GPS动态定位测量
- 格式:ppt
- 大小:999.00 KB
- 文档页数:30
GPS实时动态(RTK)测量在工程测量中的应用研究GPS实时动态(RTK)测量技术是一种通过全球定位系统(GPS)接收机和移动电话网络实现实时差分修正的技术。
它可以实现高精度、即时的测量,广泛应用于工程测量中。
本文将围绕GPS实时动态(RTK)测量在工程测量中的应用进行研究,并探讨其在不同领域的具体应用案例和发展前景。
一、GPS实时动态(RTK)测量技术概述该技术的原理是通过在地面上设置固定的参考站,利用高精度的GPS接收机实时观测卫星信号,并将观测数据通过移动电话网络实时传输到需要测量的移动站,进行实时差分修正,从而实现高精度、即时的测量。
这种技术通常需要在参考站和移动站之间建立一定范围内的通讯网络,因此适用范围会受到区域性的限制。
1. 建筑工程测量在建筑工程领域,GPS实时动态(RTK)测量技术可以用于建筑物的准确定位和立面测量。
通过在参考站和移动站之间建立通讯网络,可以实现对建筑物位置和立面的高精度实时测量,从而提高建筑施工的精度和效率。
2. 道路施工测量在桥梁工程领域,GPS实时动态(RTK)测量技术可以用于桥梁结构的监测和测量。
通过实时差分修正,可以实现对桥梁结构的高精度实时监测和测量,提高桥梁结构的安全性和可靠性。
4. 矿山测量以上案例展示了GPS实时动态(RTK)测量技术在工程测量中的广泛应用和重要作用,它可以实现对各种工程测量项目的高精度、即时的测量需求,提高工程测量的精度和效率。
随着全球定位系统(GPS)技术的不断发展和移动电话网络的普及,GPS实时动态(RTK)测量技术将有更广阔的应用前景。
未来,随着移动通信技术的不断升级和新型卫星导航系统的逐渐成熟,该技术将逐步实现全球化覆盖和高精度定位,为工程测量领域带来更多的机遇和挑战。
随着人工智能、大数据和云计算等新兴技术的发展,GPS实时动态(RTK)测量技术也将与这些技术进行融合,实现更智能化、高效化的工程测量。
未来,该技术有望在智慧城市、智能交通、精准农业等领域展现更多的应用场景,为工程测量领域带来更多的创新和发展机遇。
GPS测量流程 gps的测量方法引言全球定位系统(GPS)是一种使用卫星信号来测量地球上位置的技术。
在现代社会中,GPS已经成为导航、定位和地理测量的重要工具之一。
本文将介绍GPS测量的基本原理和流程,以及常用的GPS测量方法。
GPS测量原理GPS测量的基本原理是通过接收来自卫星的信号,并利用卫星与接收器之间的时间差来计算位置。
GPS系统由全球定位系统卫星组成,这些卫星通过广播精确的时间信号和位置信息。
接收器接收到来自多颗卫星的信号,并进行计算,最终确定接收器的位置。
GPS测量流程GPS测量的流程可以分为以下几个步骤: 1. 卫星搜索:GPS接收器首先会搜索附近的卫星信号。
接收的卫星数量越多,测量的准确性越高。
2. 信号接收:接收器会接收来自多颗卫星的信号,并记录下每个卫星的时间和位置信息。
3. 信号处理:接收器会对接收到的信号进行处理,通过计算时间差来确定接收器与卫星的距离。
4. 位置计算:根据接收器与多颗卫星的距离,利用三边测量法或者多边测量法计算接收器的位置。
5. 误差校正:由于GPS系统存在一些误差,比如大气延迟和钟差等,接收器需要进行误差校正,以提高测量的准确性。
6. 数据输出:最后,接收器将计算得到的位置信息输出给用户。
GPS测量方法在实际的GPS测量中,有多种方法可以使用,下面介绍几种常用的GPS测量方法。
单点定位法单点定位法是最简单的GPS测量方法,它只使用一台GPS接收器进行测量。
这种方法的精度相对较低,通常在10米到100米之间。
