高中数学必修五:数列的概念与简单表示法(第一课时)教学设计案例
- 格式:docx
- 大小:70.12 KB
- 文档页数:6
《数列的概念与简单表示法》第一课时教学设计一、教材与教学分析1.数列在教材中的地位根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。
教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学任务分析(1)了解数列的概念新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类.(2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系.3.教学重点与难点重点:理解数列的概念,认识数列是反映自然规律的基本数学模型. 难点:认识数列是一种特殊的函数,发现数列与函数之间的关系二、教学方法小组合作、探究学习模式通过对问题情境的分析讨论的方式,运用从具体到抽象、从特殊到一般的思维训练方法,引导学生探究数学归纳法。
三、学习过程设计【问题情境】1.国际象棋的传说(在这张棋盘的第一个小格内,赏给我一粒麦子;在第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一倍):每格棋盘上的麦粒数排成一列数;2.古语:一尺之棰,日取其半,万世不竭.每日所取棰长排成一列数;3.童谣:一只青蛙,一张嘴 ,两只眼睛,四条腿; 两只青蛙,两张嘴 ,四只眼睛,八条腿; 三只青蛙,三张嘴 ,六只眼睛,十二条腿;4.中国体育代表团参加六届奥运会获得的金牌数依次排成一列数 。
教师:以上四个问题中的数蕴涵着哪四列数呢?学生:1:23631,2,2,2,,2 2一列数:23451111122222⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,,,,,3设计说明:利用学生熟悉的生活实例创设情景引入问题,既可以帮助学生直观地理解数列的概念,又可以使学生认识到“数学来自于生活”活动一:数列的概念探究教师:以上几列数的共同特点是什么?引导学生思考这四列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等比数列概念。
《数列的概念与简单表示法》教案(1)
教学目标
1.理解数列及其有关概念,了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的个通项公式.
2.通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.
3.通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣.
教学重点难点
1.重点:数列及其有关概念,通项公式及其应用;
2.难点:根据一些数列的前几项抽象、归纳数列的通项公式.
教法与学法
1.教法选择:“设置问题情境,探索辨析,归纳应用,延伸拓展”;
2.学法指导:类比、联想、猜想、求证.
教学过程
一、设置情境,激发学生探索的兴趣
三、思维拓展,课堂交流
四、归纳小结,课堂延展
1.教材地位分析
根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.
作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端.教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).
2.学生现实状况分析
学生目前已经学习了函数的知识,本课时的内容是数列的定义,通项公式及运用;
本课是在学习映射、函数知识基础上研究数列.。
2.1 数列的概念与简单表示法第1课时 数列的概念与简单表示法【知识梳理】1.数列的概念及一般形式2.3.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个公式叫做这个数列的通项公式.4.数列的表示法数列的表示法有三种,分别是列表法、图象法、解析法. 【例题导读】P 29例1.由本例学会由数列若干项归纳出该数列的通项公式. 试一试:P 31练习T 4你会吗?P 30例2.通过本例学习,理解数列是一种特殊的函数. 试一试:P 33A 组T 5你会吗?1.判断下列命题是否正确.(正确的打“√”,错误的打“×”) (1)数列1,1,1,…是无穷数列.( )(2)数列1,2,3,4和数列1,2,4,3是同一个数列.( ) (3)有些数列没有通项公式.( )解析:(1)正确.每项都为1的常数列,有无穷多项.(2)错误,虽然都是由1,2,3,4四个数构成的数列,但是两个数列中后两个数顺序不同,不是同一个数列.(3)正确,某些数列的第n 项a n 和n 之间可以建立一个函数关系式,这个数列就有通项公式,否则,不能建立一个函数关系式,这个数列就没有通项公式.答案:(1)√ (2)× (3)√2.下列四个数中,哪个是数列{n (n +1)}中的一项( ) A .380 B .392 C .321 D .232解析:选A.因为19×20=380, 所以380是数列{n (n +1)}中的第19项.3.数列0.3,0.33,0.333,0.333 3,…的通项公式是a n =( )A.19(10n -1)B.13⎝⎛⎭⎫1-110n C.29(10n -1) D.310(10n -1) 解析:选B.1-1101=0.9,1-1102=0.99,…,故原数列的通项公式为a n =13⎝⎛⎭⎫1-110n . 4.数列{a n }满足a n =log 2(n 2+3)-2,则log 23是这个数列的第________项. 解析:令a n =log 2(n 2+3)-2=log 23,解得n =3.答案:31.对数列概念的两点认识(1)数列的项与它的项数是不同的概念,数列的项是指这个数列中某一个确定的数,是一个函数值,也就是相当于f (n ),而项数是指这个数在这个数列中的位置序号,它是自变量的值,相当于f (n )中的n .(2)次序对一个数列来说相当重要,几个不同的数由于它们的次序不相同,可构成不同的数列.显然,数列与数集有本质的区别.2.数列的项的三个性质(1)确定性:一个数是不是数列中的项是确定的. (2)可重复性:数列中的数可以重复.(3)有序性:一个数列不仅与构成数列的数有关,而且与这些数的排列顺序有关. 3.解读数列的通项公式(1)数列的通项公式实际上是一个以正整数集N *或它的有限子集{1,2,3,…,n }为定义域的函数解析式.(2)和所有的函数关系不一定都有解析式一样,并不是所有的数列都有通项公式. (3)有通项公式的数列,其通项公式在形式上不一定是唯一的.数列的概念[学生用书P 16](1)下列说法正确的是( )A .数列1,3,5,7可表示为{1,3,5,7}B .数列1,0,-1,-2与数列-2,-1,0,1是同一数列C .数列-1,3,6,-5的第三项为6D .数列可以看成是一个定义域为正整数集N *的函数 (2)已知下列数列:①2 010,2 012,2 014,2 016,2 018;②0,12,23,…,n -1n ,…;③1,12,14,…,12n -1,…;④1,-23,35,…,(-1)n -1·n 2n -1,…;⑤1,0,-1,…,sinn π2,…; ⑥9,9,9,9,9,9.其中,有穷数列是________,无穷数列是________,递增数列是________,递减数列是________,常数列是________,摆动数列是________.(将合理的序号填在横线上)[解析] (1)由数列定义知A ,B 不正确;D 不正确的原因是数列可以看成以正整数集N *(或它的有限子集{1,2,3,…,n })为定义域的函数a n =f (n ),当自变量从小到大依次取值时对应的一列函数值.故选C.(2)①是有穷递增数列;②是无穷递增数列(因为n -1n =1-1n );③是无穷递减数列;④是摆动数列,也是无穷数列; ⑤是摆动数列,是无穷数列;⑥是常数列,是有穷数列.[答案] (1)C(2)①⑥ ②③④⑤ ①② ③ ⑥ ④⑤ [方法归纳](1)判断一个数列是有穷或无穷数列的关键是判断数列的项数是有穷的或是无穷的. (2)判断数列单调性的方法:①若数列{a n }满足a n <a n +1,则是递增数列. ②若数列{a n }满足a n >a n +1,则是递减数列. ③若数列{a n }满足a n =a n +1,则是常数列.1.