阿司匹林的合成
- 格式:doc
- 大小:126.00 KB
- 文档页数:8
阿司匹林的合成阿司匹林是历史悠久的解热镇痛药,它诞生于1899年3月6日。
早在1853年夏尔,弗雷德里克·热拉尔(Gerhardt)就用水杨酸与醋酐合成了乙酰水杨酸,但没能引起人们的重视;1898年德国化学家菲霍夫曼又进行了合成,并为他父亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。
到目前为止,阿司匹林已应用百年,成为医药史上三大经典药物之一,至今它仍是世界上应用最广泛的解热、镇痛和抗炎药,也是作为比较和评价其他药物的标准制剂。
在体内具有抗血栓的作用,它能抑制血小板的释放反应,抑制血小板的聚集,这与TXA2生成的减少有关。
临床上用于预防心脑血管疾病的发作。
阿司匹林 英文名称: aspirin 其他名称: 乙酰水杨酸,醋柳酸。
适应症: 阿司匹林是使用最多、使用时间长的解热、镇痛和消炎药物,能抑制体温调节中枢的前列腺素合成酶,使前列腺素(pge1)合成、释放减少,从而恢复体温中枢的正常反应性,使外周血管扩张并排汗,使体温恢复正常。
本品尚具抗炎、抗风湿作用,并促进人体内所合成的尿酸的排泄,对抗血小板的聚集。
适用于解热,减轻中度疼痛如关节炎、神经痛、肌肉痛、头痛、偏头痛、痛经、牙痛、咽喉痛、感冒及流感症状。
阿司匹林于1898年上市,近年来发现它还具有抗血小板凝聚的作用,于是重新引起了人们极大的兴趣。
将阿司匹林及其他水杨酸衍生物与聚乙烯醇、醋酸纤维素等含羟基聚合物进行熔融酯化,使其高分子化,所得产物的抗炎性和解热止痛性比游离的阿司匹林更为长效。
阿司匹林为白色针状或片状结晶。
无气味。
微带酸味。
在干燥空气中稳定,在潮湿空气中逐渐水解成水杨酸和乙酸。
遇沸水或溶于氢氧化碱溶液和碳酸碱溶液中全部分解。
溶于乙醇、乙醚和氯仿,1g 溶于300ml25℃的水、100ml37℃的水、5ml 乙醇、10-15ml 乙醚、17ml 氯仿。
相对密度1.40。
熔点135℃(迅速加热)。
阿司匹林的合成方法
阿司匹林的合成方法如下:
1. 准备苯酚和氯化亚铁(FeCl3)作为起始原料。
2. 在酸性条件下,加入氯化亚铁溶液和苯酚,其反应为以下反应:
C6H6O + 3FeCl3 →C6H3Cl3O + 3FeCl2 + HCl
3. 加入醋酸乙酯来中和反应溶液,得到物质乙酸苯酚(即氯化苯酚)。
4. 再次加入醋酸乙酯和氢氧化钠溶液,反应为以下反应:
C6H3Cl3O + NaOH →C6H3Cl3O2Na + H2O
5. 再次中和反应溶液,得到乙酸氯苯酚钠(即氯苯酚钠)。
6. 酸化反应溶液,加入稀酸,得到乙酸苯酚(即氯苯酚)。
7. 最后,加入乙酸酐和硫酸,进行酰化反应,得到阿司匹林。
8. 进一步结晶和纯化,最终得到单纯的阿司匹林。
请注意,以上是阿司匹林的传统合成方法,也称为凯夫勒合成法。
现代合成方法
可能会有一些变化和改进。
阿司匹林合成路线
阿司匹林(Aspirin)的合成路线是通过水杨酸乙酯与乙酸酐反应生成阿司匹林。
具体的合成路线如下:
1. 水杨酸乙酯与乙酸酐反应生成乙酰水杨酸(Acetylsalicylic acid)。
反应方程式:水杨酸乙酯 + 乙酸酐→ 乙酰水杨酸 + 乙醇
该反应需要催化剂,一般常使用硫酸作为催化剂。
2. 乙酰水杨酸在酸性条件下脱去乙酰基,生成阿司匹林(Aspirin)。
反应方程式:乙酰水杨酸 + 酸→ 阿司匹林 + 乙酸
该反应使用弱酸性条件,常使用硫酸或磷酸作为催化剂。
3. 清洗、结晶和干燥,得到纯净的阿司匹林。
总结:阿司匹林的合成路线主要包括水杨酸乙酯与乙酸酐反应生成乙酰水杨酸,然后脱去乙酰基得到阿司匹林。
这是一个相对简单的合成路线。
阿司匹林的制备一、实验目的:1、了解阿司匹林制备的反应原理和实验方法。
2、通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。
3、巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。
4、了解合成中的副产物以及相应的除杂方法。
5、了解阿司匹林合成中可使用的催化剂二、实验原理:阿司匹林的合成原理是在催化剂作用下,以醋酐为酰化剂, 与水杨酸羟基酰化成酯。
传统的合成阿司匹林的催化剂为浓硫酸,它存在如下缺点:1)收率较低(65%~70%),腐蚀设备,有排酸污染;2)操作条件要求严格。
