2017年普通高考理科数学模拟试卷及答案
- 格式:doc
- 大小:1.37 MB
- 文档页数:7
2017年河南省郑州市高考数学三模试卷(理科)(解析版)2017年河南省郑州市高考数学三模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项符合题目要求。
1.设命题p:∀x>,log2x<2x+3,则¬p为()A。
∀x>,log2x≥2x+3B。
∃x>,log2x≥2x+3C。
∃x>,log2x<2x+3D。
∀x<,log2x≥2x+32.已知复数m=4﹣xi,n=3+2i,若复数m+n∈R,则实数x的值为()A。
﹣6B。
6C。
7D。
53.已知双曲线$\frac{x^2}{9}-\frac{y^2}{4}=1$,焦点在y 轴上,若焦距为4,则a等于()A。
$\sqrt{13}$B。
$\sqrt{15}$C。
5D。
$\sqrt{17}$4.已知$\frac{x}{a}+\frac{y}{b}=1$,$\frac{x}{b}+\frac{y}{a}=1$,则$\frac{x^2}{a^2}+\frac{y^2}{b^2}$的值等于()A。
2B。
1C。
$\frac{1}{2}$D。
05.设集合A={x1,x2,x3,x4},$x_i∈\{-1,1\}$,$i\in\{1,2,3,4\}$,那么集合A中满足条件“$x_1^2+x_2^2+x_3^2+x_4^2≤3$”的元素个数为()A。
60B。
65C。
80D。
816.如图是某个几何体的三视图,则这个几何体体积是()A。
48B。
72C。
96D。
1207.设实数x,y满足$x^2+y^2=25$,$xy=12$,则$x+y$的最大值为()A。
25B。
49C。
12D。
248.已知等比数列{an},且$a_6+a_8=\frac{\pi^2}{2}$,则2xy的最大值为()A。
$\pi^2$B。
$4\pi^2$C。
$8\pi^2$D。
$16\pi^2$9.若实数$a$、$b$、$c∈R^+$,且$ab+ac+bc+2\sqrt{(abc)^2}=1$,则$2a+b+c$的最小值为()A。
2017年普通高等学校招生统一考试全国卷Ⅲ理科数学一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={}22x y y x│,则A B=(,)(,)1│,B={}x y x y+=中元素的个数为A.3 B.2 C.1D.0【答案】B【解析】【考点】交集运算;集合中的表示方法。
【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件。
集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性。
2.设复数z 满足(1+i)z=2i ,则∣z ∣= A .12 BCD .2【答案】C 【解析】【考点】 复数的模;复数的运算法则 【名师点睛】共轭与模是复数的重要性质,注意运算性质有: (1)1212z zz z ±=± ;(2) 1212z z z z ⨯=⨯;(3)22z z z z⋅== ;(4)121212z z z z z z -≤±≤+ ;(5)1212z zz z =⨯ ;(6)1121z z z z =。
3.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳【答案】A【解析】动性大,选项D说法正确;故选D。
【考点】折线图【名师点睛】将频率分布直方图中相邻的矩形的上底边的中点顺次连结起来,就得到一条折线,我们称这条折线为本组数据的频率折线图,频率分布折线图的的首、尾两端取值区间两端点须分别向外延伸半个组距,即折线图是频率分布直方图的近似,他们比频率分布表更直观、形象地反映了样本的分布规律。
— 高三理科数学(模拟二)—DC B A z yox2017届江西省南昌市高三年级第二次模拟高考数学(理)试题卷一.选择题:共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合{lg(32)}A x y x ==-,2{4}B x x =≤, 则A B =U ( )A. 3{2}2x x -≤<B. {2}<x xC. 3{2}2x x -<< D. {2}≤x x2.若ii 12ia t +=+(i 为虚数单位,,a t R ∈),则t a +等于( ) A. 1- B. 0 C. 1 D. 23.已知随机变量ξ服从正态分布2(,)N μσ,若(2)(6)P P ξξ<=>0.15=,则(24)P ξ≤<等于( )A. 0.3B. 0.35C. 0.5D. 0.7 4.已知函数()f x 在R 上可导,则“0'()0f x =”是“0()f x 为 函数()f x 的极值”的( )A. 充分不必要条件B. 充要条件C. 必要不充分条件D. 