(1)下列数列中,既是递增数列又是无穷数列的是( )A .1,18,127,164,…B .-1,-2,-3,-4,…C .-1,-12,-14,-18,…D .1,2,3,…,n解析:选C.对于A ,a n =1n3,n ∈N *,它是无穷递减数列;对于B ,a n =-n ,n ∈N *,它也是无穷递减数列;D 是有穷数列;对于C ,a n =-⎝⎛⎭⎫12n -1,它是无穷递增数列.(2)分别写出下列数列:①不大于10的自然数按从小到大的顺序组成的数列________. ②-2的1次幂、2次幂、3次幂、4次幂…构成的数列________.解析:①0,1,2,3,4,5,6,7,8,9,10;②-2,22,-23,24,….答案:①0,1,2,3,4,5,6,7,8,9,10 ②-2,22,-23,24,… (3)给出以下数列:①1,-1,1,-1,…; ②2,4,6,8,…,1 000; ③8,8,8,8,…;④0.8,0.82,0.83,0.84,…,0.810.其中,有穷数列为________;无穷数列为________;递增数列为________;递减数列为________;摆动数列为________;常数列为________.解析:有穷数列为②④;无穷数列为①③;递增数列为②;递减数列为④;摆动数列为①;常数列为③.答案:②④ ①③ ② ④ ① ③由数列的前几项写出数列的通项公式[学生用书P 16]写出以下数列的一个通项公式,使它的前4项分别是下列各数. (1)-1,12,-13,14;(2)112,245,3910,41617;(3)12,34,78,1516. (链接教材P 29例1)[解] (1)这个数列的前4项的绝对值都是序号的倒数,并且奇数项为负,偶数项为正,故有:a n =(-1)n ·1n .(2)112=1+112+1,245=2+2222+1, 3910=3+3232+1, 41617=4+4242+1, ……,故a n =n +n 2n 2+1(n ∈N *).(3)12=21-121=1-121, 34=22-122=1-122, 78=23-123=1-123, 1516=24-124=1-124, ……,故a n =2n -12n =1-12n (n ∈N *).[方法归纳]给出数列的前几项,求通项时,注意观察数列中各项与其序号的变化关系,在所给数列的前几项中,先看看哪些部分是变化的,哪些是不变的,再探索各项中变化部分与序号间的关系,主要从以下几个方面来考虑:(1)分式形式的数列,分子、分母分别求通项,较复杂的还要考虑分子、分母的关系. (2)若n 和n +1项正负交错,那么符号用(-1)n 或(-1)n +1或(-1)n -1来调控. (3)熟悉一些常见数列的通项公式.(4)对于复杂数列的通项公式,其项与序号之间的关系不容易发现,要将数列各项的结构形式加以变形,将数列的各项分解成若干个常见数列对应项的“和”“差”“积”“商”后再进行归纳.2.(1)数列35,12,511,37,…的一个通项公式是________.解析:数列可写为:35,48,511,614,…,分子满足:3=1+2,4=2+2,5=3+2,6=4+2,…,分母满足:5=3×1+2,8=3×2+2,11=3×3+2,14=3×4+2,…, 故通项公式为a n =n +23n +2.答案:a n =n +23n +2(2)根据以下数列的前4项写出数列的一个通项公式.①12×4,13×5,14×6,15×7,…; ②-3,7,-15,31,…; ③2,6,2,6,….解:①均是分式且分子均为1,分母均是两因数的积,第一个因数是项数加上1,第二个因数比第一个因数大2,∴a n =1(n +1)(n +3).②正负相间,且负号在奇数项,故可用(-1)n 来表示符号,各项的绝对值恰是2的整数次幂减1,∴a n =(-1)n (2n +1-1).③这样的摆动数列,一般求两数的平均数2+62=4,而2=4-2,6=4+2,中间符号用(-1)n 来表示.a n =4+(-1)n·2或a n =⎩⎪⎨⎪⎧2 (n 是奇数),6 (n 是偶数).通项公式的简单应用[学生用书P 17]已知数列{a n }的通项公式为a n =3n 2-28n . (1)写出数列的第4项和第6项.[解] (1)a 4a 6=3×62-28×6=-60.(2)由3n 2-28n =-49解得n =7或n =73(舍去),所以-49是该数列的第7项;由3n 2-28n =68解得n =-2或n =343,均不合题意,所以68不是该数列的项.若本例中的条件不变,(1)试写出该数列的第3项和第8项;(2)问20是不是该数列的一项?若是,应是哪一项?解:(1)因为a n =3n 2-28n , 所以a 3=3×32-28×3=-57, a 8=3×82-28×8=-32.(2)令3n 2-28n =20,解得n =10或n =-23(舍去),所以20是该数列的第10项. [名师点评]已知数列{a n }的通项公式,判断某一个数是否是数列{a n }的项,即令通项公式等于该数,解关于n 的方程 ,若解得n 为正整数k ,则该数为数列{a n }的第k 项,若关于n 的方程无解或有解且为非正整数解则该数不是数列{a n }中的项.3.(1)600是数列1×2,2×3,3×4,4×5,…的第________项. 解析:a n =n (n +1)=600=24×25,所以n =24. 答案:24(2)数列{a n }的通项公式为a n =-n 2+n +30. ①问-60是否是{a n }中的一项?②当n 分别取何值时,a n =0,a n >0,a n <0?解:①假设-60是{a n }中的一项,则-n 2+n +30=-60.解得n =10或n =-9(舍去).所以-60是{a n }的第10项.②令-n 2+n +30=0,解得n =6或n =-5(舍去),所以n =6时,a n =0;0<n <6且n ∈N *时,a n >0;n >6(n ∈N *)时,a <0.易错警示设函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x-1 (x <2).a n =f (n ),若数列{a n }是单调递减数列,则实数a 的取值范围是( )A .(-∞,2) B.⎝⎛⎦⎤-∞,138 C.⎝⎛⎭⎫-∞,74 D.⎣⎡⎭⎫138,2[解析] 由题意,知f (x )=(a -2)x 在[2,+∞)上是减函数,且a 1>a 2,所以⎩⎪⎨⎪⎧a -2<0,f (1)>f (2),即⎩⎪⎨⎪⎧a <2,⎝⎛⎭⎫121-1>2(a -2).解得a <74,故选C.[答案] C[错因与防范] (1)本题易受函数单调性的影响形成思维定式,只考虑两段与分界点,得⎩⎪⎨⎪⎧a <2,⎝⎛⎭⎫122-1≥2(a -2),即a ≤138,错选B.(2)因为数列可以看作是定义域为正整数集或其子集的一类特殊的函数,所以数列具备一般函数应具备的性质.用函数的观点研究数列时不要忽视数列的特殊性,特别注意数列中的项数应为正整数的条件.4.已知数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }单调递增,则k 的取值范围是( ) A .(-∞,2] B .(-∞,3) C .(-∞,2) D .(-∞,3] 解析:选B.a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k ,又{a n }单调递增,故应有a n +1-a n >0,即2n +1-k >0恒成立,分离变量得k <2n +1,故只需k <3即可.1.下列说法正确的是( )A .数列1,3,5,7,…,2n -1可以表示为1,3,5,7,…B .数列1,0,-1,-2与数列-2,-1,0,1是相同的数列C .数列⎩⎨⎧⎭⎬⎫n +1n 的第k 项为1+1k D .数列0,2,4,6,8,…可记为{2n }解析:选C.A 错,数列1,3,5,7,…2n -1为有穷数列,而数列1,3,5,7,…为无穷数列;B 错,数的顺序不同就是两个不同的数列;C 正确,a k =1+k k =1+1k ;D 错,a n=2n -2.2.在数列1,1,2,3,5,8,x ,21,34,55中,x 等于( ) A .11 B .12 C .13 D .14解析:选C.观察数列可知,后一项是前两项的和,故x =5+8=13. 3.数列1,2,7,10,13,…中的第26项为________. 解析:∵a 1=1=1,a 2=2=4 a 3=7,a 4=10,a 5=13, ∴a n =3n -2,∴a 26=3×26-2=76=219.