单点定位法的步骤如下: 1. 设置测量参数:包括卫星系统的选择、频率的选择等。
2. 开始测量:接收器开始接收卫星信号,并记录下时间和接收到的卫星数量。
3. 数据处理:根据接收到的信号和时间信息,计算接收器的位置。
由于单点定位法没有使用其他接收器的信息作为参考,因此误差较大。
4. 结果输出:将计算得到的位置信息输出。
差分定位法差分定位法是一种通过比较两个或多个GPS接收器之间的差异来提高测量精度的方法。
GPS RTK实时动态测量实验报告姓名:**班级:2004一班专业:地理信息系统组号: 3 组郑州大学环境与水利学院2007年7月7日实验名称 GPS RTK实时动态测量实验一、实验概述本次实验是在原有传统控制测量的数据点上进行GPS RTK实时动态测量,选取的是郑州大学新校区环保馆前空地。
二、实验目的1.了解GPS RTK测量系统的组成,理解其基本原理;2.学会正确设置GPS RTK测量系统的基准站和流动站并在点位上进行实时动态测量;三、实验原理介绍GPS RTK实时动态测量技术的基本原理也即载波相位差分定位技术,主要介绍求差法即可。
要有数学公式。
GPS RTK实时动态测量技术其基本原理是采用了载波相位差分定位技术。
该定位技术具体而言又可分为两种方法,第一种方法,基准站实时将载波相位的改正量发送给用户站,以对流动站的载波相位进行改正实现定位。
该方法称之为改正法,另一种为求差法,这种方法则是将基准站的载波相位发送给流动站,在用户站对载波相位观测值求差,获得诸如静态相对定位的公式(1)、(2)、(3)的单差、双差、三差求解模型,并采用与静态相对定位类似的求解方程进行求解。
公式(1)单差观测方程:公式(2)双差观测方程:公式(3)三差观测方程:与静态相对定位不同的是,动态相对定位求解的是用户的位置,因此其定位的程序为:并由流动站将观测值求差进行坐标解算此处给出求差法的定位程序:(1)基准站站在保持不动的情况下,静态观测若干历元,并将基准站上的载波相位观测值通过数据链传送给流动站,在流动站对载波相位观测值求差,获得静态相对定位的单差、双差和三差模型,然后按照静态相对定位法求出整周未知数,这一过程称为初始化阶段。
(2)将求出的整周未知数代入双差模型,此时双差只包括ΔX、ΔY、ΔZ三个坐标位置分量,所以只要有4颗以上的卫星的一个历元的观测值,就可实时地求解出三个位置分量。
(3)将求出的坐标增量ΔX、ΔY、ΔZ加入已知的基准站的WGS-84地心坐标X k’、Y k’、Z k’即可得到流动站的地心坐标,即然后利用已经获得的坐标转换参数,将流动站的坐标转换到当地的空间直角坐标系中。
第一章绪论1.1概述GPS定位在测量中有很大的应用潜力。
近年来,GPS接收机的小型化、小功耗给其应用于测量提供了有利的条件。
在软件方面,GPS的基线解算、平差也有了很大的发展,这些都促使GPS在测量中得到了较为广泛的应用。
尤其近几年,动态GPS(RTK)的出现,使测量工程缩短了工期,降低了成本,减少了人员的投入,这些方面充分体现了GPS技术较常规技术的优越性。
尽管动态GPS(RTK)的出现,使观测时间缩短,人员投入减少,并且不受网形和通视等条件的影响,提高了工作效率。
但是,动态GPS(RTK)测量没有静态GPS测量的同步环、异步环及附合线路等约束条件,它是以基准站为中心呈放射状,以支点形式分布的散点,从而无法直接衡量其观测精度。
因此,作为新生事物的动态GPS(RTK)测量在实际生产中的精度成为测量界关注的重点。
为了探求动态GPS(RTK)测量的精度,我分析和研究了动态GPS(RTK)测量的各种资料及其观测方法,同时对其进行了实测对比和研究。
通过一系列的研究,对动态GPS(RTK)测量的精度有了一定的认识,进一步提高了观测精度和工作效率。