既不充分也不必要条件 5.执行如右图程序框图,输出的S 为( )A.17 B. 27 C. 47 D. 676.已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( )A. 110B. 55C. 50D. 不能确定7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标分别是1(0,0,0),(1,0,1,(0,1,1),(,1,0)2),绘制该四面体三视图时, 按照如下图所示的方向画正视图,则得到左视图可以为( )12348.《九章算术》卷第五《商功》中,有问题“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈.问积几何?”,意思是:“今有底面为矩形的屋脊状的楔体,下底面宽3丈,长4丈;上棱长2丈,无宽,高1丈(如图).问它的体积是多少? ”这个问题的答案是()A. 5立方丈B. 6立方丈C.7立方丈 D. 9立方丈9.已知抛物线2:4C y x=,过焦点F的直线与C相交于,P Q两点,且,P Q两点在准线上的投影分别为,M N两点,则MFNS∆=()A.83B.3C.163D.310.函数22sin33([,0)(0,])1441xy xxππ=∈-+U的图像大致是()A. B. C. D.11.若对圆22(1)(1)1x y-+-=上任意一点(,)P x y,|34||349|x y a x y-++--的取值与,x y 无关,则实数a的取值范围是()A. 4a≤- B. 46a-≤≤ C. 4a≤-或6a≥ D. 6a≥12.已知递增数列{}n a对任意*n N∈均满足*,3nn aa N a n∈=,记123(*)nnb a n N-⋅=∈,则数列{}nb的前n项和等于()A. 2n n+ B.121n+- C.1332n n+-D.1332n+-第Ⅱ卷(非选择题部分,共90分)本卷包括必考题和选考题两个部分. 第13题~第21题为必考题,每个考生都必须作答. 第22题~第23题为选考题,考生根据要求作答.二.填空题:本大题共4小题,每小题5分,共20分.13.已知向量(3,4)a=r,(,1)b x=r,若()a b a-⊥r r r,则实数x等于.14.设2521001210(32)x x a a x a x a x-+=++++L,则1a等于.15.已知等腰梯形ABCD中AB//CD,24,60AB CD BAD==∠=︒,双曲线以,A B为焦点,且与线段CD(包括端点C、D)有两个交点,则该双曲线的离心率的取值范围是.—高三理科数学(模拟二)—— 高三理科数学(模拟二)—16.网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2017年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足231x t =-+函数关系式.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是 万元.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分12分)已知函数()2sin sin(+)3f x x x π=⋅.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)锐角ABC ∆的角,,A B C 所对边分别是,,a b c ,角A 的平分线交BC 于D ,直线x A = 是函数()f x图像的一条对称轴,2AD ==,求边a .18.(本小题满分12分)近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.伴随着国内市场增速放缓,国内有实力企业纷纷进行海外布局,第二轮企业出海潮到来.如在智能手机行业,国产品牌已在赶超国外巨头,某品牌手机公司一直默默拓展海外市场,在海外共设30多个分支机构,需要国内公司外派大量70后、80后中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从70后和(Ⅰ)根据调查的数据,是否有以上的把握认为“是否愿意被外派与年龄有关”,并说明理由;(Ⅱ)该公司举行参观驻海外分支机构的交流体验活动,拟安排6名参与调查的70后、80后员工参加.70后员工中有愿意被外派的3人和不愿意被外派的3人报名参加,从中随机选出3人,记选到愿意被外派的人数为x ;80后员工中有愿意被外派的4人和不愿意被外派的2人报名参加,从中随机选出3人,记选到愿意被外派的人数为y,求x y <的概率. (参考公式:2()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++).— 高三理科数学(模拟二)—F E D CBAS19.