答案:2194.已知数列{a n }的通项公式为a n =2n 2+n,那么110是它的第________项.解析:令2n 2+n =110,解得n =4或n =-5(舍去),所以110是该数列的第4项.答案:4,[学生用书单独成册])A 层 基础达标1.下列说法中不正确的是( ) A .数列a ,a ,a ,…是无穷数列B .数列{f (n )}就是定义在正整数集N *上或它的有限子集{1,2,3,…,n }上的函数值C .数列0,-1,-2,-3,…不一定是递减数列D .已知数列{a n },则{a n +1-a n }也是一个数列解析:选B.A ,D 显然正确;对于B ,因为数列{f (n )}是定义在正整数集N *上或它的有限子集{1,2,3,…,n }上的函数a n =f (n ),当自变量从小到大依次取值时,对应的一列函数值,所以B 项不正确;对于C ,数列只给出前四项,后面的项不确定,所以不一定是递减数列.2.数列{a n }中,a n =3n -1,则a 2等于( ) A .2 B .3 C .9 D .32解析:选B.因为a n =3n -1,所以a 2=32-1=3.3.已知数列12,23,34,…,nn +1,则0.96是该数列的( )A .第20项B .第22项C .第24项D .第26项解析:选C.由nn +1=0.96,解得n =24.4.数列0,33,22,155,63,…的一个通项公式是( ) A .a n = n -2n B .a n = n -1n C .a n =n -1n +1D .a n = n -2n +2 解析:选C.已知数列化为:0,13,24,35,46,…,故a n = n -1n +1.5.已知数列2,5,22,11,…,则25是该数列的第________项. 解析:∵a 1=2,a 2=5,a 3=8,a 4=11, ∴a n =3n -1.由3n -1=25⇒3n -1=20⇒n =7,∴25是该数列的第7项. 答案:76.已知数列{a n }的通项公式a n =19-2n ,则使a n >0成立的最大正整数n 的值为__________.解析:由a n =19-2n >0,得n <192.∵n ∈N *,∴n ≤9. 答案:97.观察下面数列的特点,用适当的数填空,并写出每个数列的一个通项公式: (1)34,23,712,( ),512,13,…; (2)53,( ),1715,2624,3735,…; (3)2,1,( ),12,…;(4)32,94,( ),6516,…. 解:(1)根据观察:分母的最小公倍数为12,把各项都改写成以12为分母的分数,则序号1 2 3 4 5 6 ↓ ↓ ↓ ↓ ↓ ↓ 912 812 712 ( ) 512 412于是括号内填612,而分子恰为10减序号,故括号内填12,通项公式为a n =10-n 12.(2)53=4+14-1, 1715=16+116-1, 2624=25+125-1, 3735=36+136-1. 只要按上面形式把原数改写,便可发现各项与序号的对应关系:分子为序号加1的平方与1的和的算术平方根,分母为序号加1的平方与1的差.故括号内填108,通项公式为a n =(n +1)2+1(n +1)2-1.(3)因为2=21,1=22,12=24,所以数列缺少部分为23,数列的通项公式为a n =2n.(4)先将原数列变形为112,214,( ),4116,…,所以括号内应填318,数列的通项公式为a n =n +12n .B 层 能力提升 1.数列{a n }的通项公式为a n =3n 2-28n ,则数列{a n }各项中最小项是( ) A .第4项 B .第5项 C .第6项 D .第7项解析:选B.a n =3n 2-28n =3(n -143)2-1963,当n =143时,a n 最小,又n ∈N *,故n =5时,a n =3n 2-28n 最小.2.已知数列{a n }的通项公式a n =log (n +1)(n +2),则它的前30项之积是( ) A.15B .5C .6 D.log 23+log 31325解析:选 B.a 1·a 2·a 3·…·a 30=log 23×log 34×log 45×…×log 3132=lg 3lg 2×lg 4lg 3×…×lg 32lg 31=lg 32lg 2=log 232=log 225=5. 3.如图1是第七届国际数学教育大会(简称ICME -7)的会徽图案,会徽的主体图案是由如图2的一连串直角三角形演化而成的,其中OA 1=A 1A 2=A 2A 3=…=A 7A 8=1,如果把图2中的直角三角形继续作下去,记OA 1,OA 2,…,OA n ,…的长度构成数列{a n },则此数列的通项公式为a n =________.解析:因为OA 1=1,OA 2=2,OA 3=3,…,OA n =n ,…, 所以a 1=1,a 2=2,a 3=3,…,a n =n .答案:n 4.已知数列{a n }的前4项为11,102,1 003,10 004,…,则它的一个通项公式为________. 解析:由于11=10+1,102=102+2,1 003=103+3,10 004=104+4,…,所以该数列的一个通项公式是a n =10n +n . 答案:a n =10n +n5.已知数列{a n }的通项公式为a n =4n 2+3n.(1)写出此数列的前3项;(2)试问110和1627是不是它的项?如果是,是第几项?解:(1)a 1=412+3×1=1,a 2=422+3×2=25,a 3=432+3×3=29.(2)令4n 2+3n =110,则n 2+3n -40=0,解得n =5或n =-8.又n ∈N *,故n =-8舍去,所以110是数列{a n }的第5项.令4n 2+3n =1627,则4n 2+12n -27=0,解得n =32或n =-92. 又n ∈N *,所以1627不是数列{a n }的项. 6.已知数列{a n }的通项公式为a n =p n +q (p ,q ∈R ),且a 1=-12,a 2=-34. (1)求{a n }的通项公式;(2)-255256是{a n }中的第几项? (3)该数列是递增数列还是递减数列?解:(1)∵a n =p n +q ,又a 1=-12,a 2=-34, ∴⎩⎨⎧p +q =-12p 2+q =-34,解得⎩⎪⎨⎪⎧p =12,q =-1, 因此{a n }的通项公式是a n =⎝⎛⎭⎫12n -1.(2)令a n =-255256,即⎝⎛⎭⎫12n -1=-255256, 所以⎝⎛⎭⎫12n =1256,解得n =8. 故-255256是{a n }中的第8项. (3)由于a n =⎝⎛⎭⎫12n -1,且⎝⎛⎭⎫12n 随n 的增大而减小,因此a n 的值随n 的增大而减小,故{a n }是递减数列.C 层 拓展升华1.图中由火柴棒拼成的一列图形中,第n 个图形由n 个正方形组成:通过观察可以发现:第n 个图形中,火柴棒的根数为( )A .3n -1B .3nC .3n +1D .3(n +1) 解析:选C.通过观察,第1个图形中,火柴棒有4根;第2个图形中,火柴棒有4+3根;第3个图形中,火柴棒有4+3+3=4+3×2根;第4个图形中,火柴棒有4+3+3+3=4+3×3根;第5个图形中,火柴棒有4+3+3+3+3=4+3×4根,…,可以发现,从第二项起,每一项与前一项的差都等于3,即a 2-a 1=3,a 3-a 2=3,a 4-a 3=3,a 5-a 4=3,…,a n -a n -1=3(n ≥2),把上面的式子累加,则可得第n 个图形中,a n =4+3(n -1)=3n +1(根).2.根据下图中的5个图形及相应点的个数的变化规律,试猜测第n 个图中有________个点.解析:观察图形可知,第n 个图有n 个分支,每个分支上有(n -1)个点(不含中心点),再加中心上1个点,则有n (n -1)+1=n 2-n +1个点.答案:n 2-n +13.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1. (1)求这个数列的第10项;(2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有无数列中的项?若有,是第几项?若没有,说明理由.解:(1)设a n =f (n )=9n 2-9n +29n 2-1=(3n -1)(3n -2)(3n -1)(3n +1)=3n -23n +1. 令n =10,得第10项a 10=f (10)=2831. (2)令3n -23n +1=98101,得9n =300. 此方程无正整数解,所以98101不是该数列中的项. (3)证明:∵a n =3n -23n +1=1-33n +1, 又n =N *,∴0<1-33n +1<1, ∴0<a n <1.∴数列中的各项都在区间(0,1)内.(4)令13<a n =3n -23n +1<23, ∴⎩⎪⎨⎪⎧3n +1<9n -6,9n -6<6n +2,∴⎩⎨⎧n >76,n <83. ∴当且仅当n =2时,上式成立,故在区间⎝⎛⎭⎫13,23内有数列中的项,且只有一项为a 2=47.。
