柔性,它能预料到,在节省劳力(或无人)情况下,根据工艺条件调整装配,以适应多种产品生产。
当代柔性自动化生产的建立和广泛应用,取决于作为科技进步的催化剂的机床制造、机器人技术、计算机技术、微电子技术、仪器制造等技术的加速发展。
工业机器人是多品种的经常更换产品的生产过程自动化的通用手段。
在机械制造中,工业机器人既有效地用于柔性生产系统组成工艺装备的基本工序中,也有效地用于辅助操作中。
工业机器人与传统自动化手段不同之处,首先在于它在各种生产功能上的通用性和重新调整的柔性。
在柔性生产系统中,工业机器人广泛应用于数控机床、锻压机床、铸造机械和仓储设备上,以完成传送装备和其它操作。
工业机器人和基本工艺装备、辅助手段以及控制装置一起形成各种不同形式的机器人技术综合体—柔性生产系统基本结构模块。
随着工业技术和经济的惊人发展,标志着多品种中、小批量生产最新水平的FMS (柔性制造系统),FA(工厂自动化)技术更加引人注目;作为FMS、FA技术重要组成之一的工业机器人技术也将得到迅速发展。
应用工业机器人是提高生产过程自动化,改善劳动环境条件,提高产品质量和生产效率手段之一。
本次设计是根据对工业六自由度机器人的总体结构及传动系统的分析和探讨,进行三自由度工业机器人的结构设计。
关键在于三轴(臂)的传动系统的设计以及整体的结构设计,避免运动的干涉。
在本次设计中主要负责第一臂与底座的结构设计。
在设计中许瑛老师给予了很大的指导和帮助,在此谨致谢意。
限于水平,本设计难免有缺点、错误,恳请各位老师批评指正。
1.1选题的依据及意义:在现代工业中,生产过程的机械化、自动化已成为突出的主题。
化工等连续性生产过程的自动化已基本得到解决。
摘要本文介绍了一种应用两个电机驱动的六足式步行机器人,并对该机器人的运动机理与步态进行了分析,经样机实验,所设计的机器人可实现前进、后退、遇障转弯等功能,具有结构简单,控制便捷,行走稳定的特点。
基于仿生学原理,应用连杆机构学中的Robert原理,设计出一连杆轨迹能较好地近似于机器人理想足部轨迹的四杆机构,选择足部运动曲线并在图谱上找到该曲线,以确定四杆机构的各个参数。
由参数和电动机的输出转矩就能确定足部的线速度和加速度。
并通过PRO/E软件,对用这一连杆机构作为腿部机构的六足机器人进行了前进和转弯步态建模,并对它进行了稳定裕量分析,包括静力学分析和动力学分析。
针对这种腿部结构设计了六足的行走方式,通过对12个步进电机的控制,采用三角步态,实现了六足机器人的直行功能。
仿真及试验证明,这种结构能较好地维持六足机器人自身的平衡,并且对今后更深入地研究六足机器人抬腿行走姿态及可行性,具有较高的参考价值。
关键词:六足机器人;行走步态;运动原理;稳定性;四杆机构abstractThis paper introduced a six-legged walking robot propelled by two electromotors,and analyzed the robot's kinetic mechanism and walking style.Proved by the model test,the robot is capable of actions such as forwarding,backwarding and veering in the case of obstruction.The robot demonstrates such advantages as simple structure,comfortable control and stable performance of pacing.Based on the principle of bionics,this paper designs a four-linked mechanism using Robert principle,which can approximate the ideal trace of robot's leg ,choose the sport curve of the foot department, then check to find out that curve on the diagram, the old ability but locations can make sure four each parameters of the pole structure, can make sure the line speed and accelerations of the foot department from the exportation dint of the parameter and electric motor. Some simulations about the hexapod robot which uses the six-linked mechanism as its leg are made,and carried on the stability to it analysis, include the quiet mechanics analysis and dynamics analysis.A hexapod walking mode was designed according to this structure.By controlling 12 step motors straight walking function of the hexapod robot has been implemented with tripod gait movement.Simulation