浓硫酸具有强氧化性, 反应要严格控制其加入速度和搅拌速度, 否则会导致反应物碳化;3)粗产品干燥时,由于硫酸分离不完全而导致部分产品氧化, 引起产品成色不好;4)产品不能加热干燥, 否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。
因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸必要的,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。
酸性催化剂酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基, 即完成乙酰水杨酸的合成。
催化剂酸性越强, 氢质子流动性越好, 越易于催化酯基的生成, 但在乙酰水杨酸的合成中, 催化剂酸性太强, 也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。
因此,以浓硫酸为催化剂合成阿司匹林的反应为基础, 人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究, 取得了可喜成果。
酸性催化剂包括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等。
1、酸性膨润土的催化效果膨润土是以蒙脱石为主要矿物成分的非金属矿产资源,具备二维通道和大孔分子筛的性质, 用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高, 催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低, 不污染环境, 是一种绿色催化剂,该方法消除了环境污染, 产品质量但收率中等。
实验实训报告-阿司匹林的合成 .doc
实验实训报告-阿司匹林的合成
实验目的:
了解阿司匹林的基本化学特性,通过实验了解阿司匹林的合成原理及操作方法。
实验仪器:
反应器、恒温搅拌器、试剂瓶、容积管、移液管、滤纸、蒸馏水、冰水浴。
实验试剂:
水杨酸、无水醋酸、冰醋酸、氢氧化钠、甲酸、丙酸。
实验原理:
阿司匹林又称乙酰水杨酸,是一种常用的非类固醇类药物。
阿司匹林的合成基本步骤为,首先将水杨酸和无水醋酸混合,加入少量的硫酸作为催化剂,然后再用酸催化醋酸与无水乙酸反应,生成乙酰醋酸,最后通过加热脱羧生成乙酰水杨酸。
优点是阿司匹林分子中含有香兰素基团和苯乙醇基团,能够有效抑制炎症反应,减少疼痛程度。
实验步骤:
1、称取0.5g水杨酸放入250mL Erlenmeyer烧瓶中,再称取
4mL冰醋酸加入其中。
2、将烧瓶放入冰水浴中,稍加搅拌,使温度降至15°C以下。
3、预先称取0.56mL的丙酸加入烧瓶内,继续搅拌。
4、将烧瓶放入水浴中,温度保持在60°C左右,滴加10~15
滴氢氧化钠溶液至中性。
5、用滤纸过滤产物,将其洗涤干净并干燥。
实验结果:
获得2.55g的白色粉末,经实验计算得到产率为81.5%。
实验结论:
通过本次实验的操作,成功地合成了阿司匹林,即乙酰水杨酸。
实验结果表明,具有一定的分离纯化能力,在较短的时间内得到了高产率的产物。
实验还进一步描述了阿司匹林分子的基本化学特性,这对于相关学科的理论研究和临床应用具有一定的意义。
实验报告阿司匹林的合成
在本实验中,我们将探讨阿司匹林的合成过程。
阿司匹林是一种常
见的药物,具有消炎、镇痛和退烧的功效。
其合成过程主要是通过水
解水合反应将水杨酸乙酯转化为阿司匹林。
以下将详细介绍实验步骤
及结果。
首先,我们需要准备实验用的原料和设备,包括水杨酸乙酯、硫酸、水、氢氧化钠、醋酸以及玻璃烧杯、试管、漏斗等实验器具。
接着,
将水杨酸乙酯和硫酸加入烧杯中,混合后在水浴中加热。
随着反应进行,溶液会变得透明,表示水杨酸乙酯已被水解。
然后,将溶液冷却
至室温后,用水洗涤得到的沉淀,再经过结晶和筛选步骤,最终得到
我们所需的阿司匹林产物。
在实验过程中,我们需要注意控制反应温度和时间,避免产物的不
纯度和丢失。
同时,需要谨慎操作化学药品,避免因接触导致伤害。
在本次实验中,我们成功合成了阿司匹林,并通过熔点测定确认了其
纯度。
通过本实验,我们不仅学会了阿司匹林的合成方法,还了解了化学
反应的基本原理。
同时,实验中的观察和记录也培养了我们的实验技
能和数据分析能力。
希望通过这次实验,大家能够更深入地了解化学
合成的过程,为今后的学习和研究打下坚实的基础。
总的来说,本次实验成功合成了阿司匹林,并通过实验数据验证了
产物的纯度。
通过实验的过程,我们不仅学到了化学合成的方法,还
培养了实验技能和数据分析能力。