2.1数列的概念与简单表示法(一)一、教学要求:理解数列及其有关概念;了解数列和函数之间的关系;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项的特征写出它的一个通项公式.二、教学重点、教学难点:重点:数列及其有关概念,通项公式及其应用.难点:根据一些数列的前几项,抽象、归纳出数列的通项公式.三、教学过程:导入新课“有人说,大自然是懂数学的”“树木的,。
”,(一)、复习准备:1. 在必修①课本中,我们在讲利用二分法求方程的近似解时,曾跟大家说过这样一句话:“一尺之棰,日取其半,万世不竭”,即如果将初始量看成“1”,取其一半剩“12”,再取一半还剩“14”,、、、、、、,如此下去,即得到1,12,14,18,、、、、、、 2. 生活中的三角形数、正方形数. 阅读教材提问:这些数有什么规律?与它所表示的图形的序号有什么关系?(二)、讲授新课:1. 教学数列及其有关概念:(1)三角形数:1,3,6,10,···(2)正方形数:1,4,9,16,··· (2)1,2,3,4……的倒数排列成的一列数:(3)-1的1次幂,2次幂,3次幂,……排列成一列数:-1,1,-1,1,-1,。
(4)无穷多个1排列成的一列数:1,1,1,1,。
有什么共同特点? 1. 都是一列数;2. 都有一定的顺序① 数列的概念:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项. 辩析数列的概念:(1)“1,2,3,4,5”与“5,4,3,2,1”是同一个数列吗?与“1,3,2,4,5”呢? ----------数列的有序性(2)数列中的数可以重复吗?(3)数列与集合有什么区别?集合讲究:无序性、互异性、确定性,数列讲究:有序性、可重复性、确定性。
② 数列中每一个数叫数列的项,排在第一位的数称为这个数列的第1项(或首项),排在第二位的数称为这个数列的第2项、、、、、、排在第n 位的数称为这个数列的第n 项.③ 数列的一般形式可以写成123,,,,,n a a a a ,简记为{}n a .④ 数列的分类:(1)按项数分:有穷数列与无穷数列,(2)按项之间的大小关系:递增数列、递减数列、常数列与摆动数列.⑤ 数列中的数与它的序号有怎样的关系?序号可以看作自变量,数列中的数可以看作随着变动的量。
2.1数列的观点与简单表示法(第 1 课时)一、课标要求:(1)理解数列及其相关观点,认识数列的简单分类;(2)认识数列的通项公式,并会用通项公式写出数列的随意一项;(3)关于比较简单的数列,会依据其前几项写出它的个通项公式;(4)认识数列是一种特别的函数;(5)借助函数的背景和研究方法来研究相关数列的问题,能够进一步让学生领会数学知识间的联系,培育用已知去研究未知的能力。
二、教课要点、难点:要点:理解数列的观点,认识数列是反应自然规律的基本数学模型,探究并掌握数列的几种间单的表示法(列表、图象、通项公式)。
难点:认识数列是一种特别的函数;发现数列规律找出可能的通项公式。
三、设计思路:新课标重申数学知识产生、发展、和应用。
教课过程中注意生活实质的引入,使学生体会数学根源于生活,提升数学学习的兴趣。
重视对学生学习数列的观点及表示法的过程。
本节课经过三角形数与正方形数引入数列的观点;经过类比函数的思想认识数列的几种简单的表示方法(列表、图象、通项公式)。
所以设计流程以下:给出数列观点数列的分类数列的通项公式数列是特别的函数,领会数列与函数的关系典范解说归纳与小结四、教课 程:(一) 情形, 入(1)多媒体展现三角形数、正方形数,提 : 些数有什么 律?与它所表示的 形的序号有什么关系?三角形数: 1, 3, 6, 10,⋯正方形数: 1, 4, 9, 16, 25,⋯( 本)象 ,按必定序次摆列的一列数叫做数列(教 板 )(二) 授新 (2)三角形数与正方形数同数集中元素的特色有何不一样? 引 学生回 、比 ,并 :⑴数列的数是按必定序次摆列的,所以,假如 成两个数列的数同样而摆列序次不一样,那么它 就是不一样的数列;⑵定 中并无 定数列中的数必 不一样,所以,同一个数在数列中能够重复出.归纳数列的观点:(1) 依据必定 序摆列着的一列数称 数列,数列中的每一个数叫做 个数列的 。
各 挨次叫做 个数列的第 1 (或首 ),第 2 ,⋯,第 n ,⋯ .(2) 数列的一般形式:a 1 , a 2 , a 3 , ,a n ,,或a n ,此中 a n 是数列的第n(3) 析数列的观点: 1 “1, 1 ,1 , 1 , 1”与 2 “1, 1 ,1 , 1,1”是同一个数列 ?○○23455432合上述例子,帮助学生理解数列及 的定. (它 不是同一个数列;且○1 中,它的首 是“ 1”,“ 1”是 个数列的第“3” ,等等)3数列的分 :( 1)依据数列 数的多少分:有 数列: 数有限的数列. 比如数列 1, 2,3, 4, 5, 6。
数列的概念与简单表示法一、教学目标:通过日常生活中、数学史中实例的观察、分析和讨论,了解数列的概念,通过小组合作讨论,确定数列研究的内容和方向,了解数列概念的内涵和外延及几种简单的表示方法,体会数列是一种特殊的函数.在对数列抽象、观察的过程中,锻炼学生分析、探索、转化、归纳等能力,经历从特殊到一般,一般到特殊的重要数学思想方法.通过类比、联想、知识的迁移和应用等方式,使学生体会知识之间的有机联系,感受数学的整体性,进一步理解数列的本质.二、学情分析:学生学习了集合、函数的概念和性质等基本知识,初步掌握了函数的研究方法,在观察、抽象、概括等学习策略与学习能力方面,有了一定的基础.况且,数列概念的学习并不需要很多的知识基础,可以说学习数列的概念并无知识上的困难.这些都是数列概念教学的有利条件.刚开始高中数学学习的学生,自己主动地建构概念的意识还不够强,能力还不够高.同时,在建立概念的过程中,学生的辨别各种刺激模式、抽象出观察对象或事物的共同本质特征,概括形成概念,并且用数学语言(符号)表达等方面,会表现出不同的水平,从而会影响整体的教学.三、重点难点:“数列的概念与简单表示法”是人教A版普通高中课程标准实验教科书必修5第2章第1课时的内容,主要涉及数列的概念、表示方法、分类、通项公式、数列和函数之间的关系等.数列是刻画离散现象的数学模型,是一种离散型函数,在日常生活中有着重要的应用.学习数列对深化函数的学习有着积极地意义,数列是以后学习极限的基础,因此,数列在高中数学中占有重要位置.数列的概念是学习数列的起点与基础,因而建立数列的概念是本章教学的重点,更是本节课教学的重点.学生主动自我建构概念,需要经历辨析、抽象、概括等过程,影响概念学习过程的因素又是多样的,所以,数列特征的感知和描述,函数意义的概括和理解,是教学的难点.四、教学方法:运用“问题驱动”、小组合作的教学方法,创设有效问题情境,引导学生进行探究,借助多媒体课件等工具让学生“问题”的引领下,学会思考、大胆探索、建构知识和体会思想.五、教学过程:1.创设情境,激发探究兴趣思考:某位学生先后有四次考试成绩,每次对应的成绩忘了,但记得有66,86,76,96四个数字,该学生的学习成绩是进步还是退步?设计意图:通过学生熟悉的问题实例的思考,吸引学生的注意力,激发学习的兴趣,让学生充分感受到四个数字顺序的不同,该学生学习状态的巨大差异,从而明确学习“数列”的必要性,也为后续具体实例的给出做好铺垫.情境1:研究树枝的生长规律:树苗在第一年长出一条新枝,新枝成长一年后变为老枝,老枝每年都长出一条新枝.每一条树枝都按照这个规律成长,则每年的分枝数依次为:1,1,2,3,5,8,13,21,34,55,89,......情境2:古希腊毕达哥拉斯学派的数学家研究的三角形数依次为:1,4,9,16,25,.......情境3:从1984年到2016年我国共参加了9次奥运会,各次参赛获得的金牌总数依次为:15,5,16,16,28,32,51,38,26 ;情境4:2015年黄岩区1—12月份的最低气温依次为:-3,-3,3,6,13,16,19,21,18,12,1,-1;预设:追问1:①情境3中的第7次奥运会金牌总数为多少?②情境4中最低温度比较低的月份有哪些?夏季那几个月的最低温度是多少?。