(本小题满分12分)已知四棱锥S ABCD -中,底面ABCD 是边长为2的菱形,60BAD ∠=︒,SA SD SB ===E 是棱AD 的中点,点F 在棱SC 上,且SF SC λ=u u u r u u u r,SA //平面BEF .(Ⅰ)求实数λ的值;(Ⅱ)求二面角S BE F --的余弦值.20.(本小题满分12分)如图,椭圆2222:1(0)x y C a b a b +=>>的右顶点为(2,0)A ,左、右焦点分别为1F 、2F ,过点A 且斜率为12的直线与y 轴交于点P ,与椭圆交于另一个点B ,且点B 在x 轴上的射影恰好为点1F (Ⅰ)求椭圆C 的标准方程; (Ⅱ)过点P 且斜率大于12的直线与椭圆交于,M N 两点 (||||PM PN >),若:PAM PBN S S λ∆∆=,求实数λ21.(本小题满分12分)已知函数2()ln(1)f x x x ax bx =--+(,,,a b R a b ∈为常数,e 为自然对数的底数). (Ⅰ)当1a =-时,讨论函数()f x 在区间1(1,1)ee++上极值点的个数; (Ⅱ)当1a =,2b e =+时,对任意的(1,)x ∈+∞都有12()x f x ke <成立,求正实数k 的取值范围.请考生在第(22)、(23)两题中任选一题作答,如果多做,则按所做的第一题记分,作答时用2B 铅笔在答题卡上把所选题目的题号涂黑,把答案填在答题卡上. 22.(本小题满分10分)选修4-4:坐标系与参数方程已知直线l 的参数方程为1x ty =+⎧⎪⎨=⎪⎩(t 为参数).在以坐标原点O 为极点,x 轴非负半轴为极轴的极坐标系中,曲线C 的极坐标方程为24cos sin 40ρρθθ--+=. (Ⅰ)求直线l 的普通方程和曲线C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求||||OA OB ⋅.23.(本小题满分10分)选修4-5:不等式选讲 已知()|23||21|f x x x =+--. (Ⅰ)求不等式()2f x <的解集;(Ⅱ)若存在x R ∈,使得()|32|f x a >-成立,求实数a 的取值范围.2017届江西省南昌市高三年级第二次模拟高考数学(理)参考答案1、D【解析】因为3{lg(32)}{320}{}2A x y x x x x x==-=->=<,{22}B x x=-≤≤.所以{2}A B x x=≤U,故答案选D.2.A【解析】因为ii i i(12i)=i-2t12iat a t t+=⇒+=⋅++,则122taa t=⎧⇒=-⎨=-⎩.所以1t a+=-,故答案选A.3.B【解析】由题意可得10.152(24)0.352Pξ-⨯≤<==,故答案选B.4.C【解析】由“'()0f x=”不可以推出“()f x为函数()f x的极值”,同时由“()f x为函数()f x的极值”可以推出“'()0f x=”,所以“'()0f x=”是“()f x为函数()f x的极值”的必要不充分条件.故答案选C.5、A【解析】考虑进入循环状态,根据程序框图可知,当1i=时,有27S=;当2i=时,有47S=;当3i=时,有17S=;当4i=时,有27S=;当5i=时,有47S=;当6i=时,有17S=;所以可知其循环的周期为3T=,当退出循环结构时632i==⨯,所以输出的17S=,故答案选A.6.B【解析】78111622(6)(7)5a a a d a d a d a-=+-+=+=,1111161111552a aS a+=⨯==.故答案选B.7.B【解析】满足条件的四面体如左图,依题意投影到yOz平面为正投影,所以左(侧)视方向如图所示,所以得到左视图效果如右图,故答案选B.8.A【解析】将该几何体分成一个直三棱柱,两个四棱锥,即113122131523V=⨯⨯⨯+⨯⨯⨯⨯=,故答案选A.9.B【解析】由题意可得直线:3(1)PQ y x=-与抛物线24y x=联解得:231030x x-+=,所以点(3,3)P,123(,33Q-,则23832333MN==MNF∆中,MN边上的—高三理科数学(模拟二)—— 高三理科数学(模拟二)—高2h =,则12233MNF S ∆=⨯⨯=,故答案选B . 方法二:不防设交点P 在x 轴上方,由抛物线焦点弦性质得||||PF PM =,||||QF QN =且1121||||PF QF p +==, ||||||||1||||||||2PM QN PF QF PM QN PF QF --==++,故||4PF =,4||3QF =,所以114||(4)2223MNF S MN p ∆=⨯⨯=⨯+=B . 