1.2 RTK技术的应用现状现阶段的RTK技术主要应用包括以下几个方面,很多的应用都属于尝试性的,有待于更进一步的研究探讨1.2.1施工放样自从GPS差分定位技术出现以后,就有了针对施工放样的测量方法。
GPS实时动态差分测量的实时性正是针对施工放样而设计的,RTK技术是实时动态差分测量的进一步发展,它的服务对象仍然是工程施工放样。
RTK技术的出现,使得GPS测量的应用领域进一步拓宽。
近年来,RTK测量在道路施工中的应用越来越广,不仅用于道路中线及边线的施工放样,同时还用于挖填土方的测量,并且取得了良好的效果。
在各类管线放样施工中,RTK技术也表现出其绝对优势,如在国家重点工程“西气东输”工程中,RTK测量表现出了无与伦比的优越性;在环渤海石油开发中,海底电缆及石油天然气输送管线的铺设也都采用了RTK放样方法。
GPS动态测量中的速度测量技巧GPS(Global Positioning System,全球定位系统)是一种常用的测量技术,可广泛应用于地理定位、导航和测量领域。
其中,GPS动态测量中的速度测量技巧是非常重要的一项技术。
本文将深入探讨在GPS动态测量中常用的速度测量技巧,帮助读者更好地理解和应用这一技术。
深入理解GPS动态测量GPS动态测量是指在物体运动过程中,通过对移动物体位置的连续测量,计算其运动速度和方向的过程。
它可以在车辆导航系统、飞行器控制系统、船舶导航系统等领域发挥重要作用。
在GPS动态测量中,速度的测量是基础且关键的一部分。
GPS测量原理在深入探究具体的速度测量技巧之前,让我们先了解一下GPS的测量原理。
GPS利用卫星信号和接收机接收到的时间差来测量物体在空间中的位置。
通过接收多颗卫星的信号,可以计算出物体的三维位置信息。
速度测量技巧之载波相位差一种常用的速度测量技巧是基于载波相位差的方法。
在GPS接收机中,通过测量接收到的GPS卫星信号的载波相位,可以估算出物体的速度。
这是由于载波相位与距离具有线性关系,通过测量载波相位的变化,可以得出物体的速度变化。
速度测量技巧之距离差分法另一种常用的速度测量技巧是基于距离差分法的方法。
距离差分法利用GPS信号的测距精度,通过计算两个时刻测量到的位置之间的距离变化,来估计物体的速度。
这种方法相对较简单,适用于对速度变化要求不是特别精确的应用场景。
速度测量技巧之模糊度解算模糊度解算是一种高精度的速度测量技巧。
在实际应用中,由于信号传播中的多路径效应等干扰因素,GPS信号的载波相位可能会受到模糊度的影响。
通过解算这些模糊度,并与载波相位进行计算,可以获得更精确的速度测量结果。
速度测量技巧之差分GPS技术差分GPS技术是一种用于提高GPS动态测量精度的技术。
它利用多个接收机同时接收卫星信号,并通过测量接收到的信号的差异来消除误差,从而提高测量精度。
浅谈GPS动态测量技术优劣性本文叙述了GPS动态测量技术(RTK)的基本工作原理,并对GPS动态测量技术在存在的优越性和不足分别进行分析,使得在实际工作中发挥测量技术的优点并考虑其不足,提出更好的技术方案。
标签RTK;动态测量;优劣性;1 GPS动态测量技术的工作原理GPS动态测量技术(RTK)的基本工作原理可分为两部分阐述。
1.1 实时载波相位差分众所周知,我们在进行GPS定位时,会受到各种各样因素的影响,为了得到更精确的数据消除误差源,必须将两台以上的GPS接收机同步工作,GPS静态测量是将各个接收机独立工作观测,并使用处理软件进行差分解算。
在RTK 测量单方面来说,仍然是差分解算,但这是实时的差分计算。