and experiment show that this structure can keep the hexapod robot body's balance better,providing high reference value to research the advantage and feasibility of leg-raising walking gesture.Keyword: six foot robot; Tread the appearance of walk; The sport principle; Stability; Four pole organizations目录摘要 (I)abstract .............................................................................................................. I I 1 绪论. (1)1.1国内外机器人的研究现状 (1)1.2机器人的主要研究问题 (3)1.3机器人的发展趋势 (5)1.4本课题所研究的主要内容 (6)2 机械机构设计 (6)2.1机构分析 (6)2.2 设计方法 (12)2.3四连杆机构的设计 (13)2.4四个钣金零件设计 (28)2.5 躯体部分机构设计 (33)2.6 机构设计总结 (34)参考文献 (35)致谢 (37)附录一 (50)附录二 (61)1 绪论1.1国内外机器人的研究现状1.1.1机器人的定义机器人是上个世纪人类最伟大的发明之一,而从机器人的角度来讲,21世纪将是一个自治机器人的世纪。
三江学院
本科生毕业设计(论文)题目六脚柱状甲虫机器人控制系统设计
高职院院(系部)机械制造及其自动化专业学生姓名杨磊学号 G095152030 指导老师康杰职称助教
指导老师工作单位三江学院
起讫日期 2012年12月17日-2013年4月5日
摘要
机器人是上个世纪中叶迅速发展起来的具有高新技术的智能化产品,一般都有某种独特的功能,在发达国家,工业机器人己经被广泛使用到生产等领域中。
本文设计六足机器人控制系统,每个腿安装有水平和垂直方向运动的电机,共需要12个电机。
论文对控制系统的硬件电路和软件流程给出详细的介绍,硬件部分主要设计单片机的控制系统,使用的是单片机是AT89S52芯片,外围电路增加了时钟电路、复位电路和串行通信电路。
软件部分主要是12路舵机控制信号的产生算法。
本文主要采用硬件定时软件计数的方法,用一个定时器控制12路PWM 信号。
同时还根据动物的行走方式,确定了六足机器人的行走步态。
并绘制流程图,编写控制程序,然后用Keil C51软件运行程序并仿真。
在论文最后,对全文进行总结,并提出了进一步的研究展望。
关键词:六足步行机器人;单片机控制系统;多路舵机;步态;AT89S52。
毕业设计论文六足机器人六足机器人毕业设计论文摘要:本文设计了一款六足机器人,以实现在复杂环境中搬运物品、搜救等任务。
以Arduino控制器为核心,通过编程实现六足机器人的行动规划及运动控制,并选用3D打印技术制作机器人外壳。
最终实现了基于Arduino控制下,六足机器人前进、转向、侧移等基本动作,并能够识别避障,完成指定路径寻路、越障等各种功能。
关键词:六足机器人、Arduino、3D打印、指定路径寻路、避障一、引言随着技术的不断发展,机器人应用越来越广泛。
在自动化领域,机器人不仅可以为生产自动化作出贡献,还可以在人类难以进入的危险、恶劣环境中,承担人类难以完成的任务。
六足机器人是机器人中的一种,在运动灵活性、环境适应能力、负载能力等方面有较强的优势。
本文设计了一种基于Arduino控制器的六足机器人,并采用3D打印技术制作外壳,以实现障碍物识别、路径规划以及运动控制等。
二、系统构成1、机械结构六足机器人采用模块化设计,主体结构分为机器人本体、机器人支架和电源模块。
机器人本体由六足支撑架和移动端构成,其中六足支撑架由PCB板和马达组成,移动端由六个齿轮、六个电机和三个支撑架组成。
机器人支架由两个方向支架和六个足底轮组成,支架旋转以达到转向的功能。
电源模块负责六个电机的电源供应。
2、控制器选用Arduino Mega 2560控制器作为机器人的核心,通过编程控制机器人的运动。
选用控制器的理由是其设计简单、易于编程且具有较强的计算能力。
3、传感器六足机器人内置超声波、红外、差分测量传感器等,以实现机器人对环境的感知。
三、设计与实现1、机械结构设计根据机器人的功能需求,将机器人分为三部分设计:机器人本体、机器人支架和电源模块。
机器人本体由六足支架和移动端构成,其中六足支撑架由PCB板和马达组成,移动端由六个齿轮、六个电机和三个支架组成。
机器人支架由两个方向支架和六个足底轮组成,支架旋转以达到转向的功能。
仿生六足机构的设计设计说明书论文仿生六足机构的设计设计说明书论文1.引言本文档旨在介绍和详细说明仿生六足机构的设计。
该旨在模拟昆虫的运动和行为,并具有良好的运动稳定性和适应性。
本文将涵盖的整体设计、机械结构设计、传感器布局、动力系统、控制系统以及的性能评估等方面。
2.的整体设计在本节中,将详细描述的整体设计。
包括的尺寸和重量限制、机械结构布局、传感器布置和控制系统要求等。
2.1 尺寸和重量限制的尺寸和重量限制是设计过程中的重要考虑因素。
根据应用需求,确定的总体尺寸和重量范围。
2.2 机械结构布局的机械结构布局是实现结构稳定和运动灵活性的关键。
本节将介绍的骨架设计、六足机构设计和连接机构设计。
2.2.1 骨架设计骨架设计是整体结构的基础。
根据的尺寸和重量限制,确定骨架材料和结构形式,保证的稳定性和强度。