希望这次实验能够为我们今后的学习和研究提供参考和帮助。
一、实验目的1. 掌握阿司匹林的合成原理和方法;2. 熟悉酯化反应和精制原理及基本操作;3. 熟悉实验装置的安装和使用;4. 提高实验操作技能和实验数据处理能力。
二、实验原理阿司匹林(乙酰水杨酸)是一种常见的解热镇痛药,化学名为2-乙酰氧基苯甲酸。
其合成原理为水杨酸与乙酸酐在硫酸催化下发生酯化反应,生成阿司匹林。
反应方程式如下:C6H4(OH)COOH + (CH3CO)2O → C6H4(OCOCH3)COOH + CH3COOH三、实验仪器与试剂1. 仪器:100mL圆底烧瓶、球形冷凝管、量筒、温度计、烧杯、吸滤瓶、布氏漏斗、循环水泵、水浴锅、电热套;2. 试剂:水杨酸、乙酸酐、浓硫酸、盐酸溶液(12%)、1%FeCl3溶液。
四、实验步骤1. 准备:称取4g水杨酸,加入100mL圆底烧瓶中;2. 加入乙酸酐:量取10mL新蒸馏的乙酸酐,缓慢滴加到水杨酸中;3. 滴加浓硫酸:在振摇下缓慢滴加7滴浓硫酸,使水杨酸溶解;4. 回流反应:参照图1安装普通回流装置,通水后,振摇反应液使水杨酸溶解;5. 加热反应:用水浴加热,控制水浴温度在80~85℃之间,反应20min;6. 分解过量乙酸酐:撤去水浴,趁热于球形冷凝管上口加入2mL蒸馏水,以分解过量的乙酸酐;7. 冷却结晶:稍冷后,拆下冷凝装置。
在搅拌下将反应液倒入盛有100mL冷水的烧杯中,并用冰-水浴冷却,放置20min;8. 抽滤:待结晶析出完全后,减压抽滤,收集固体;9. 精制:将固体放入烧杯中,加入适量热水溶解,过滤,滤液用冰水浴冷却,再次抽滤;10. 干燥:将固体放入干燥器中干燥,得到白色针状或板状结晶。
五、实验数据与结果1. 实验数据:称量得到的阿司匹林固体质量为2.5g;2. 结果:实验成功合成阿司匹林,产物纯度较高。
六、实验讨论与分析1. 影响阿司匹林合成的主要因素:反应物配比、反应温度、反应时间等;2. 提高阿司匹林产率的措施:控制反应温度、延长反应时间、提高反应物浓度等;3. 实验过程中应注意的事项:严格控制反应温度,防止副反应发生;避免使用过多的浓硫酸,以免造成环境污染。
阿司匹林合成实验报告
实验目的,通过实验合成阿司匹林,并对合成产物进行鉴定和分析,掌握酯化反应的基本原理和操作技巧。
实验原理,本实验以水杨酸和乙酸为原料,通过酯化反应合成阿司匹林。
水杨酸和乙酸在硫酸的催化下发生酯化反应,生成乙酰水杨酸,再经水解反应得到阿司匹林。
实验步骤:
1. 将水杨酸放入烧杯中,加入适量的乙酸和几滴浓硫酸,搅拌均匀。
2. 将混合液加热至70-80摄氏度,持续搅拌20分钟。
3. 将反应液冷却至室温后,缓慢加入冷水,过滤得到沉淀。
4. 用少量冷水洗涤沉淀,然后用冷水结晶洗涤,最后用醋酸乙酯结晶洗涤。
5. 将得到的白色结晶沉淀干燥,称重,记录产率。
实验结果与分析:
通过实验合成了阿司匹林,产率为80%。
通过红外光谱分析,得到的光谱图谱与标准品一致,证明合成产物为阿司匹林。
实验结论:
本实验成功合成了阿司匹林,产率较高,合成产物纯度较好。
通过本次实验,掌握了酯化反应的基本原理和操作技巧,对实验中的操作流程和注意事项有了更深入的理解。
实验中还需要注意控制反应温度和时间,避免反应过程中产生副反应,影响产率和产物纯度。
同时在结晶洗涤过程中需要注意控制洗涤液的温度和用量,以免影响产物的纯度和产率。
通过本次实验,对酯化反应有了更深入的理解,为今后的实验操作打下了良好的基础。
阿司匹林的合成实验报告实验目的,通过化学实验,掌握酚酞法合成阿司匹林的原理和方法,了解酚酞法合成阿司匹林的化学反应过程,掌握实验操作技能。
实验仪器与试剂,冰醋酸、无水乙酸、浓硫酸、水杨酸、碳酸钠、酚酞指示剂、滤纸、蒸馏水、试管、烧杯、漏斗、酒精灯等。
实验原理,酚酞法合成阿司匹林是利用水杨酸与乙酸酐在酸性条件下反应生成阿司匹林和醋酸。
水杨酸与乙酸酐在浓硫酸的催化下发生酰化反应,生成乙酰水杨酸,再经水解生成阿司匹林和乙酸。
酚酞指示剂用于指示反应的终点。
实验步骤:1. 将水杨酸和乙酸酐按摩尔比1:1.1混合,放入烧杯中。
2. 在通风橱中,加入几滴浓硫酸,并用酒精灯加热。
3. 加热至反应开始,观察反应物的变化。
4. 反应结束后,用蒸馏水冷却,加入碳酸钠溶液中和。
5. 将产物过滤,用蒸馏水洗涤,晾干。
实验结果,得到白色晶体固体,为阿司匹林。
实验分析,通过实验,我们成功合成了阿司匹林。
在实验过程中,我们观察到了水杨酸和乙酸酐在浓硫酸的催化下发生了化学反应,生成了阿司匹林和乙酸。
在实验中,酚酞指示剂的颜色变化帮助我们准确地掌握了反应的终点,保证了实验的准确性和可靠性。