普通高中课程标准实验教科书数学必修⑤第二章数列2.1数列的概念与简单表示法(第一课时)【教学目标】知识与技能:理解数列及其有关概念;了解数列和函数之间的关系;了解数列是一种特殊的函数;了解数列的通项公式,并会用通项公式写出数列的任意一项;对于比较简单的数列,会根据其前几项写出它的通项公式。
过程与方法:通过对一列数的观察、归纳,写出符合条件的一个通项公式,培养学生的观察能力和抽象概括能力.在解决问题的过程中,培养学生发现问题、提出问题、解决问题的能力,重点培养创新能力和实践能力。
情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。
同时增强爱国情感、环保意识,激发学生为国富民强而勤奋学习的精神。
通过小组讨论,培养学生发现问题、探究知识、建构知识的研究型学习习惯及合作化学习的团队精神。
【教学方法】教师启发引导与学生自主探究相结合.【教学手段】多媒体辅助教学【教学重点】1.理解数列概念;2.用通项公式写出数列的任意一项,会求简单数列的通项公式。
【教学难点】根据一些数列的前几项抽象、归纳数列的通项公式;将数列作为一种特殊的函数去认识,了解数列与函数之间的关系。
实例分析,深化概念1、数列与函数的关系:数列可以看成以正整数集N*(或它的有限子集{1,2,3,…,n})为定义域的函数()na f n=,当自变量从小到大依次取值时对应的一列函数值。
反过来,对于函数y=f(x),如果f(i)(i=1、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3),f(4),…,f(n),…。
数列的通项公式具有双重身份,它既表示数列的第项,又是这个数列中所有各项的一般形式.通项公式反映了一个数列项与项数的函数关系,给了数列的通项公式,这个数列便确定了,代入项数就可求出数列的每一项.2、数列的列表、图象表示法。
例如,全体正偶数按从小到大的顺序构成的数列{a n} :2,4,6,…,2n,…n 1 2 3 …k …a n 2 4 6 …2k …学生:联想到函数间的变量依赖关系,认识到数列是函数;学生的描述可能不严格,要引导学生注意回答的全面性2、培养学生由特殊到一般的归纳能力、及观察能力的培养3、研究数列的性质可以用研究函数的性质的方法来研究尝试练习,技能训练[问题1]图中的三角形称为谢宾斯基三角形,在下图四个三角形中,着色三角形的个数依次构成一个数列的前4项,请写出这个数列的一个通项公式.[问题2]写出下面数列的一个通项公式,使它的前4项分别是下列各数:111(1)1,,,;234--(2)2,0,2,0;[考题回放]根据下列4个图形及相应点的个数变化规律,试猜测第n个图中有________个点.教师进行方法总结:写数列的通项公式,就是建立项与序号的函数关系。
2.1数列的概念与简单表示法(第一课时)一、教学目标1.理解数列及其有关概念,了解数列和函数之间的关系;2.理解数列的通项公式,会根据其前几项写出它的通项公式;3.采用探究法进行启发式教学,突出学生的主体地位;4.通过日常生活中的实例,体会数学来源于生活,提高数学学习的兴趣.二、教学重难点重点: 数列的概念,通项公式及其应用.难点:抽象、归纳数列的通项公式.三、教学方法探究式教学法四、教学过程(一)概念教学1.概念的引入.数列是什么?为什么要学习数列?(1)概念:按照一定顺序排列着的一列数称为数列.(2)生活中经常要对一列数进行研究.1)大自然懂数学.树木的分杈、花瓣的数量、植物种子的排列……都与这一列数相关:1,1,2,3,5,8,13,21,34,55,89,…(斐波那契数列)2)购房、购车贷款,常见有(1)等额本息还款(2)等额本金还款.每个月还款数可以排成一列数.3)毕达哥拉斯学派研究的三角形数、正方形数.2.n a 是数列的第n 项.如1a 表示第一项(首项),2a 表示第二项等. 数列可表示: 123,,,,,n a a a a L L ,或简记为{}n a .3.数列的分类:1)按项数分:有穷数列、无穷数列2)按单调性分:递增数列、递减数列、常数数列、摆动数列.观察:课本P 28的六组数列,并作出判断.(二)数列的函数特性观察数列2,4,8,16,…,256,…中项与序号之间的对应关系,(自变量)序号n 1 2 3 4 5 …↓ ↓ ↓ ↓ ↓(函数值)项 n a 2 4 8 16 32 …你能从中得到什么启示?(1)每一个n 都有唯一的一个n a 相对应,(2)n 为正整数集N *(或它的有限子集{1,2,3,…,n })(3)数列可以看作是一个定义域为正整数集N *(或它的有限子集{1,2,3,…,n })的函数a n = f (n ),当自变量从小到大依次取值时对应的一列函数值.(4)可从函数的角度来研究数列.(5)数列的表示法有:列举、列表、图象(一系列孤立的点).(三)通项公式如果数列{}n a 的第n 项n a 与n 之间的关系可以用一个式子来表示,那么这个公式就叫做这个数列的通项公式.试写出课本P 28的六组数列的通项公式.(1)a n =n -1; (2)没有通项公式; (3)a n =3;(4)没有通项公式;(5)a n =(-1)n 或a n =1sin()2n ππ+;(6)没有通项公式 注意:(1)并不是所有数列都能写出其通项公式;(2)若存在通项公式时,通项公式不一定唯一的.(四)典例解析例1 已知数列{}n a 的通项公式为1n n a n =+,写出前5项.例2 写出下面数列的一个通项公式,使它的前4项分别是下列各数: (1)167854321,,, (2)541431321211⨯⨯-⨯⨯-,,, (3)0.1,0.01,0.001,0.0001 (4)0,1, 0,1例3 设数列11,22,5,2,……则25是这个数列的( )A.第六项B.第七项C.第八项D.第九项例4用火柴棒按下图的方法搭三角形:按图示的规律搭下去,第n 个图形则所用火柴棒数a n 之间的关系式可以是____________.(五)当堂练习1.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)0.9,0.99,0.999,0.9999 (2)2,22,222,22222.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.3.数列{}n a 中,452+-=n n a n .(1)18是数列中的第几项?(2)n 为何值时,n a 有最小值?并求最小值.(六)课堂小结:1.数列及有关定义.2.数列的函数特性.3.通项公式的推导及应用.(七)课后作业P 33 5 P 67 2(3)(4) 3(1)(2)五、设计思想首先通过教材章首的导入,突出数学源于生活,提出研究数列的必要性.注重概念教学的严谨性,在与学生合作探究的过程中,挖掘概念的内涵及外延.在例题的选取与设计上,根据本班的学情,作了适当的取舍,也注意到了层次的递进,努力将有效课堂向高效课堂转变.六、板书设计。
人教版高中必修5-2.1 数列的概念与简单表示法教学设计一、教学目标1.知道什么是数列,掌握数列的概念和序列的性质;2.掌握数列的简单表示法,并能够运用;3.能够运用数列的简单表示法解决实际问题。
二、教学内容1.数列的概念和性质;2.数列的简单表示法;3.数列的实际应用。
三、教学重难点1.数列的概念、性质和简单表示法的理解;2.数列应用题的解决。
四、教学方法1.归纳法;2.讲授法;3.实例分析法。
五、教学流程1. 导入环节1.给学生出示“$2, 4, 6, 8, 10, \\ldots$”的数字序列,让学生自愿回答这是一个什么序列,以及这个序列有哪些规律。
2.引出数列的概念和定义,通过对学生的思考和讨论形成数列的一般概念和数列的一些基本性质。
2. 正式教学1.简单数列的定义和性质:明确什么是数列、数列中元素的个数、数列中元素的含义、数列的公式表示和一些基本的性质。
2.数列的简单表示法:通项公式的定义和规律,借助一些典型的数列示例,让学生进行抽象思考,培养学生发现规律和总结规律的能力。
3.数列的实际应用:通过实际例子的引导,让学生掌握数列在实际应用中的重要性和地位,并能够运用数列的思想方法解决实际问题。
3. 巩固与拓展1.给予学生一些数列在基础知识上的练习和拓展,让学生巩固理论学习。
2.引导学生寻找数列在实际生活中的应用,并结合其它数学知识进行探究。
3.让学生通过模拟应用数列的实际场景进行实践探索,从而加深对数列概念和应用的理解。