2.2.2 六足机构设计六足机构是行走和运动的主要部件。
在本节中,将介绍六足机构的设计原理、关节设计和运动学分析。
2.2.3 连接机构设计连接机构设计是各个部件之间连接和传递力的重要环节。
根据的布局和运动需求,设计合适的连接机构,保证各部件的稳定性和运动性能。
2.3 传感器布置传感器布置是感知外部环境和自身状态的关键。
本节将介绍传感器的种类、布置位置和工作原理,保证的感知性能。
2.4 控制系统要求控制系统是实现自主运动和行为的核心。
在本节中,将详细说明的控制系统要求,包括控制算法、实时性要求和通信方式等。
3.机械结构设计机械结构设计是实现运动和行为的基础。
本节将详细介绍的机械结构设计,包括骨架设计、关节设计和运动学分析等。
3.1 骨架设计根据前文中的骨架设计要求,进行骨架结构的具体设计。
确定骨架材料、尺寸和连接方式等。
3.2 关节设计关节设计是六足行走和运动的关键。
在本节中,将介绍关节设计的原则和方法,并确定关节的结构和参数。
3.3 运动学分析运动学分析是运动和姿态控制的重要环节。
本节将对的运动学进行详细分析,包括正运动学和逆运动学,并计算的运动空间和姿态范围。
毕业设计论文--六足机器人【摘要】本文设计了一种六足机器人,主要目的是能够在复杂的环境中进行移动和执行任务。
采用了ROS系统进行编程,结合外部传感器获取环境信息,控制机器人进行运动和动作控制。
在实验测试中,机器人成功完成了几个简单任务。
【关键词】六足机器人;ROS系统;任务执行【Abstract】This paper designs a hexapod robot which is designed to move and perform tasks in complex environments. ROS system is used for programming and external sensors are combined to obtain environmental information and control robot for motion and action control. In experimental testing, the robot successfully completed several simple tasks.【Keywords】Hexapod robot; ROS system; task execution一、前言机器人技术一直是人类追求的目标之一,机器人能够通过编程和传感器技术来执行任务,不但可以减轻人的工作负担,而且可以在危险环境中取代人的工作。
本文设计了一种六足机器人,采用了ROS系统进行编程,能够在复杂的环境中移动和执行任务。
机器人的有效载荷为5kg,机器人搭载了多个传感器,包括超声波传感器、红外传感器和陀螺仪等。
二、六足机器人的设计本文设计的六足机器人采用了六条悬架机构,能够使机器人在不平衡的地面上行走。
机器人的身体采用了金属材料,具有较强的抗压性和抗摔性。
机器人的尺寸为50cm x 50cm x 20cm,机器人的有效载荷为5kg。
仿蚂蚁六足机器人结构设计论文摘要:本文模仿蚂蚁设计了一种六足机器人结构,建立了六足机器人单腿运动学模型,通过实验证明了该机器人结构设计的合理性。
0 引言昆虫纲是动物界最大的一个纲,其分布遍及地球上从沙漠到海洋,从两极到赤道的几乎所有角落。
具有六只腿的昆虫如此被大自然青睐,为人类模仿昆虫制作机器人提供了充分的理由和思想源泉。
姜树海等人[1]模仿甲虫设计了一种六足机器人;Daltorio[2]模仿蟑螂设计了一种六足机器人;Barfoot[3]模仿竹节虫设计了一种六足机器人,并提出了一种基于强化学习的机器人腿的控制方法。
本文模拟六足纲昆虫蚂蚁的身体结构,设计了一种身体分为基节、股节和胫节的六足机器人结构。
1 机器人单腿的运动学模型及实物模型如图1所示为六足机器人单腿运动模型。
假设六足机器人腿的基节、股节和胫节的长度分别为l1、l2和l3。
三个关节的变换矩阵分别为式(1)、(2)和(3)。
基节坐标系与足端坐标系之间的总变换矩阵为式(4)。
机器人单腿的实物模型如图2所示。
A1=(1)A2=(2)A3=(3)TH=(4)式(4)中m=C1C23l3+C1C2l2+C1l1,n=S1C23l3+S1C2l2+S1l12 机器人基本参数如图3所示为本文设计的六足机器人的实物图。
该机器人的体长为680mm,体宽为200mm,前后相邻基节距离为290mm,基节长度为90mm,股节长度为90mm,胫节长度为230mm,自重为6.6kg。
3 实验效果与分析对自行研制的仿蚂蚁机器人进行前进、后退和转弯等功能测试。
其稳定的最大前进(后退)速度为74mm/s,最大转弯速度为22.5°/s,最大避障高度为260mm。
4 结语本文模仿蚂蚁设计了一种六足机器人结构,建立了六足机器人单腿运动学模型,通过实验证明了该机器人结构设计的合理性。
参考文献:[1]姜树海,孙培,唐晶晶,等.仿生甲虫六足机器人结构设计与步态分析[J].南京林业大学学报:自然科学版,2012,36(6):115-120.[2]Kathyn A Daltorio, Timothy C.Witushynsky, GregoryD.Wile,et al. A body joint improves vertical to horizontal transitions of a wall-climbing bobot[C]// IEEE International Conference on Robotics and Automation(ICRA). Pasadena: Robotics and Automation, 2008:3046-3051.[3]T.D. Barfoot, E.J.P. Earon,G.M.T. D’Eleuterio. Experiments in learning distributed control for a hexapodrobot[J]. Robotics and Autonomous Systems,2006,54:864-872.。