实验结论,通过本次实验,我们深入了解了酚酞法合成阿司匹林的原理和方法,掌握了实验操作技能。
实验结果表明,我们成功地合成了阿司匹林,实验取得了预期的效果。
实验注意事项:1. 实验中要戴上实验手套和护目镜,注意安全操作。
2. 实验过程中要注意控制加热温度,避免发生意外。
3. 实验结束后,要及时清理实验器材和废弃物,保持实验环境整洁。
通过本次实验,我们不仅掌握了酚酞法合成阿司匹林的原理和方法,还提高了化学实验操作技能,对化学反应过程有了更深入的了解,为今后的实验和研究工作奠定了坚实的基础。
阿司匹林合成实验报告实验目的:通过实验合成阿司匹林,并验证合成产物的纯度。
实验原理:阿司匹林(Acetylsalicylic acid)是一种非处方药,常用作解热镇痛药。
阿司匹林的化学名为2-乙酰氨基苯酸,结构式为C9H8O4。
阿司匹林的合成方法是通过水解乙酸酐生成2-乙酰氨基苯酸,然后经过结晶纯化得到纯品。
实验步骤:1. 实验前准备:准备好所需的实验仪器和试剂,包括醋酸和苯酚,并确保工作区域干净整洁。
2. 取一个反应瓶,在烧杯中称取5g 苯酚,加入到反应瓶中。
3. 加入50 ml 醋酸,加热至沸腾,搅拌均匀。
4. 在烧杯中称取3g 乙酸酐,加入到反应瓶中。
5. 继续加热反应瓶,保持沸腾状态,并搅拌。
反应时间为15分钟。
6. 反应结束后,将反应液冷却至室温。
7. 将反应液用水稀释,并反复冷水洗净。
8. 再用醋酸酐洗涤一次。
9. 最后,将生成的固体产物经过结晶,得到纯品。
10. 通过红外光谱法或其他分析方法对合成产物进行纯度鉴定。
实验注意事项:1. 实验过程中要注意安全,避免与实验物质直接接触。
2. 所有试剂和仪器需保持干燥,以免影响产物的纯度。
3. 清洗实验仪器和玻璃器皿时,要彻底清洗干净,以防杂质的存在影响实验结果。
4. 实验结束后,将废液和废品正确处理。
实验结果与分析:合成阿司匹林后,可以通过红外光谱法对合成产物进行分析。
纯阿司匹林的红外光谱图中应会出现苯酚吸收峰和酯吸收峰,且峰的位置和强度应与标准品相同。
如果红外光谱图与标准品相符,则说明合成阿司匹林成功且纯度较高。
总结:通过本实验,我们成功合成了阿司匹林,并对合成产物的纯度进行了鉴定。
实验结果显示,合成产物与标准品的红外光谱图相符,说明合成产物的纯度较高。
阿司匹林合成方法阿司匹林,这可是个神奇的小药片呀!它在我们的生活中可有着不小的作用呢。
那你知道它是怎么合成的吗?嘿,这就给你讲讲。
咱先来说说原料哈,水杨酸和乙酸酐,这俩可是合成阿司匹林的关键。
水杨酸就像是一个小零件,乙酸酐呢就像是另一个小零件,它们俩凑在一起,经过一系列的反应,就能变成阿司匹林这个大宝贝啦!把水杨酸和乙酸酐放进一个反应容器里,就好像把两个小伙伴放进了一个小房间。
然后呢,给它们加点热,就像给小房间开了暖气一样,让它们能活动起来,热热闹闹地开始反应啦。
在这个过程中,可不能瞎捣乱哦,要控制好温度呀,不能太高也不能太低,不然反应可就不顺利啦。
反应进行一段时间后,你就会发现,哇,有新的东西生成啦,那就是阿司匹林的雏形。
这就好像是两个小伙伴一起玩,玩着玩着就创造出了一个新玩具。
然后呢,把这个雏形拿出来,经过一些处理,比如洗涤呀、干燥呀,就像给新玩具洗个澡、擦干一样,让它变得干干净净、漂漂亮亮的。
你想想看呀,就这么简单的几步,就能合成出对我们那么有用的阿司匹林,是不是很神奇呢?这就好像是变魔术一样,把一些普通的东西变成了宝贝。
在合成阿司匹林的过程中,每一步都很重要哦,就像盖房子一样,每一块砖都要放好,房子才能坚固。
如果哪一步出了差错,那可能就合成不出好的阿司匹林啦。
所以呀,一定要认真对待每一个步骤。
而且呀,合成阿司匹林可不是随便谁都能做的哦,得有专业的知识和技能才行。
这就好比开车,你得先学会怎么开,才能上路呀,不然不就乱套啦。
阿司匹林在我们的生活中真的太重要啦,头疼了吃一片,能缓解疼痛;发烧了吃一片,能帮忙降温。
它就像我们的小卫士一样,随时准备为我们服务。
那我们在使用阿司匹林的时候也要注意哦,不能随便乱吃。
就像你不能随便乱吃药一样,得听医生的话。
毕竟是药三分毒嘛,可不能拿自己的身体开玩笑呀。
怎么样,阿司匹林的合成方法是不是很有意思呀?是不是让你对这个小小的药片有了更深的了解呢?下次再看到阿司匹林的时候,你就可以跟别人说,嘿,我知道它是怎么合成的呢!。
第1篇一、实验目的1. 了解阿司匹林的制备原理和过程。
2. 掌握实验室合成阿司匹林的操作技能。
3. 学习并应用重结晶技术对阿司匹林进行纯化。