10.A 【解析】因为函数22sin ()11xy f x x==+可化简为222sin ()1x x f x x =+可知函数为奇函数关于原点对称,可排除答案C ;同时有42224sin 2cos 2cos ''()(1)x x x x x xy f x x ++==+ 3222(2sin cos cos )(1)x x x x x x x ++=+,则当(0,)2x π∈ '()0f x >,可知函数在2x π=处附近单调递增,排除答案B 和D ,故答案选A .11.D 【解析】要使符合题意,则圆上所有点在直线12:340,:3490l x y a l x y -+=--=之间, 因为圆心到直线2l的距离21d ==>且314190⨯-⨯-<,则所有圆心到直线1l的距离11d =≥,且31410a ⨯-⨯+≥,解得6a ≥,故答案选D .12.D 【解析】法一:1133a a a =⇒≤,讨论:若11111a a a a =⇒==,不合;若1223a a =⇒=;若11333a a a a =⇒==,不合;即122,3a a ==,2366a a a =⇒=,所以3699a a a =⇒=,所以6918a a a == ,91827a a a ==,182754a a a ==,275481a a a ==,猜测3nn b =,所以数列{}n b 的前n 项和等于113333132n n ++--=-.故答案选D . 法二:*3,n a n a n a N =⇒∈,结合数列的单调性分析得122,3a a ==,13b =,而3,n a a n =3a na n a a ⇒=,同时3a na n a a =,故33n n a a =,又1221233232333n n n n nb a a a b ----⋅⨯⋅⋅====,数列{}n b 为等比数列,即其前n 项和等于113333132n n ++--=-.故答案选D .二.填空题:本大题共4小题,每小题5分,共20分.13.7【解析】因为(3,3)a b x -=-r r ,所以()a b a -⊥⇒r r r(3)33407x x -⨯+⨯=⇒=,故答 案为7.14.240-【解析】250514255(32)(23)(23)x x C x C x x -+=-+-+L ,所以01411552(3)a C C =-240=-,故答案为240-.15.1,)+∞【解析】双曲线过点C时,212c ABe a CA CB===-,开口越大,离心率越— 高三理科数学(模拟二)—大,故答案为1,)+∞. 16.37.5【解析】由题知213t x =--,(13)x <<,所以月利润:(48)3232ty x x t x=+--- 11163163232t x x x =--=-+--145.5[16(3)]3x x=--+-45.537.5≤-=,当且仅当114x =时取等号,即月最大利润为37.5万元.另解:利润1632t y x =--(利润=12⨯进价- 12⨯安装费-开支),也可留t 作为变量求最值.三.解答题:本大题共6小题,共70分. 解答应写出文字说明、证明过程或演算步骤.17.【解析】(Ⅰ)因为21()2sin (sin )cos sin 2f x x x x x x x ==+1112cos 2sin(2)2262x x x π=-+=-+, 令222,262k x k k Z πππππ-≤-≤+∈,解得,63k x k k z ππππ-≤≤+∈,所以递增区间是[,]()63k k k Z ππππ-+∈; (Ⅱ)直线x A =是函数()f x 图像的一条对称轴,则2,6223k A k A k z πππππ-=+⇒=+∈,由02A π<<得到3A π=,所以角6BAD π∠=,由正弦定理得sin sin sin 2BD AD B BAD B =⇒=∠,所以4B π=,53412C ππππ=--=,5561212CDA ππππ∠=--=, 所以2AC AD ==,52cos 12DC AD π=⋅=所以a BD AD =+=.18.【解析】(Ⅰ)222()100(20204020)()()()()60406040n ad bc K a b c d a c b d -⨯⨯-⨯==++++⨯⨯⨯ 4004001002.778 2.7065760000⨯⨯=≈>所以有90% 以上的把握认为“是否愿意被外派与年龄有关”(Ⅱ)“x y <”包含:“0,1x y ==”、 “0,2x y ==”、 “0,3x y ==”、 “1,2x y ==”、 “1,3x y ==”、 “2,3x y ==”六个互斥事件且0312334233664(0,1)400C C C C P x y C C ===⨯=,03213342336612(0,2)400C C C C P x y C C ===⨯= 0330334233664(0,3)400C C C C P x y C C ===⨯=,122133423366108(1,2)400C C C C P x y C C ===⨯=— 高三理科数学(模拟二)—12303342336636(1,3)400C C C C P x y C C ===⨯=,21303342336636(2,3)400C C C C P x y C C ===⨯= 所以:412410836362001()4004002P x y +++++<=== .19.