六、教学效果评估1.在学习过程中检测学生对数列概念、性质和简单表示法的掌握情况,结合实际例子进行解析。
2.考查学生对数列实际应用的理解和掌握情况,测试学生的数列应用能力。
3.教师在课下进行综合性评估,包括平时课堂表现、课后作业及课堂练习等成果。
七、教学反思数列作为一种概念相对简单、应用非常广泛的数学工具,具有很大的实际意义和应用价值。
在此次教学中,利用合适的教学方法和教学手段,让学生在欣赏到数列优美之处的同时,也能深刻理解数学背后的知识与智慧。
2.1.数列的简单表示方法(2)教学目标1.理解数列概念,了解数列和函数之间的关系2.了解数列的通项公式,并会用通项公式写出数列的任意一项3.对于比较简单的数列,会根据其前几项写出它的个通项公式4.提高观察、抽象的能力.教学重点:1.理解数列概念;2.用通项公式写出数列的任意一项.教学难点:根据一些数列的前几项抽象、归纳数列的通项公式.教学方法:发现式教学法教学步骤:一设置情景:1. 叫数列。
2.数列的一般形式是 。
3.数列的通项公式)(n f a n =反映了数列的 和 的对应关系。
二.知识运用: 例1.根据下面数列的通项公式,写出它的前五项: (1)n n a n 22-=; (2)1)1(1+-=-n na n n 。
例2.已知无穷数列:1×2,2×3,3×4,……,)1(+n n ,……。
(1)求这个数列的第10项;(2)420和421是否是这个数列的项,若是,应是第几项?例3.写出下面数列的一个通项公式,使它的前四项分别是下列各数。
(1)1, 6,12,20……(2)0,1,0,1……(3)-1,4,-9,16……(4)32,98,2726,8180……(5)9,99,999,9999,……例4在数列{}n a 中,11=a ,22-=a ,且)2(11≥+=-+n a a a n n n ;求出这个数列的前五项。
【递推公式】如果已知数列{}n a 的第一项(或前K 项),且任一项n k a +与前K 项间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式。
例5根据下列数列的首项和递推公式,写出它们的前五项,并猜想出通项公式。
(1)11=a ,1211+=-n n a a ),2(*∈≥N n n (2)01=a ,))(12(*1N n n a a nn ∈-+=+ 例6.已知数列{}na 的通项公式是782+-=n n a n , (1) 数列中有多少项是负数?(2)n 为何值时,n a 有最小值,并求最小值。
数列的概念与简单表示法(1)教学设计主备人:执教者: 【学习目标】1、理解数列的概念;2、认识数列是反映自然规律的基本数学模型;3、初步掌握数列的一种表示方法--- 通项公式;【学习重点】数列及其有关概念,通项公式及其应用•【学习难点】根据一些数列的前几项抽象、归纳数列的通项公式【授课类型】新授课【教具】多媒体电脑、实物投影仪、电子白板。
【学习方法】诱思探究法【学习过程】一、复习引入:师课本图2.1-1中的三角形数分别是多少?生1, 3, 6, 10,….师图2.1-2中的正方形数呢?生1, 4, 9, 16, 25,….师像这样按一定次序排列的一列数你能否再举一些?生-1的正整数次幕:-1, 1, -1, 1,…;无穷多个数1排成一列数:1, 1, 1, 1,….生2 4 628103 15 356399二、新课学习:折纸问题师请同学们想一想,一张纸可以重复对折多少次?请同学们随便取一张纸试试生一般折5、6次就不能折下去了,厚度太高了•师你知道这是为什么吗?我们设纸原来的厚度为1长度单位,面积为1面积单位,随依次折的次数,它的厚度和每层纸的面积依次怎样?生随着对折数厚度依次为:2 , 4, 8, 16,…,256,…;①111 1随着对折数面积依次为11 1 ,—2 4 8 16折下去太困难了师说得很好,随数学水平的提高,我们的思维会更加理性化•请同学们观察上面我们列出的这一列一列的数,看它们有何共同特点?生均是一列数• 生还有一定次序•师它们的共同特点:都是有一定次序的一列数[教师精讲]1. 数列的定义:按一定顺序排列着的一列数叫做数列(1 )数列的数是按一定次序排列的,因此,如果组成两个数列的数相同而排列次序不同,那么它们就是不同的数列;个性设计1256生对折8次以后,纸的厚度为原来的256倍,其面积为原来的1/256,再(2)定义中并没有规定数列中的数必须不同,因此,同一个数在数列中可以重复出现.2. 数列的项:数列中的每一个数都叫做这个数列的项.各项依次叫做这个数列的第1项(或首项),第2项,…,第n项,….同学们能举例说明吗?生例如,上述例子均是数列,其中①中,“ 2”是这个数列的第1项(或首项),“ 16”是这个数列中的第4项.3. 数列的分类:1)根据数列项数的多少分:有穷数列:项数有限的数列•例如数列1 , 2, 3, 4, 5, 6是有穷数列. 无穷数列:项数无限的数列•例如数列1 , 2, 3, 4, 5, 6…是无穷数列•2)根据数列项的大小分:递增数列:从第2项起,每一项都不小于它的前一项的数列递减数列:从第2项起,每一项都不大于它的前一项的数列常数数列:各项相等的数列•摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列•请同学们观察:课本P33的六组数列,哪些是递增数列、递减数列、常数数列、摆动数列?生这六组数列分别是(1)递增数列,(2)递增数列,(3)常数数列,(4)递减数列,(5)摆动数列,(6)1.递增数列,2.递减数列.[知识拓展]师你能说出上述数列①中的256是这数列的第多少项?能否写出它的第n 项?生256是这数列的第8项,我能写出它的第n项,应为a n=2n.[合作探究]同学们看数列2, 4, 8, 16,- •, 256,…①中项与项之间的对应关系,项248 1632J J序号 1 2 3 45你能从中得到什么启示?生数列可以看作是一个定义域为正整数集N(或它的有限子集{1 , 2, 3,…, n})的函数a n=f(n),当自变量从小到大依次取值时对应的一列函数值•反过来,对于函数y=f(x),如果f(i)(i=1 、2、3、4…)有意义,那么我们可以得到一个数列f(1),f(2),f(3), …,f(n),….师说的很好.如果数列{a n}的第n项a n与n之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式三、特例示范1. 根据下面数列{a n}的通项公式,写出前5项:n n⑴ a n= ;(2) a n=(-l) • n.n 1师由通项公式定义可知,只要将通项公式中n依次取1, 2, 3, 4, 5,即可得到数列的前5项.2. 根据下面数列的前几项的值,写出数列的一个通项公式:…、24 6 810(1)3 ,5, 7, 9, 11,…;(2)? ? ?, ;31535 6399(3)0 ,1, 0, 1, 0, 1,…•;(4)1 , 3 ,3 , 5 , 5 ,乙7 , 9 , 9 ,(5)2 ,-6 , 12, -20 , 30,-42 ,….这是由“数”给出数列的“式”的例子,解决的关键是要找出这列数呈现出的规律性的东西,然后再通过归纳写出这个数列的通项公式[合作探究]师函数与数列的比较(由学生完成此表):函数数列(特殊的函数)定义域R或R的子集N或它的有限子集{1 , 2,…,n}解析式y=f(x)a n=f( n)图象点的集合一些离散的点的集合师对于函数,我们可以根据其函数解析式画出其对应图象,看来,数列也可根据其通项公式来画出其对应图象,下面同学们练习画数列:1 1 14, 5, 6, 7, 8, 9, 10…;②1,,, ,…③的图象•2 3 4生根据这数列的通项公式画出数列②、③的图象为8*19a••17「*6A ■*5 F *4r «1322 114-1 * •I ••a打师数列4, 5, 6, 7, 8, 9, 10,…②的图象与我们学过的什么函数的图象有关?生与我们学过的一次函数y=x+3的图象有关•1 1 1师数列1, 1 1,丄,…③的图象与我们学过的什么函数的图象有关?2 3 41生与我们学过的反比例函数y丄的图象有关•x师这两数列的图象有什么特点?生其特点为:它们都是一群孤立的点•生它们都位于y轴的右侧,即特点为:它们都是一群孤立的,都位于y轴的右侧的点•四、课堂小结本课时的整个教学过程以学生自主探究为主,教师起引导作用,充分体现学生的主体作用,体现新课程的理念•对于本节内容应着重掌握数列及有关定义,会根据通项公式求其任意一项,并会根据数列的前n项求一些简单数列的通项公式• 六、作业布置:课时作业2.1.1六、课后反思:。