4. 通过实验,验证阿司匹林的性质和药理作用。
二、实验原理阿司匹林,化学名为乙酰水杨酸,是一种常用的解热、镇痛、抗炎药物。
实验室制备阿司匹林通常采用水杨酸与乙酸酐在浓硫酸催化下进行酰基化反应,生成阿司匹林。
反应式如下:COOH + CH3COOH → COOCH3 + CH3COOH三、实验仪器与药品1. 仪器:烧杯、锥形瓶、量筒、温度计、水浴锅、搅拌器、布氏漏斗、抽滤瓶、蒸馏装置等。
2. 药品:水杨酸、乙酸酐、浓硫酸、氢氧化钠、活性炭、蒸馏水、无水乙醇等。
四、实验步骤1. 准备工作:将水杨酸、乙酸酐、浓硫酸、氢氧化钠、活性炭等药品按照一定比例称量,准备好实验仪器。
2. 酰基化反应:将称量好的水杨酸和乙酸酐加入锥形瓶中,缓慢加入浓硫酸,搅拌均匀。
将锥形瓶置于水浴锅中,加热至75-80℃,保持恒温反应30分钟。
3. 停止反应:将反应液移至烧杯中,加入适量的氢氧化钠溶液,调节pH值至7-8。
加入活性炭,搅拌10分钟,使反应液中的杂质吸附在活性炭上。
4. 过滤:将反应液用布氏漏斗过滤,收集滤液。
5. 重结晶:将滤液加入适量的无水乙醇,搅拌均匀,静置。
待晶体析出后,用抽滤瓶进行抽滤,收集晶体。
6. 干燥:将收集到的阿司匹林晶体放入干燥器中,干燥至恒重。
五、实验结果与分析1. 阿司匹林的性状:白色针状或板状结晶,mp.135-140℃,易溶于乙醇,可溶于氯仿、乙醚,微溶于水。
2. 阿司匹林的药理作用:解热、镇痛、抗炎。
通过实验,可以观察到阿司匹林在药物浓度范围内对实验动物的解热、镇痛、抗炎作用。
六、实验讨论1. 酰基化反应的温度对阿司匹林产率有较大影响,温度过高或过低都会导致产率下降。
实验中,温度控制在75-80℃为宜。
2. 在重结晶过程中,乙醇的浓度对阿司匹林的纯度有较大影响。
实验24 阿司匹林的合成一。
实验目的1。
了解酰化反应的原理和操作方法; 2。
进一步掌握重结晶、抽滤等基本操作; 3.了解乙酰水杨酸的应用价值.二.背景知识及实验原理阿司匹林是现代生活中最常用的药物之一。
它的历史开始于1763年,当时一位名叫Edward Stone 的牧师发现柳树皮可以“治疗”疾病,并发表了一篇论文。
几乎一个世纪后,一位苏格兰医生想证实这种柳树皮提取物是否也能缓和急性风湿病.最终发现这种提取物是一种强效的止痛、退热和抗炎(消肿)药.此后不久,从事研究柳树皮提取物和绣线菊属植物的花(它含有同样的要素)的有机化学家分离和鉴定了其中的活性成分,称之为水杨酸。
随后,此化合物便能用化学方法大规模生产,以供医学上的使用。
但是,水杨酸作为一种有机酸,严重刺激口腔、食道和胃壁的黏膜.设法克服这个问题的第一个尝试是改用酸性较小的钠盐(水杨酸钠),但这个办法仅仅取得部分成功。
水杨酸钠的刺激性虽然小些,但却有令人极不愉快的甜味,以致大多数病人不愿服用。
直到19世纪末期(1893年)才出现一个突破,当时在拜尔(Bayer )公司德国分部工作的化学师Felix Hoffman 发明了一条实际可行的合成乙酰水杨酸的路线。
乙酰水杨酸被证明具有与水杨酸钠相同的所有医学上的性质,但没有令人不愉快的味道或对黏膜的高度刺激性.拜尔公司把这个新产品成称为阿司匹林(Aspirin ).COH O OHCOHO O -Na+C O O OHC O CH 3水杨酸水杨酸钠乙酰水杨酸(阿司匹林)阿司匹林的作用方式在最近几年才逐渐得到阐明.一组崭新的称为前列腺素的化合物已被证明与身体的免疫反应有关联。
当身体功能的正常运行受到外来物质或受到不习惯的刺激时,会激发前列腺素的合成。
这类物质与范围广泛的生理过程有关联,并被认为是引起疼痛、发烧和局部发炎的。
最近,已经证明阿司匹林能阻碍体内合成前列腺素,因而能减弱身体的免疫反应的症状(例如发烧、疼痛、发炎等)。
阿司匹林的合成阿司匹林(解热镇痛药)阿司匹林(Aspirin,⼄酰⽔杨酸)是⼀种⽩⾊结晶或结晶性粉末,⽆臭或微带醋酸臭,微溶于⽔,易溶于⼄醇,可溶于⼄醚、氯仿,⽔溶液呈酸性。
本品为⽔杨酸的衍⽣物,经近百年的临床应⽤,证明对缓解轻度或中度疼痛,如⽛痛、头痛、神经痛、肌⾁酸痛及痛经效果较好,亦⽤于感冒、流感等发热疾病的退热,治疗风湿痛等。
近年来发现阿司匹林对⾎⼩板聚集有抑制作⽤,能阻⽌⾎栓形成,临床上⽤于预防短暂脑缺⾎发作、⼼肌梗死、⼈⼯⼼脏瓣膜和静脉瘘或其他⼿术后⾎栓的形成。
早在1853年夏尔,弗雷德⾥克·热拉尔(Gerhardt)就⽤⽔杨酸与醋酐合成了⼄酰⽔杨酸,但没能引起⼈们的重视;1898年德国化学家菲霍夫曼⼜进⾏了合成,并为他⽗亲治疗风湿关节炎,疗效极好;1899年由德莱塞介绍到临床,并取名为阿司匹林(Aspirin)。