【解析】(Ⅰ)连接AC ,设AC BE G =I ,则平面SAC I 平面EFB FG =, //SA Q 平面EFB ,//SA FG ∴, GEA GBC ∆∆Q :,12AG AE GC BC ∴==, 1123SF AG SF SC FC GC ∴==⇒=,13λ∴=;(Ⅱ),2SA SD SE AD SE ==∴⊥=Q ,又2,60AB AD BAD ==∠=︒Q,BE ∴=222SE BE SB ∴+=,SE BE ∴⊥,SE ∴⊥平面ABCD ,以,,EA EB ES 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,则(1,0,0),(0,0,2)A B S ,平面SEB 的法向量(1,0,0)m EA ==u r u u u r,设平面EFB 的法向量(,,)n x y z =r,则(,,)00n EB x y z y ⊥⇒⋅=⇒=r, (,,)(1,0,2)02n GF n AS x y z x z ⊥⇒⊥⇒⋅-=⇒=r u u u r r u u u r,令1z =,得(2,0,1)n =r,cos ,5||||m n m n m n ⋅∴<>==⋅u r ru r r ur r. 20.【解析】(Ⅰ)因为1BF x ⊥轴,得到点2(,)b B c a--,所以2222221()21a a bb a ac c a b c ⎧==⎧⎪⎪⎪=⇒=⎨⎨+⎪⎪=⎩⎪=+⎩,所以椭圆C 的方程是22143x y +=. (Ⅱ)因为1sin 22(2)112sin 2PAM PBN PA PM APMS PM PM S PN PN PB PN BPN λλλ∆∆⋅⋅∠⋅===⇒=>⋅⋅⋅∠,所以2PM PN λ=-u u u u r u u ur .由(Ⅰ)可知(0,1)P -,设MN 方程:1y kx =-,1122(,),(,)M x y N x y ,联立方程221143y kx x y =-⎧⎪⎨+=⎪⎩得:22(43)880k x kx +--=.即得122122843843k x x k x x k ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩(*)— 高三理科数学(模拟二)—又1122(,1),(,1)PM x y PN x y =+=+u u u u r u u u r ,有122x x λ=-,将122x x λ=-代入(*)可得:222(2)1643k k λλ-=+. 因为12k >,有2221616(1,4)3434k k k =∈++, 则2(2)14λλ-<<且2λ>44λ⇒<<+ 综上所述,实数λ的取值范围为(4,4+. 21.【解析】(Ⅰ)1a =-时,'()ln(1)2+1xf x x x b x =-++-,记('()g x f x b =-), 则2232()112'()21(1)(1)x x g x x x x ⋅-=-+=---,3'()02g x x =⇒=, 当13(1,)2x e ∈+时,'()0g x <,3(,1)2x e ∈+时,'()g x 0>,所以当32x =时,()g x 取得极小值6ln 2-,又12(1)2g e e e +=++,1(1)24g e e e+=++,'()0()f x g x b =⇔=-,所以(ⅰ)当6ln 2b -≤-,即ln 26b ≥-时,'()0f x ≥,函数()f x 在区间1(1,1)e e++上无极值点;(ⅱ)当26ln 22b e e -<-<++即22ln 26e b e---<<-时,'()0f x =有两不同解, 函数()f x 在区间1(1,1)e e++上有两个极值点;(ⅲ)当21224e b e e e ++≤-<++即12242e b e e e---<≤---时,'()0f x =有一解, 函数()f x 在区间1(1,1)e e ++上有一个极值点;(ⅳ)当124b e e -≥++即124b e e ≤---时,'()0f x ≤,函数()f x 在区间1(1,1)e e++上无极值点;(Ⅱ)当1,2a b e ==+时,对任意的(1,)x ∈+∞都有12()x f x k e <⋅,即22ln(1)(2)xx x x e x ke --++<,即2ln(1)2x e x x e k x--++<⋅— 高三理科数学(模拟二)—记()ln(1)2h x x x e =--++,2()x e x k xφ=⋅, 由12'()111xh x x x -=-=--,当12x <<时'()0h x >,2x >时,'()0h x <, 所以当2x =时,()h x 取得最大值(2)h e =,又222221(2)22'()x x xk e x e e x x k x x φ--==,当12x <<时'()0x φ<,2x >时,'()0x φ>,所以当2x =时,()x φ取得最小值2ke,所以只需要2ke e <2k ⇒>,即正实数k 的取值范围是(2,)+∞.