所以说,两台接收机(一台流动站,一台基准站)都在观测卫星数据,同时,基准站也通过接收机发射电台,把所接收到的载波相位信号(或载波相位差分改正信号)发射出去;那么,流动站同时接收卫星信号和电台接收基准站的电台信号;在这两信号的基础上,流动站上的固化软件便可以实现差分计算,从而可以精确地定出基准站与流动站的空间相对位置关系。
在这测量的过程中,也会有误差,一般是由于观测条件、信号源等的影响,也叫做仪器标定误差,一般高程为2cm+1ppm、平面为1cm+1ppm。
1.2 坐标转换空间相对位置关系不是我们要的最终值,因此还有一步工作就是把空间相对位置关系纳入我们需要的坐标系中。
GPS直接反映的是WGS-84坐标,而我们平时用的则是北京54坐标系或西安80坐标系,所以要通过坐标转换把GPS的观测成果变成我们需要的坐标。
这个工作有多种模型可以实现,我们的软件采用的是平面与高程分开转换,平面坐标转换采用先将GPS测得成果投影成平面坐标,再用已知控制点计算二维相似变换的四参数,高程则采用平面拟合或二次曲面拟合模型,利用已知水准点计算出该测区的待测点的高程异常,从而求出他们的高程。
坐标转换也会带来误差,该项误差主要取决于已知点的精度和已知点的分布情况。
GPS测量仪器使用步骤使用方法概述全球定位系统(GPS)是一种卫星导航系统,它能够提供高精度的位置和时间数据。
GPS测量仪器是利用GPS技术进行测量、定位和导航的工具。
本文将介绍GPS测量仪器的使用步骤和使用方法。
步骤一:准备工作在使用GPS测量仪器之前,需要进行一些准备工作: 1. 确保你已经了解GPS测量的基本原理和相关术语。
2. 确认测量场地的条件和环境,以确定是否需要采用附加的测量方法或技术。
3. 检查GPS测量仪器的电量和存储空间,并确保其正常运作。
步骤二:设置测量参数在开始测量之前,需要设置一些测量参数: 1. 打开GPS测量仪器,进入设定菜单。
2. 根据实际需要选择测量模式,例如静态模式或动态模式。
3. 设置采样频率和采样时长,以平衡数据的准确性和存储空间的需求。
4. 确定是否需要设置差分GPS(DGPS)或实时运动定位系统(RTK)等增强模式。
步骤三:安装GPS测量仪器在使用GPS测量仪器之前,需要正确安装和设置设备: 1. 将GPS测量仪器放置在固定的基准点上,使其能够稳定地接收卫星信号。
2. 将天线正确连接到GPS测量仪器,并确保其与卫星的连通性。
3. 调整和校准仪器以确保其水平仪和指南针的准确性。
4. 确保设备没有任何干扰源,例如金属结构或电子设备。
步骤四:开始测量一切准备就绪后,可以开始进行GPS测量: 1. 打开GPS测量仪器,并确保其能够接收到卫星信号。
2. 选择开始测量,在确定位置和时间后,开始记录数据。
3. 在测量过程中,保持设备和测量场地的稳定性。
4. 根据需要,可以在测量过程中进行标记或记录附加信息。
步骤五:数据处理与分析完成测量后,需要对数据进行处理和分析: 1. 将测量仪器连接到计算机或数据处理设备上。
2. 导入测量数据,并使用相关软件对其进行处理和分析。
3. 清除或修正任何错误或异常数据。
4. 根据需要生成测量报告或图表。
步骤六:维护和保养GPS测量仪器是一种精密仪器,需要进行维护和保养: 1. 定期检查和清洁GPS测量仪器,特别是天线和接口部分。
动态GPS(RTK)测量精度浅析近年来,GPS接收机的小型化、小功耗给其应用于测量提供了有利的条件。
在软件方面,GPS的基线解算、平差也有了很大的发展,这些都促使GPS在测量中得到了较为广泛的应用。
尤其近几年,动态GPS(RTK)的出现,使测量工程缩短了工期,降低了成本,减少了人员的投入,这些方面充分体现了GPS技术较常规技术的优越性。
1、GPS-RTK的测量原理RTK是根据GPS的相对定位概念,将一台接收机放在已知点上(称为基准站),另一台或几台接收机放在新点上(称为移动站),同步采集相同卫星的信号,见图1。