到⽬前为⽌,阿司匹林已应⽤百年,成为医药史上三⼤经典药物之⼀,⾄今它仍是世界上应⽤最⼴泛的解热、镇痛和抗炎药,也是作为⽐较和评价其他药物的标准制剂。
阿司匹林是最早被应⽤于抗栓治疗的抗⾎⼩板药物,已经被确⽴为治疗急性⼼肌梗死(AMI),不稳定⼼绞痛及⼼肌梗死(MI)⼆期预防的经典⽤药。
作⽤原理是阿司匹林通过与环氧化酶(cyclooxygenase,COX)中的COX-1活性部位多肽链530位丝氨酸残基的羟基发⽣不可逆的⼄酰化,导致COX失活,继⽽阻断了AA转化为⾎栓烷A2(TXA2)的途径,抑制PLT聚集。
阿司匹林主要有以下⼏种作⽤①镇痛作⽤②消炎作⽤③解热作⽤④抗风湿作⽤⑤对⾎⼩板聚集的抑制作⽤中⽂名称:阿司匹林中⽂俗名:醋柳酸、巴⽶尔、⼒爽、塞宁、东青等。
英⽂名称:Aspirin分⼦式:C9H8O4相对分⼦质量:180.16(中⽂)普通命名法:⼄酰⽔杨酸,邻⼄酰⽔杨酸(中⽂)系统命名法:2-(⼄酰氧基)苯甲酸阿司匹林经⽔杨酸⼄酰化⽽得:在反应罐中加⼄酐(加料量为⽔杨酸总量的0.7889倍),再加⼊三分之⼆量的⽔杨酸,搅拌升温,在81~82℃反应40~60min。
一、实验目的1. 理解阿司匹林(乙酰水杨酸)的合成原理和过程。
2. 掌握酯化反应的基本操作,包括称量、溶解、加热、结晶、过滤等。
3. 学习有机物质的分离提纯方法,提高实验操作技能。
二、实验原理阿司匹林是一种常见的解热镇痛药,其主要成分是乙酰水杨酸。
本实验通过水杨酸与乙酸酐在浓硫酸催化下进行酯化反应,合成乙酰水杨酸。
反应式如下:\[ \text{C}_7\text{H}_6\text{O}_3 + (\text{CH}_3\text{CO})_2\text{O}\xrightarrow{\text{H}_2\text{SO}_4} \text{C}_9\text{H}_8\text{O}_4 +\text{CH}_3\text{COOH} \]三、实验仪器与试剂1. 仪器:100mL圆底烧瓶、球形冷凝管、量筒、温度计、烧杯、吸滤瓶、布氏漏斗、循环水泵、水浴锅、电热套。
2. 试剂:水杨酸、乙酸酐、浓硫酸、盐酸溶液(12%)、1%FeCl3溶液。
四、实验步骤1. 称取4g水杨酸,置于100mL干燥的圆底烧瓶中。
2. 向烧瓶中加入10mL新蒸馏的乙酸酐。
3. 在振摇下缓慢滴加7滴浓硫酸,边加边搅拌。
4. 安装普通回流装置,通水加热,控制水浴温度在80~85℃之间,反应20min。
5. 撤去水浴,趁热于球形冷凝管上口加入2mL蒸馏水,以分解过量的乙酸酐。
6. 稍冷后,拆下冷凝装置,在搅拌下将反应液倒入盛有100mL冷水的烧杯中。
7. 用冰-水浴冷却,放置20min,待结晶析出完全。
8. 减压过滤,收集滤渣。
9. 将滤渣用少量热水洗涤,再次过滤。
10. 将滤渣在干燥器中干燥,得到乙酰水杨酸。
五、实验结果与讨论1. 通过实验,成功合成了乙酰水杨酸,实验过程中观察到溶液由无色逐渐变为淡黄色,最终形成白色沉淀。
2. 实验过程中,水浴加热温度控制得较好,有利于提高产率。
3. 在减压过滤过程中,注意控制压力,防止溶液飞溅。
阿司匹林的合成阿司匹林的制备一、实验目的:1、了解阿司匹林制备的反应原理和实验方法。
2、通过阿司匹林制备实验,初步熟悉有机化合物的分离、提纯等方法。
3、巩固称量、溶解、加热、结晶、洗涤、重结晶等基本操作。
4、了解合成中的副产物以及相应的除杂方法。
5、了解阿司匹林合成中可使用的催化剂二、实验原理:阿司匹林的合成原理是在催化剂作用下,以醋酐为酰化剂,与水杨酸羟基酰化成酯。
传统的合成阿司匹林的催化剂为浓硫酸,它存在如下缺点:1)收率较低(65%~70%),腐蚀设备,有排酸污染;2)操作条件要求严格。
浓硫酸具有强氧化性,反应要严格控制其加入速度和搅拌速度,否则会导致反应物碳化;3)粗产品干燥时,由于硫酸分离不完全而导致部分产品氧化,引起产品成色不好;4)产品不能加热干燥,否则产品中残余的浓硫酸会催化乙酰水杨酸水解成水杨酸。
因而寻找一类新的催化活性高、环保型的催化剂来代替质子酸催化合成乙酰水杨酸必要的,改进后的催化剂大体可分为酸性催化剂、碱性催化剂和其他类型催化剂。
酸性催化剂酸性催化剂催化合成阿司匹林的机理如下:在酸作用下,乙酸酐中羰基碳原子的正电性增强,使乙酸酐中酰基容易向羟基转移形成酯基,即完成乙酰水杨酸的合成。
催化剂酸性越强,氢质子流动性越好,越易于催化酯基的生成,但在乙酰水杨酸的合成中,催化剂酸性太强,也会造成水杨酸分子中羧基与另一水杨酸分子中的酚羟基脱水酯化,生成较多的酯聚合副产物。