【解2】(Ⅱ)当1,2a b e ==+时,对任意的(1,)x ∈+∞都有12()x f x k e<⋅,即22ln(1)(2)x x x x e x ke --++< 令2x =,得2k >下证2k >时命题成立.一方面11222x x ke e > …………①另一方面由ln 1x x <-(常见对数不等式)知ln(1)2x x -<-,注意1x >22ln(1)(2)(2)(2)x x x e x x x x e x ex ∴--++<--++=…………②记12()2x h x eex =-,12'()x h x ee =-()1,2,'()0,()x h x h x ∴∈<递减,()2,,'()0,()x h x h x ∈+∞>递增 ()(2)0h x h ∴≥=即122x eex ≥∴由①②可知对任意的(1,)x ∈+∞都有12()x f x k e <⋅, ∴正实数k 的取值范围是(2,)+∞.22.【解析】(Ⅰ)直线l的普通方程是1)y x =-即y =,曲线C的直角坐标方程是22440x y x +--+=即22(2)(3x y -+=;(Ⅱ)直线l 的极坐标方程是3πθ=,代入曲线C 的极坐标方程得:2540ρρ-+=,所以||||||4A B OA OB ρρ⋅==.23.【解析】(Ⅰ)不等式()2f x <等价于32(23)(21)2x x x ⎧<-⎪⎨⎪-++-<⎩或3122(23)(21)2x x x ⎧-≤≤⎪⎨⎪++-<⎩ 或12(23)(21)2x x x ⎧>⎪⎨⎪+--<⎩ ,解得32x <-或302x -≤<,— 高三理科数学(模拟二)— 所以不等式()2f x <的解集是(,0)-∞; (Ⅱ)()|(23)(21)|4f x x x ≤+--=Q ,max ()4f x ∴=,|32|4a ∴-<,解得实数a 的取值范围是2(,2)3-.。
核 心 八 模2017年普通高等学校招生全国统一考试模拟试题数学(理科)(六)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.已知集合()(){}{}|210,|11A x x x B x Z x =-+<=∈-≤≤,则AB = A. {}1,0- B. {}0,1 C. {}1,0,1- D. {}1,2-2.方程26130x x ++=的一个根是A. 32i -+B. 32i +C.23i -+D.23i +3.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增,若实数a 满足()(12a f f ->,则实数a 的取值范围是A. 1,2⎛⎫-∞ ⎪⎝⎭ B. 13,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭ C. 13,22⎛⎫ ⎪⎝⎭ D.3,2⎛⎫+∞ ⎪⎝⎭4.如图,设区域(){},|01,01D x y x y =≤≤≤≤,向区域内随机投一点,且投入到区域内任一点都是等可能的,则点落到由曲线y =2y x =所围成阴影区域内的概率是A. 16B. 13C. 12D. 235.执行如图所示的程序框图,若输出的86s =,则判断框内的正整数的值为A.7B. 6,7C. 6,7,8D.8,96.向量,a b 满足23a b a +=,且()0a b a -⋅=,则,a b 的夹角的余弦值为A. 0B. 13C. 12D.7.已知等差数列{}n a 中,n S 为其前n 项和,若()244n S an n a a R =++-∈,记数列1n S ⎧⎫⎨⎬⎩⎭的前项和为n T ,则10T = A. 18 B. 14 C. 940 D.5228.已知,,a b c 均为正数,且()()2a c b c ++=,则23a b c ++的最小值是B. C. 4 D. 89.某几何体的三视图如下图所示,且该几何体的体积为,则正视图中x 的值为B.C. D.2310.的三棱锥S ABC -中,2,120,AB BC ABC SA SC ==∠==,且平面SAC ⊥平面ABC ,若该三棱锥的四个顶点都在同一球面上,则该球的体积为A.3B.3C. 20πD.8π 11.已知点12,F F 是双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足12122,3F F OP PF PF =≥,则双曲线C 的离心率的取值范围为A. ()1,+∞B. 2⎫+∞⎪⎪⎣⎭C. 1,2⎛ ⎝⎦D.51,2⎛⎤ ⎥⎝⎦ 12.已知函数()()()[)11,,232,2,x x f x f x x ⎧--∈-∞⎪=⎨-∈+∞⎪⎩,则函数()()cos g x f x x π=-在区间[]0,8内所有零点的和为A. 