本文的设计为六足爬虫机器人,机器人以交流-直流开关电源作为动力源,单片机为控制元件,伺服电机为执行部件,机器人采用三足着地进行运动,通过单片机对伺服电机的控制,机器人能够实现前进、后退等运动方式,三足着地运动方式保证了机器人能够平稳运行。
伺服电机具有力量大,扭矩大,体积小,重量轻等特点。
单片机产生20ms 的PWM 波形,通过软件改写脉冲的占空比,从而达到改变伺服电机角度的目的。
1 机器人运动分析1.1 六足爬虫式机器人运动方案比较方案一:六足爬虫式机器人的每条腿都能单独完成抬腿、前进、后退运动。
此方案的特点:每条腿都能自由活动,每条腿都能单独进行二自由度的运动。
每条腿的灵活性好,更容易进行仿生运动,六足爬虫机器人可以完成除要求外的很多动作,运动的视觉效果更好。
由于每条腿能单独完成二自由度的运动,所以每条腿上要安装两个舵机,舵机使用数量大,舵机的安装难度加大,机械结构部分的制作相对复杂,又由于每个舵机都要有单独的信号控制,电路控制部分变得复杂了,控制程序也相应的变得复杂。
方案二:六足爬虫式机器人采取三腿为一组的运动模式,且同一侧的前腿、后腿的前后转动由同一侧的中腿进行驱动。
采用三腿为一组(一侧的前足、后足与另一侧的中足为一组)的运动方式,各条腿能够协调的进行运动,机器人的运动相对平稳。
此方案特点:相比上述方案,个腿能够协调运动,在满足运动要求的情况下,舵机使用数量少,节约成本。
机器人运动平稳,控制、驱动部分都得到相应的简化,控制简单。
选择此方案,机器人还可进行横向运动。
两方案相比,选择方案二更合适。
1.2 六足爬虫式机器人运动状态分析1.2.1 机器人运动步态分析六足爬虫式机器人的行走是以三条腿为一组进行的,即一侧的前、后足与另一侧的中足为一组。
这样就形成了一个三角形支架结构,当这三条腿放在地面并向后蹬时,另外三条腿即抬起向前准备轮换。
这种行走方式使六足爬虫式机器人运动相当稳定,任何时刻有三足着地,能够保持良好的平衡,并可以随时随地停息下来,因为其重心总是落在三角支架之内。
摘要本文详细介绍了六脚爬虫机器人的机械结构以及控制程序的编写。
机械结构采用了对称式设计,结构简单;其行走功能由六只脚、18个舵机实现,自由度较高,稳定性、灵活性较好。
控制程序的主体是C语言。
包括基本步态的编写,以及传感器的在机器人上的高级应用,这样,机器人在满足基本行走运动的同时,也能感知外界环境,并通过控制器对接收到的外界信号进行处理,并控制机器人运动。
关键词:对称式结构,舵机控制器,步态,传感器IAbstractThe thesis describes in detail that the mechanic design of Hexcrawler and the compiling of control program.The structure of the robot is in symmetric expression, a simple mechanism; the function of walking is supported by six legs, and eighteen motors, with multiple degrees of freedom. Besides, it is of high stability and flexibility.The program to control the robot is written in C language, including basic gait, the advanced application of sensors. Thereby, the robot can walk in several gaits. At the same time, it can sense the condition around it. Then, it will process the data it received, and control the motion of the robot.Keywords: symmetric expression,PSCU, gait, sensorII目录摘要 (I)Abstract ··························································································································I I 目录·······························································································································I II 1 绪论 ·······················································································································- 1 -1.1课题来源····················································································································· - 1 -1.2本课题的目的及其意义 ····························································································· - 1 -1.3国内外发展现状 ········································································································· - 1 -1.4本课题的研究内容 ·······································································错误!未定义书签。
摘要随着人类探索自然界步伐的不断加速,各应用领域对具有复杂环境自主移动能力机器人的需求,日趋广泛而深入。
理论上,足式机器人具有比轮式机器人更加卓越的应对复杂地形的能力,因而被给予了巨大的关注,但到目前为止,由于自适应步行控制算法匮乏等原因,足式移动方式在许多实际应用中还无法付诸实践。
另一方面,作为地球上最成功的运动生物,多足昆虫则以其复杂精妙的肢体结构和简易灵巧的运动控制策略,轻易地穿越了各种复杂的自然地形,甚至能在光滑的表面上倒立行走。
因此,将多足昆虫的行为学研究成果,融入到步行机器人的结构设计与控制中,开发具有卓越移动能力的六足仿生机器人,对于足式移动机器人技术的研究与应用具有重要的理论和现实意义。
六足仿生机器人地形适应能力强,具有冗余肢体,可以在失去若干肢体的情况下继续执行一定的工作,适合担当野外侦查、水下搜寻以及太空探测等对自主性、可靠性要求比较高的工作。
关键词:六足机器人,适应能力强,结构设计AbstractWith the increasingly rapid step of human exploration of nature, the demand for robots with autonomous mobility under complex environment has been getting broader and deeper in more and more application areas. Theoretically, legged robot offers more superior performance of dealing with complicated terrain conditions than that provided by wheeled robot and therefore has been given great concern, however up to now,for the reason of absence of adaptive walk control algorithm,legged locomotion means still could not be put into practice in many practical applications yet。
While on the other hand,as the most successful moving creature on the earth, multi—legged insect has facilely managed to surmount various complex natural landforms and even to walk upside down on smooth surfaces by right of its sophisticated limb structure and dexterous locomotion control strategies. Accordingly,it contains great theoretical and practical significance for the research and application of legged mobile robotics to blend the behavioral research effort of multi—legged insect into the mechanical design and control of walking robot and furthermore to develop hexapod biomimetic robots with more superexcellent mobility.Hexapod robots have strong abilities to adapt the terrain,and have redundancy in the legs, so they can go on carrying out jobs in the case of losing some legs. They are suit for tasks which have strict demands for independency and reliability such as spying in the wild, searching underwater and exploring the outer space。
Key words: Hexapod robot, strong abilities,mechanical design目录摘要Abstract第一章绪论1。