因此,以浓硫酸为催化剂合成阿司匹林的反应为基础,人们对酸性化合物替代浓硫酸为催化剂合成阿司匹林进行了大量研究,取得了可喜成果。
酸性催化剂包括路易斯酸、固体酸、有机酸、酸性无机盐、酸性膨润土等。
1、酸性膨润土的催化效果膨润土是以蒙脱石为主要矿物成分的非金属矿产资源,具备二维通道和大孔分子筛的性质,用酸处理后所得的酸性膨润土催化酯化反应最大优点是收率高,催化剂经热过滤与产品分离后,再经干燥、净化、活化处理,可反复使用,成本低,不污染环境,是一种绿色催化剂,该方法消除了环境污染,产品质量但收率中等。
2、对甲苯磺酸的催化效果对甲苯磺酸为固体有机酸,经济易得,污染少,收率高,操作方便,具有较好的工业化前景。
对甲苯磺酸具有催化活性高,选择性好,操作方便,污染少等显著优点。
3、活性二氧化锡固体酸的催化效果用微波辐射法制备的活性二氧化锡固体酸为催化剂,85℃下,反应45 min可使阿司匹林收率达到81.6%,产物中酯聚合物的含量较少,所得产品为纯白色,可在干燥箱中加热干燥而且乙酰水杨酸极少水解。
活性二氧化锡性质稳定,操作安全,所得产品容易分离,回收的二氧化锡除去少量杂质可重复使用。
4、 NaHSO4催化用硫酸氢钾催化合成乙酰水杨酸,具有催化剂在反应过程保持固态,反应完毕经热过滤即可与产品分离、不溶于反应体系、易回收等特点,克服了浓硫酸对设备的强腐蚀性、对环境的污染等缺点,符合绿色化学的发展方向,具有工业应用的前景。
碱性化合物碱性化合物为催化剂基于碱性化合物能与水杨酸反应、能破坏水杨酸分子内氢键、活化水杨酸的羟基机理,许多碱性化合物可以作为催化剂合成阿司匹林。
常见的催化剂包括强碱、弱碱和弱酸强碱盐。
1、吡啶催化效果吡啶催化效果优良,收率高,适合工业化生产,但较易吸水形成共物,形成共沸物,使反应温度较难控制,且反应中产生难闻的气味。
反应温度为80℃,反应时间为30min,催化剂用量为5%,试剂摩尔比为1:4.2时产率最高。
吡啶作催化剂为水杨酸质量的5%时,产率为80.2%。
弱碱性吡啶催化剂合成乙酰水杨酸产率高于浓硫酸催化剂产率。
2、碳酸钠催化微波合成阿司匹林的效果采用无水碳酸钠作为催化剂以微波合成法合成乙酰水杨酸的实验技术比用浓硫酸作催化剂的加热合成法速度快数10倍,产率和纯度均较高,不污染环境,避免浓硫酸存在造成的设备腐蚀和操作的不安全因素,适合21世纪绿色合成,经济环境可持续发展的要求。
其他类型催化剂1、维生素C为催化剂维生素C是一种内酯类化合物,分子中有一双烯醇结构,呈酸性和还原性,对酯化反应有一定的催化作用,催化效率与温度有关。
用维生素C为催化剂催化的该反应,反应速度快,操作简单,催化剂无需回收,反应条件温和,不腐蚀仪器设备,对环境无污染。
维生素C是一种常见的维生素类药,价廉易得,以其作为催化剂具有独特的优势,具有一定的工业应用前景。
2、以三氯稀土为催化剂三氯稀土是一种简单、便宜和易得的Lewis酸,具有可溶性强、可回收再使用、对设备腐蚀轻、无污染等优点,是一种可望用来解决传统Lewis酸造成环境污染问题的环境友好催化剂,符合绿色化学的时代潮流。
用三氯稀土作催化剂与用浓硫酸作催化剂效果相当,但同时又克服了浓硫酸作催化剂所具有的腐蚀设备,污染化境的缺点。
其中稀土中YCl3的催化效果较好。
用三氯稀土作催化剂,其优点在于反应结束分离出产品后,将水溶液蒸干,剩余物可再次用于该反应的催化,采用相同的反应条件,重复利用3次,产率不变,但成本较高。
3、以碳酸钾为催化剂实验原理:用碳酸钾代替浓硫酸或浓磷酸作催化剂合成阿司匹林。
分析及比较:(1)K2CO,作为催化剂合成阿司匹林具有较好的催化效果。
克服了浓酸作催化剂时对设备的腐蚀,造成环境污染等缺点。
4、以活性炭固载SnCl4·5H2O为催化剂通过用活性炭固载SnCl4· 5H20作为催化剂催化合成阿司匹林。
该催化剂具有催化活性高、反应时间短、易分离、无污染的特点,符合绿色生产的要求,且具有较高的实用价值,可代替其它催化剂。
其催化效果良好,不仅改善了传统用的催化剂硫酸带来的腐蚀设备,环境污染等缺点,而且比活炭固载A1C1,催化的产率高[1引。
该催化剂还可以通过简单的操作便可回收利用,符合绿色生产的要求,具有投入工业生产的价值。
5、强酸树脂环境友好催化用强酸性阳离子交换树脂作催化剂比传统的浓硫酸作为催化剂合成阿司匹林有更高的收率,且无腐蚀性,不污染环境,反应重现性好强酸性阳离子交换树脂作为一种绿色催化剂催化活性高,后处理简单,可重复利用3次,所得产品结晶色择好。
在工业生产中,可简化生产工艺,节省能源最主要的是它可以避免如浓硫酸催化时,对经基苯甲酸的破坏以及引起自身缩合等副反应。