16B. 30C. 32D. 40第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分,共20分.13.已知,x y 满足约束条件20220220x y x y x y +-≤⎧⎪--≤⎨⎪-+≥⎩,若20x y k ++≥恒成立,则实数k 的取值范围为 .14.若()()2015201501201512x a a x a x x R -=+++∈,则12201522015a a a +++= .15.已知点A,F 分别是椭圆()2222:10x y C a b a b+=>>的上顶点和左焦点,若AF 与圆22:4O x y +=相切于点T ,且点T 是线段AF 靠近点A 的三等分点,则椭圆C 的标准方程为 .16.若数列{}n a 满足2133431n n a a a a a a a a +->->->>->,则称数列{}n a 为“差递减”数列.若数列{}n a 是“差递减”数列,且其通项n a 与其前n 项和()n S n N *∈满足()2321n n S a n N λ*=+-∈,则实数λ的取值范围为 .三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.(本题满分12分)在ABC ∆中,角,,A B C 的对边分别为,,a b c ,且a c >,已知12,cos , 3.3BA BC B b ⋅===,求: (1)a 和c 的值;(2)()cos B C -的值.18.(本题满分12分)如图,在A ∠的平行四边形ABCD 中,DO 垂直平分AB ,且2AB =,现将ADO ∆沿DO折起,使AC =(1)求证:直线AO ⊥平面OBCD ;(2)求平面AOD 与平面ABC 所成角(锐角)的余弦值.19.(本题满分12分)在一个盒子里有6张卡片,上面分别写着如下定义域为R 的函数:()()()())()21234251,,sin ,log ,cos ,f x x f x x f x x f x x f x x x =+====+ ()6sin 2.f x x x =-(1)现从盒子中任取两张卡片,记事件A 为“这两张卡片上函数相加,所得新函数是奇函数”,求事件A 的概率;(2)从盒子中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数,则停止抽取,否则继续进行,记停止时抽取次数为ξ,写出ξ的分布列并求其数学期望E ξ.20.(本题满分12分)已知曲线C 上的任意一点到点()0,1F 的距离减去它到x 轴的距离的差都是1.(1)求曲线C 的方程;(2)设直线()0y kx m m =+>与曲线C 在x 轴及x 轴上方部分交于A,B 两点,若对于任意的k R ∈都有0FA FB ⋅<,求m 的取值范围.21.(本题满分12分)已知函数()()21130.a f x ax a a x-=++->(1)当1a =时,求函数()y f x =在点()()2,2f 处的切线方程;(2)若不等式()()1ln f x a x ≥-在[)1,x ∈+∞时恒成立,求实数a 的取值范围. 请考生在第22、23两题中任选一题作答,如果两题都做,则按照所做的第一题给分;作答时,请用2B 铅笔将答题卡上相应的题号涂黑。
2017年海南省海口市高考数学模拟试卷(理科)(4月份)一、选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合M={x|﹣1<x≤4},N={x|x2﹣7x<0},则M∩N等于()A.{x|﹣1<x<4}B.{x|﹣1<x<7}C.{x|0<x≤4}D.{x|0≤x<4}2.复数z满足z(1+i3)=i(i是虚数单位),则复数z在复平面内位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.“x≥2”是“log2x2≥2”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条条4.在(x﹣4)5的展开式中,含x3的项的系数为()A.20 B.40 C.80 D.1605.执行如图所示的程序框图,输出S值为( )A.B.C.D.6.设函数f(x)=在区间[0,e]上随机取一个实数x,则f(x)的值不小于常数e的概率是()A.B.1﹣C.D.7.已知圆M与直线3x﹣4y=0及3x﹣4y+10=0都相切,圆心在直线y=﹣x﹣4上,则圆M的方程为()A.(x+3)2+(y﹣1)2=1 B.(x﹣3)2+(y+1)2=1 C.(x+3)2+(y+1)2=1 D.(x﹣3)2+(y﹣1)2=18.在各项均为正数的等比数列{a n}中,若a m•a m+2=2a m+1(m∈N•),数列{a n}的前n项积为T m,且T2m+1=128,则m的值为()A.3 B.4 C.5 D.69.