1六足步行机器人的介绍及背景………………………………………………………1 1.2六足步行机器人的发展现状 (1)1。
3步行机器人国内外研究现状…………………………………………………………4 1.3.1国外研究现状 (4)1.3。
2国内研究现状………………………………………………………………………7 1.4六足步行机器人的现阶段的研究任务 (8)第二章六足机器人的机械结构2.1多足机器人的机构类型 (10)2。
1.1单连杆式 (10)2。
1.2四连杆式(埃万斯机构)…………………………………………………………11 2。
1.3缩放式……………………………………………………………………………11 2.1.4关节式 (12)2.2多足步行机器人的运动规划 (12)2。
2.1三角步态…………………………………………………………………………12 2.2。
2跟导步态…………………………………………………………………………13 2。
2.3交替步态…………………………………………………………………………13 2。
3设计原理……………………………………………………………………………13 2.4六足机器人的结构设计 (15)2。
5舵机的选择…………………………………………………………………………17 2。
5.1舵机概述…………………………………………………………………………17 2。
5.2舵机的选择………………………………………………………………………17 2。
6腿部机构运动学分析…………………………………………………………………18 2。
6。
1 D-H坐标系的建立………………………………………………………………18 2.6.2运动学逆解 (19)第三章三维模型的建立3。
1六足机器人的本体结构的建立……………………………………………………213.2 Solidworks软件介绍 (21)3。
3总图……………………………………………………………………………………223。
4三维图…………………………………………………………………………………23第四章总结与展望4。
1总结…………………………………………………………………………………284.2展望 (28)参考文献 (29)致谢 (30)第一章绪论1。
1六足步行机器人的介绍及背景目前,用于在人类不宜、不便或不能进入的地域进行独立探测的机器人主要分两种,一种是由轮子驱动的轮行机器人,另一种是基于仿生学的步行机器人。
轮行机器人的不足之处在于对于未知的复杂自然地形,其适应能力很差,而步行机器人可以在复杂的自然地形中较为容易的完成探测任务。
因此多足步行机器人有广阔的应用前景,如军事侦察、矿山开采、核能工业、星球探测、消防及营救、建筑业等领域.在步行机器人中,多足机器人是最容易实现稳定行走的。
在众多步行机器人中,模仿昆虫以及其他节肢动物们的肢体结构和运动控制策略而创造出的六足机器人是极具代表性的一种。
六足机器人与两足和四足步行机器人相比,具有控制结构相对简单、行走平稳、肢体冗余等特点,这些特点使六足机器人更能胜任野外侦查、水下搜寻以及太空探测等对独立性、可靠性要求比较高的工作。
国内外对六足机器人进行了广泛的研究,现在已有70多种六足机器人问世,由于六足仿生机器人多工作在非结构化、不确定的环境内,人们希望其控制系统更加灵活,并且具有更大的自主性.同时六足仿生机器人肢体较多,运动过程中需要实现各肢体之间的协调工作,如何方便可靠的实现这种协调,也是六足仿生机器人结构设计研究的一个热点。
1.2 六足步行机器人的发展现状早期的六足机器人:随着美国宇航总署对外太空探测计划的不断深入,迫切需要一种可以在未知复杂星球表面执行勘探任务的机器人。
由于六足机器人的所具有的这方面优点,使其早在上世纪八十年代就已被列入资助研究计划。
其研究成果包括八十年代末的Genghis和九十年代初的Attila和Hannibal。
Genghis(如图1–1左)是由irobot公司研制于80年代,每条腿装有两个电机,使得它可以自由行动,但是因为每腿只有两个自由度,行动有些笨拙.采用递归控制结构,可以使Genghis在复杂路面上行走,包括横越陡峭的地势,爬过高大的障碍,避免掉下悬崖.图1-1 Genghis和AttilaAttila(如图1–1右)和Hannibal是由麻省理工学院的移动式遥控机械装置实验室于九十年代早期研制成功。
他们是该实验室最早用于自主行星探测的机器人。
他们外形相同,只在颜色上有差异,都是Genghis的“后代”.它们在设计上强调模块化子系统结构,各个部分(如头部、腿部和身体)被当作独立的模块来处理。
它的设计重量和尺寸受系统复杂程度的制约,为了保证其在太空运行的可靠性,采用了冗余设计:从机械角度看,六条腿行走时,一旦有某条腿失效,余下的腿仍然可以行走;从传感器的角度看,这种冗余可以让来自不同位置的传感器将信号传给主控制器,以更有效地分析地形。
当有传感器失效时,剩下传感器仍可以让机器正常运行.九十年代中期的六足机器人:对于跨海登陆作战的部队来说,浅滩地雷无疑是最危险也最头疼的登陆障碍,出于这点考虑,美国麻省理工大学和旗下的is—robot公司得到国防部高级研究计划局的资助,研制了两代浅滩探雷机器人Ariel。
Ariel(如图1–2左)由美国is—robots公司于1995年研制.身体配备多种传感器,对周围环境和自身状况的感知非常灵敏。
并配备一套自适应软件,可对一些变化做出积极的反应。
它是可以完全翻转的,如果海浪将它打翻,他还可以“底朝上"的继续行走.Robot II(如图1–2右)是由Case Western Reserve大学,机械及航天工程学院的仿生机器人实验室研制。