高中数学必修5《数列的概念与简单表示法》教案
1、数列:按照一定次序排列的一列数(与顺序有关)
2、通项公式:数列的第n项an与n之间的函数关系用一个公式来表示an=f(n)。
(通项公式不唯一)
3、数列的表示:
(1) 列举法:如1,3,5,7,9 ;
(2) 图解法:由(n,an)点构成;
(3) 解析法:用通项公式表示,如an=2n+1
(4) 递推法:用前n项的值与它相邻的项之间的关系表示各项,如a1=1,an=1+2an-1
4、数列分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列
5、任意数列{an}的前n项和的性质
[点评]数列问题转化为解方程和不等式问题,注意正整数解
例4、有一数列{an},a1=a,由递推公式an+1=,写出这个数列的前4项,并根据前4项观察规律,写该数列的一个通项公式。
详见优化设计P37典例剖析之例2,解答过程略。
(理科班学生可要求通项公式的推导:倒数法)
变式:在数列{an},a1=1,an+1=,求an。
详见优化设计P37典例剖析之例1,解答过程略。
[点评]对递推公式,要求写出前几项,并猜想其通项公式,此外了解常用的处理办法,如:迭加、迭代、迭乘及变形后结合等差(比)数列公式,也很必要。
课题: §2.1数列的概念与简单表示法(第1课时)●三维教学目标1.知识与技能:了解数列定义,了解数列和函数之间的关系;理解数列的简单表示方法,理解并掌握通项公式及其应用。
2.过程与方法:通过教学,培养学生的观察能力、实践能力和抽象概括能力,培养学生的分析与变形能力,养成用运动与发展的理念来处理数学问题的思想。
3.情感态度与价值观:通过本节课的学习,加强学生喜欢动脑的习惯,体验数学来源于生活,提高学习数学的兴趣。
●学情分析学生进入高二。
通过一年半的高中学习,学生数学学习各种能力得到提高,包括逻辑推理、抽象分析等。
学习内容上,学生较全面学习掌握函数的知识,为本节课的学习奠定一定的基础。
●教学重点(1)理解数列有关定义,(2) 数列的表示方式的理解与掌握,(3)数列通项公式求解及其应用。
●教学难点(1)数列的序号n与项a n的函数对应关系的理解;(2)数列通项公式求解(不完全归纳法)。
●教学方法①探索与启发的方法;②讨论与观察、归纳等自主学习的方法。
●教学手段⑴分组实验;⑵多媒体。
●教学过程Ⅰ.课题导入:【师】:前面,学习了正弦定理与余弦定理,本节课学习新的数学问题。
(板书)【师】:体育课上,同学们按一定顺序排队;家庭生活中将杯子按一定顺序摆成一列。
数学上也有类似排列。
Ⅱ.讲授新课一、⒈概念形成——“你能完成吗?”见《课件幻灯片2》2.概念形成——动—动,想一想(见《课件幻灯片3》)【生1】:3,-1,9,4,1,2,6,8,5,7;1,5,6,8,-1,2,4,1,3,7;【师】:通过我们的观察,以上的排列有什么共同的特点?(见《课件幻灯片3》)【生2】:(1)排列对象都是数。
(2)按数数的顺序排列起来。
【师】:回答非常正确。
(见《课件幻灯片3》)下面给出数列的定义。
数列的定义:按一定次序排列的一列数叫做数列.3.定义的理解【师】:⑴定义中关键词为“一定顺序”与“数”。
⑵再思考“什么的数列是同一数列?”(见《课件幻灯片4》)二、数列的认识1、数列的项、项序、数列的分类:(见《课件幻灯片8,9,》)2、数列的一般形式:(见《课件幻灯片10》)【师】:数列一般形式为列举式。
第二章数列2.1数列的概念与简单表示法(第一课时)一、教学目标1.核心素养通过学习数列的含义和表示,初步形成基本的数学抽象和逻辑推理能力.2.学习目标(1)通过实例,了解数列的概念.(2)理解数列的通项公式,会用通项公式写出数列的任意一项.(3)通过观察简单数列,会根据前几项写出它的通项公式.3.学习重点理解数列有关概念.4.学习难点理解数列的通项公式,根据前几项写出它的通项公式.二、教学设计(一)课前设计1.课前预习任务:预习教材P29—P30.思考:数列的概念是什么?通项公式是什么?如何根据前几项写出它的通项公式?(二)课堂设计1.问题探究问题探究一、数列的含义.●观察与思考:毕达哥拉斯学派数字神秘主义的外壳里包含了理性的内核,其关于“形数”的研究,强烈地反映了他们将数化作为几何思维元素的精神.图(1)—(4)中的点分别围成了边长为4的“正三角形”、“正方形”、“正五边形”和“正六边形”,按照这种方式给出的点的个数称为边长为的正边形数,那么边长为8的正10边形数为__________.想一想:在以前的数学学习中,我们接触了哪些具体的数列?阅读与举例:请大家阅读教材中所列举的数列例子,并试着列举生活与学习中的数列例子.(鞋子尺码的转化,棋盘中数学)问一问:(1)2,4,6,8与8,6,4,2是同一个数列吗?(2)-1,1,-1,1…是一个数列吗?想一想:请大家根据以上结论,思考什么叫做数列?一般地,按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.●数列与集合的区别与联系:(1)作为一个集合的元素,必须是_________的,同样,作为一个数列的项,同样是明确的.(2)对于给定的集合,其中的元素一定是_________的.集合中的任意两个元素都是不同的对象,相同的对象归入同一个集合时只能算作集合的一个元素.而数列中的项可以相同,甚至所有的项都可以是同一个数(即常数列).(3)对于给定的集合,其中的元素是不考虑__________的,而数列中的每一项都有固定的顺序,如果两个数列的项一样但项的顺序不同,那么这两个数列就不是同一个数列.●数列的分类:1.根据数列的项数的多少分类有穷数列:项数有限的数列.(如1,3,5,7是有穷数列)无穷数列:项数无限的数列.(如-1,1,-1,1…是无穷数列)2.根据项的大小变化分类递增数列:从第2项起,每一项都大于它的前一项的数列.递减数列:从第2项起,每一项都小于它的前一项的数列.常数数列:各项都相等.摆动数列:从第二项起,有些项大于它的前一项,有些项小于它的前一项.问题探究二、数列的通项公式●数列的通项公式结合上面的知识点以及数列与集合之间的联系与区别,能有如下的规律如果数列{}n a的第_________项与________之间的关系可以用一个公式来表示,那么这个公式叫作这个数列{}n a的_________.●数列通项公式与函数的关系对于数列{}n a 每一项的_________与这一项的对应关系可以看做序号集合到另一个数集的_________.由此可见,数列可以看成特殊的函数.数列通项公式的作用:①求数列中任意一项;②检验某数是否是该数列中的一项.●对数列的通项公式的认识:(1)表达式n a 的两层含义①_________,②_________.(2)与所有函数关系不一定有解析式一样,并不是所有数列都有通项公式.(3)数列的通项公式在形式上不一定是唯一的.如数列0,1,0,1,0,1……,你能给出多少种不同通项公式呢?问题探究三 数列的项数、项、通项公式之间有何联系?例1、写成下面数列的一个通项公式,使它的前4项分别是下列各数.()(1);(2)11n n n n a a n n ==-⋅+ 【知识点:数列的通项公式;数学思想:特殊到一般】()()()()()()()12111; 22cos 211321; 41n n n n n n a a n n a n a n π+-+==+-=-=+详解: 点拨:在求解数列的通项公式时,需从已知条件中分析项与项之间的联系以及项与项数之间的联系,寻求合理的表达式(表达式不唯一). 例2根据下面数列{}n a 的通项公式,写出前5项:(1)n a n n a n n n ⋅-=+=)1()2(;1 【知识点:数列的项与通项公式】分析:由通项公式定义可知,只要将通项公式中n 依次取1,2,3,4,5,即可得到数列的前5项解:(1) (2) 点拨:根据通项公式求项时,需注意项数与项的对应,同时注意计算(符号)例3数列{}n a 中,452+-=n n a n . ⑴18是数列中的第几项?⑵n 为何值时,n a 有最小值?并求最小值.;65;54;43;32;21.5,4,3,2,154321======a a a a a n ;5;4;3;2;21.5,4,3,2,154321-==-====a a a a a n【知识点:数列的通项公式】详解:⑴由0145184522=--⇒=+-n n n n ,解得7=n ,∴18是数列中的第7项.⑵Q 49)25(4522--=+-=n n n a n ,+∈N n ∴2=n 或3=n 时,25242)(2min -=+⨯-=n a .