将这些观测值进行差分,可削弱和消除轨道误差、钟差、大气误差等的影响,实时定位精度能大大提高。
RTK采用载波相位观测值,能直接导出卫星和天线之间的总波长数,并能解算模糊值。
在通常的GPS测量中,需要将两点之间的观测值进行后处理才能求出总波长数和模糊值。
在RTK中,基准站的观测值是通过无线电数据链播发给移动站进行数据的实时处理。
由于近年来研究出实时解算模糊值的算法(简称为"途中"解算,或称为OTF),使RTK成为可能。
这些求模糊值的算法能在接收机运动过程中解算模糊值。
目前,在正常条件下,用RTK解算模糊值只需要10-60 s的观测值。
一旦求出模糊值时,即可开始RTK测量。
当卫星失锁,或至基地站的数据链中断时,此模糊值即已失效。
此时,必须重新求定模糊值。
但是,这一点在实际应用中不是大问题。
因为多数观测者在各点之间迁站都是步行,即使卫星失锁或数据链的信号中断,在步行途中,RTK系统也能自动进行模糊值初始化。
2、GPS-RTK的应用范围2.1、施工放样GPS实时动态差分测量的实时性正是针对施工放样而设计的,RTK技术是实时动态差分测量的进一步发展,它的服务对象仍然是工程施工放样。
RTK技术的出现,使得GPS测量的应用领域进一步拓宽。
近年来,RTK测量在道路施工中的应用越来越广,不仅用于道路中线及边线的施工放样,同时还用于挖填土方的测量,并且取得了良好的效果。
GPS_RTK测量方式及其原理GPS_RTK(Real-Time Kinematic)是一种实时动态定位技术,它通过接收卫星信号,同时使用基准站和移动站的数据进行数据处理,从而实现高精度的测量结果。
GPS_RTK在土地测量、建筑施工和导航等领域应用广泛。
1.单站RTK测量:单站RTK测量是指只使用一个移动站,通过与基准站接收的GPS信号进行差分处理,从而得到高精度测量结果。
这种方式适用于需要实时获取位置信息的应用场景,如导航和车辆跟踪等。
单站RTK测量的原理是基于GPS系统的差分定位技术。
移动站接收到的卫星信号与基准站接收到的卫星信号之间存在误差,这些误差包括卫星轨道误差、大气延迟和钟差等。
通过基准站和移动站之间的无线通信,基准站将接收到的卫星信号数据经过差分处理后发送给移动站,移动站利用这些差分数据对自身接收到的卫星信号数据进行修正,进而得到高精度的测量结果。
2.无站RTK测量:无站RTK测量是指利用多个移动站和一个或多个基准站同时进行测量,从而实现相对静态或时变的高精度定位。
无站RTK测量适用于需要精确掌握多个测点的相对位置关系的应用场景,如地形测量和建筑施工。
无站RTK测量的原理是通过多个移动站和一个或多个基准站之间的差分定位技术。
基准站接收到的卫星信号数据经过差分处理后发送给所有的移动站,移动站利用这些差分数据进行位置计算,从而得到相对静态或时变的高精度定位结果。
移动站之间可以通过无线通信交换差分数据,提高整个测量系统的灵活性和可靠性。
3.网络RTK测量:网络RTK测量是指利用一个或多个基准站和一个或多个移动站进行测量,通过互联网连接不同位置的基准站和移动站,实现高精度定位和数据传输。
网络RTK测量适用于需要在大范围内进行测量的应用场景,如道路巡航和城市规划等。
网络RTK测量的原理是基于无线通信和互联网技术,将不同位置的基准站和移动站进行连接。
基准站接收到的卫星信号数据经过差分处理后发送给互联网上的服务器,移动站通过互联网连接到服务器,接收服务器发送的差分数据进行定位计算,从而实现高精度测量。
G P S动态测量方法 Revised by Liu Jing on January 12, 2021一、R T K的作业过程1.启动基准站将基准站架设在空旷的控制点上,正确连接各仪器电缆,打开仪器,把基准站设置为动态测量模式。