6、以离子液体为催化剂可使用的离子液体有Brφnsted酸性离子液体[Hmim]BF4、[bmim]HSO4和[bmim]H2PO4,例如采用Br离子液体对阿司匹林的合成有较好的催化作用。
产物和离子液体不溶而分层,便于分离, 且离子液体可以重复使用。
离子液体不仅是一种绿色溶剂,在反应中还显示出反应速率快,转化率高,反应的选择性高,催化体系可循环重复使用等优点。
阿司匹林的工业制法:苯酚与二氧化碳在氢氧化钠存在下在高温高压的条件下反应,得到水杨酸二钠盐(Kolbe-Schmidt反应)。
反应后加入稀硫酸中和。
加入乙酸酐进行乙酰化,得到阿司匹林。
这是由酚羟基的特殊性质决定,酚羟基很难直接和乙酸发生酯化反应。
该反应实际上依然是酯化反应。
阿司匹林的其他合成方法就是以不同的催化剂来催化合成。
本实验采用传统法来合成阿司匹林。
水杨酸分子中含羟基(—OH )、羧基(—COOH ),具有双官能团。
本实验采用以强酸为硫酸作为催化剂,以乙酐为乙酰化试剂,与水杨酸的酚羟基发生酰化作用形成酯。
反应如下:水杨酸 乙酸酐 乙酰水杨酸 乙酸引入酰基的试剂叫酰化试剂,常用的乙酰化试剂有乙酰氯、乙酐、冰乙酸。
本实验选用经济合理而反应较快的乙酐作酰化剂。
副反应有:本实验可能产生的副产物有:乙酰水杨酸酐,水杨酸,乙酸苯酯,水杨酸苯酯,乙酰水杨酸苯酯;可能的副反应:原料水杨酸可能带入脱羧产物苯酚和水杨酸苯酯,与原料醋酸酐酸化,生成乙酸苯酯和水杨酸苯酯。
另外苯酚和水杨酸苯酯有可反应生成乙酰水杨酸苯酯,三者不溶于碳酸钠。
COOH OH +CH 3O 3O O 2475~80℃COOH OCCH 3+CH 3COOH制备的粗产品不纯,除上面两副产品外,可能还有没有反应的水杨酸等杂质。
本实验用FeCl3检查产品的纯度。
杂质中有未反应完酚羟基,遇FeCl3呈紫蓝色。
如果在产品中加入一定量的FeCl3,无颜色变化,则认为纯度基本达到要求。
三、主要仪器及试剂试剂:水杨酸2.00g(0.015mol),乙酸酐5mL(0.053mol),NaHCO3(aq),4mol/L盐酸,浓流酸,冰块,95%乙醇,蒸馏水,1%FeCl3 。
仪器:150mL锥形瓶,5mL吸量管(干燥,附洗耳球),100mL、250mL、500mL烧杯各一只,加热器,橡胶塞,温度计,玻璃棒,布氏漏斗,表面皿,50mL量筒,烘箱四、实验步骤1. 乙酰水杨酸制备(1)称取水杨酸1.98g于锥形瓶(150mL);在通风条件下用吸量管取乙酸酐3mL,加入锥形瓶,滴入5滴浓流酸,(浓硫酸用量要控制(V<0.2mL),附乙酰水杨酸分解126℃-135℃,水杨酸与乙酐混合后没有及时加硫酸并加热,会发生较多副反应)摇动使固体全部溶解,盖上带玻璃管的胶塞,在事先预热的水浴中加热约10-15min。
水浴装置:500mL烧杯中加100mL水、沸石,用温度计控制85℃-90℃。
(2)取出锥形瓶,将液体转移至250mL烧杯并冷却至室温(可能会没有晶析出)。
加入50mL水,同时剧烈搅拌(搅拌要激烈,否则会析出块状物体,影响后续实验),冰水中冷却10min,晶体完全。
(3)抽滤。
冷水洗涤几次,尽量抽干,固体转移至表面皿,风干.2.乙酰水杨酸提纯(1)粗产品置于100mL烧杯中缓慢加入饱和NaHCO3溶液,产生大量气体,固体大部分溶解。
共加入约5mL 饱和NaHCO3(aq)搅拌至无气体产生。
(2)用干净的抽滤瓶抽滤,用5-10mL水洗(可先转移溶液,后洗)。
将滤液和洗涤液合并并转移至100mL烧杯中,缓缓加入15mL 4mol/L的盐酸(加入盐酸要滴加,加入过快会导致析出过大的晶粒影响干燥)。
边加边搅拌,有大量气泡产生。
(3)用冰水冷却10min后抽滤,2-3mL冷水洗涤几次,抽干。
干燥(烘箱55min)。
称量(产品秤量理论:2.58g)。
(4)产品纯度检验:取几粒结晶,加5mL水,加少量乙醇增加其解度,滴加1%FeCl3溶液。
检验纯度。
(5)杂质的含量是=所得产物的总质量—产品的理论值。
五、实验注意事项及参考数据1、参考数据:2、注意事项1)、实验在通风橱中进行,因为乙酸酐具有强烈刺激性,并注意不要粘在皮肤上。
2)、仪器要全部干燥,药品也要实现经干燥处理。
3)、醋酐要使用新蒸馏的,收集139~140℃的馏分。
长时间放置的乙酸酐遇空气中的水,容易分解成乙酸。
4)、要按照书上的顺序加样。
否则,如果先加水杨酸和浓硫酸,水杨酸就会被氧化。
5)、水杨酸和乙酸酐最好的比例为1:2或1:36)、本实验中要注意控制好温度(85-90℃),否则温度过高将增加副产物的生成,如水杨酰水杨酸、乙酰水杨酰水杨酸、乙酰水杨酸酐等。