点拨:在求解项中最值时,需利用函数的性质,然需注意项数是正整数.在取最值时要留心.2.课堂总结【知识梳理】(1) 数列的概念:一般地,按照一定顺序排列的一列数称为数列,数列中的每一个数叫做这个数列的项.(2) 数列的分类:按照项数的多少与项之间的变化这两种方式分类.(3)数列的通项公式:项数与项之间的关系.【重难点突破】(1)数列中的数是按一定次序排列的,因此如果两个数列中的数相同而排列次序不同,那么它们就是不同数列.同时应注意,在数列定义中,并没有规定数列中的数必须不同.(2)数列可以看作是定义域为*N (或它的有限子集{}n ,,2,1⋯)的函数,当自变量从小到大依次取值时,该函数对应的一列函数值就是这个数列,如果这个对应关系能用一个表达式表示,则这个表达式即这个数列的通项公式.3.随堂检测1.数列1,0,1,0,1,……的一个通项公式是( )A.a n =2)1(11+--n B.a n =2)1(11+-+n C.a n =21)1(--n D.a n =2)1(1n --- 【知识点:数列的通项公式;数学思想:归纳总结】解:B 将数列{21}与{2)1(1+-n }对应项相加得到的数列即是.故选B. 2.设数列11,22,5,2,……则25是这个数列的( )A.第六项B.第七项第八项 D.第九项【知识点:数列的项】解:B 可观察所给数列的通项公式是a n =13-n ,由5213=-n 得n =7 故选B.3.已知a n =n 2+n ,那么( )A.0是数列中的一项是数列中的一项C.702是数列中的一项不是数列中的一项【知识点:数列的通项公式;数学思想:一般到特殊】解:C 由n 2+n =702即n 2+n -702=0得:n =26或n =-27(舍去故选C 4.函数f (n )=2)1()1(+-n n 当自变量依次取正整数1,2,3,…,n ,…时对应的函数值,以数列形式表示为( )A.-1,1,--1,-1,1,1,-1,- C.-1,-1,1,1,-1,-1, (2)1()1(+-n n D.-1,-1,1,1,-1,-1,…,2)1()1(+-nn【知识点:数列的项,通项公式】解:D 显然数列{f (n )}为无穷数列5.已知数列{a n }的通项公式为a n =9n (32)n ,则此数列的前4项分别为______. 【知识点:数列的通项公式】解:6,8,8,964 a 1=6,a 2=8,a 3=8,a 4=964 (三)课后作业基础型 自主突破1.根据下面数列的通项公式,写出前5项:(1)n a n n a n n n ⋅-=+=)1()2(;1【知识点:数列的通项公式】解:(1);65;54;43;32;21.5,4,3,2,154321======a a a a a n (2);5;4;3;2;21.5,4,3,2,154321-==-====a a a a a n 2.写出下面数列的一个通项公式,使它的前4项分别是下列各数:(1)1,3,5,7; (2)515;414,313;2122222---- ;(3)-211⨯,321⨯,-431⨯,541⨯. 【知识点:数列的项与通项公式】解:(1)12-=n a n (2)1)1(2+-=n n n a n (3))1(1)1(+-=n n a n n 3.已知数列的第1项是1,以后的各项由公式111-+=n n a a 给出,写出这个数列的前5项. 【知识点:数列的通项公式】解:3211,211,123121=+==+==a a a a a ,58,3511534==+=a a a4.已知数列{}n a 中,n a a a a a n n n (3,2,12121--+===≥3),试写出数列的前4项.【知识点:数列的通项公式】解:233,73,2,123412321=+==+===a a a a a a a a能力型 师生共研5.在数列{a n }中,,,,,c b a c bn an a n 其中+=均为正实数,则n a 与1+n a 的大小关系是( ) A .1+<n n a a B .1+>n n a a C .1+=n n a a D .不能确定【知识点:数列的通项公式,大小比较】解:答案A6.k 为正偶数,)(k p 表示等式)214121(21114131211k k k k k +++++=--++-+- 则)2(p 表示等式 ,)4(p 表示等式 .【知识点:数列的通项公式】解:)441241(24131211;2212211+++=-+-+⨯=- 7.已知数列{}n a 中,11=a ,1211+=--n n n S S S ,求{}n a 的通项公式. 【知识点:数列的通项公式与前n 项和】解:21121111+=+=---n n n n S S S S ∴⎭⎬⎫⎩⎨⎧n S 1)32)(12(2---n n ∴⎪⎩⎪⎨⎧---=3211211n n a n )2()1(≥=n n 8.已知数列{}a n :…,…,…,,,1001001002100133323122211++++++ ①求证:()12121221≥=+-+=-+n n n a a n n .②设()N n a a b n n n ∈=+11,求n b b b +++…21 【知识点:数列的通项公式】解:①由条件,()212122121+=+=+++=+++=n n n n n n n n n a n …… ∴221+=+n a n ;∴()12121221≥=+-+=-+n n n a a n n ②()()()(),214421122211++=++=++=n n n n n n b n ·∴⎪⎭⎫ ⎝⎛+-+=21114n n b n⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛+-+++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=+++2121421114413143121421n n n b b b n ………。
数列的概念与简单表示法(第一课时)教学设计案例
一、教材与教学分析
1.数列在教材中的地位
根据新课程的标准,“数列”这一章首先通过“三角形数”、“正方形数”等大量的实例引入数列的概念,然后将数列作为一种特殊函数,介绍数列的几种简单表示法,等差数列和等比数列.这样就把生活实际与数学有机地联系在一起,这是符合人们的认识规律,让学生体会到数学就在我们身边.
作为数列的起始课,为达到新课标的要求,从一开始就培养学生的研究意识、创新意识、合作意识和应用意识,打造数列教与学的良好开端。
教学中从日常生活中大量实际问题入手,探索并掌握它们的一些基本数量关系,感受数列模型的广泛应用(如存款利息、购房贷款等与人们生活联系密切的现实问题).2.教学任务分析
(1)了解数列的概念
新课标的教学更贴近生活实际.通过实例,引入数列的概念,理解数列的顺序性,感受数列是刻画自然规律的数学模型.了解数列的几种分类.
(2)了解数列是一类离散函数,体会数列中项与序号之间的变量依赖关系.
3.教学重点与难点
重点:理解数列的概念,认识数列是反映自然规律的基本数学模型.
难点:认识数列是一种特殊的函数,发现数列与函数之间的关系
二、教学方法与学习方法
启发式教学法——以设问和疑问层层引导,激发学生,启发学生积极思考,逐步从常识走向科学,将感性认识提升到理性认识,培养和发展学生的抽象思维能力。
探究教学法——引导学生去疑;鼓励学生去探;激励学生去思,培养学生的创造性思维和批判精神。
合作学习——通过组织小组讨论达到探究、归纳的目的。
三、教学情境设计
四、教学评价与反思
1、通过概念课教学,力求使学生明确(1)概念的发生、发展过程以及产生背景;(2)概念中有哪些规定和限制的条件,它们与以前的什么知识有联系;(3)概念的名称、表述的语言有何特点;(4)概念有没有等价的叙述;(5)运用概念能解决哪些数学问题等。
目前,课时不足是数学新课程教学的突出问题,这会使概念教学受到严重冲击。
我认为在概念教学中多花一些时间是值得的,因为只有理解掌握了概念,才能更好地帮助学生落实“双基”,更好地帮助学生认识数学,认识数学的思想和本质,进一步地发展学生的思维,提高学生的解题能力。
2、让学生置身于知识的发生、发展过程中,经历直观感知、观察发现、抽象概括、符号表示等思维过程,展示“数学定义的严谨性”是对事物的感性认识的升华和提高,有助于提高学生分析问题和解决问题的能力。
3、教学通过丰富的实例展开的,这一方面可以使学生体会数列与现实世界的联系,另一方面,活生生的例子也会增强学生学习数列的兴趣,产生学习数学的积极情感,使他们感受到数列离自己很近,数列有用。