2、建立新工程,定义坐标系统新建一个文件夹,设置好测量参数,如椭球参数、投影参数等。
这个文件夹中包括许多小文件,它们分别是测量的成果文件和各种参数设置文件,如*.dat、*.cot、*.rtk、*.ini 等打开手簿到主页面,点击设置—单位设置第一项,设置坐标显示格式设置,即中央经线设置1)在“中央经线”项里输入你当地的中央子午线经度,在“尺度比(Scale)”里输入1.00000002)在“横坐标平移量(False Easting)”里输入+500000,在“纵坐标平移量(False Northing)”输入0.0。
这几个参数输入后把光标移到下面的Save(保存),这时,位置显示格式设置好了,即以投影坐标形式显示,单位是“米”,选这种格式显示的好处就是:显示的结果与地形图上的坐标一致,在实际工作中便于定位。
第二项,“坐标系统(Map Datum)”,点击它,在出现的列表项里选择“用户(User)”,点击后出现“用户参数(User Datum)”参数项包括:DX,DY,DZ,DA,DF,这组参数各地的值都不一样,要到当地测绘部门获取,设置好参数后,同样点击“保存”。
第三项,“距离和速度”单位,我们选择“米制(Metric)第四项,高度单位选择“米(Meters)”;第五项,“压力单位”,选择“毫巴(Millibars)”,至此,你的手持GPS 机已经根据你的需要设置好了,点击页面切换键返回到主菜单3、坐标转换即点校正GPS测量的为WGS-84系坐标,而我们通常需要的是在流动站上实时显示国家坐标系或当地独立坐标系下的坐标,因此要进行转换。
点校正可以通过两种方式进行。
(1)在已知转换参数的情况下。
GPS_RTK_测量技术要求GPS_RTK (Real-Time Kinematic) 是一种实时动态精密定位技术。
它通过接收全球定位系统 (GPS) 卫星发射的无线信号,并以测量卫星信号传播的时间差来计算接收器和卫星之间的距离。
通过同时接收多颗卫星的信号并进行复杂的计算,可以实现高精度、实时的动态定位。
为了实现高精度的GPS_RTK测量,有一些技术要求需要考虑和满足。
以下是一些常见的GPS_RTK测量技术要求:1.高精度天线:GPS_RTK的精度受到接收器和天线的性能限制。
为了获得高精度的测量结果,需要使用高精度的天线。
天线应具有低多路径效应、高增益和宽频响特性,以确保接收到的卫星信号质量良好。
2.快速解算算法:GPS_RTK要求在实时环境中获得动态的定位结果,因此需要使用快速的解算算法。
这些算法应具有较低的计算复杂度和高效的计算速度,以确保在限定的时间内获得解算结果。
3.多颗卫星接收:为了提高定位精度,需要接收尽可能多的卫星信号。
通过同时接收多颗卫星的信号并进行多普勒频移和相位差测量,可以减小错误影响并增强定位精度。
4.数据实时传输:GPS_RTK需要实时传输卫星和接收机之间的数据,以便进行解算。
数据传输应具有高带宽和低延迟,以确保数据的实时性和准确性。
5.数据同步和时钟校准:GPS_RTK使用多颗卫星的信号进行复杂的计算,要求接收机和卫星之间的数据具有同步和准确的时间戳。
此外,接收机的时钟需要进行校准,以确保精确的时间测量。
6.网络地面参考站:为了提供全球范围的高精度动态定位,GPS_RTK 需要广播网络地面参考站的位置和误差信息。
这些参考站应该分布在广泛的地理区域,并通过无线网络实时广播其信息。
7.高精度误差建模:GPS_RTK的精度受到多种误差的影响,包括大气延迟、多路径效应和钟差等。
为了提高定位精度,需要进行高精度的误差建模和校正。
这些模型应该考虑不同的环境条件和地理位置因素,并进行实时更新和补偿。