已知函数f(x)=sin2ωx﹣(ω>0)的周期为,若将其图象沿x轴向右平移a个单位(a>0),所得图象关于原点对称,则实数a的最小值为()A.B.C.D.10.已知一个几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.11.体积为的球有一个内接正三棱锥P﹣ABC,PQ是球的直径,∠APQ=60°,则三棱锥P﹣ABC的体积为( )A.B.C.D.12.设正数x,y满足log x+log3y=m(m∈[﹣1,1]),若不等式3ax2﹣18xy+(2a+3)y2≥(x﹣y)2有解,则实数a的取值范围是() A.(1,] B.(1,]C.[,+∞) D.[,+∞)二、填空题已知单位向量,满足,则向量与的夹角为.14.设不等式,表示的平面区域为M,若直线y=k(x+2)上存在M内的点,则实数k的最大值是.15.过双曲线的右焦点且垂于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|,则双曲线离心率的取值范围为.16.设等差数列{a n}的前n项和为S n,若S8>S9>S7,则满足S n•S n+1<0的正整数n的值为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学本试卷5页,23小题,满分150分。
考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}|1{|31}xA x xB x =<=<,,则A .{|0}AB x x =<I B .A B =R UC .{|1}A B x x =>UD .A B =∅I2.如图,正方形ABCD 内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是 A .14 B .8π C .12D .4π 3.设有下面四个命题1p :若复数z 满足1z ∈R ,则z ∈R ; 2p :若复数z 满足2z ∈R ,则z ∈R ;3p :若复数12,z z 满足12z z ∈R ,则12z z =;4p :若复数z ∈R ,则z ∈R .其中的真命题为 A .13,p pB .14,p pC .23,p pD .24,p p4.记n S 为等差数列{}n a 的前n 项和.若4524a a +=,648S =,则{}n a 的公差为A .1B .2C .4D .85.函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是 A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]6.621(1)(1)x x++展开式中2x 的系数为 A .15B .20C .30D .357.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形.该多面体的各个面中有若干个是梯形,这些梯形的面积之和为 A .10 B .12 C .14 D .168.右面程序框图是为了求出满足321000nn->的最小偶数n ,那么在和两个空白框中,可以分别填入A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+9.已知曲线122:cos ,:sin(2)3C y x C y x π==+,则下面结论正确的是A .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CB .把1C 上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2CC .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向右平移π6个单位长度,得到曲线2CD .把1C 上各点的横坐标缩短到原来的12倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线2C10.已知F 为抛物线2:4C y x =的焦点,过F 作两条互相垂直的直线12,l l ,直线1l 与C 交于A 、B 两点,直线2l 与C 交于D 、E 两点,则|AB |+|DE |的最小值为 A .16B .14C .12D .1011.设xyz 为正数,且235xyz==,则A .235x y z <<B .523z x y <<C .352y z x <<D .325y x z <<12.几位大学生响应国家的创业号召,开发了一款应用软件。
绝密★启用前2017年普通高等学校招生全国统一考试理科数学注意事项:1. 答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1. 已知集合A={x|x<1}, B={x| 3x1},则AI B {x|x 0} AU B R AU B {x|x 1} AI B 如图,正方形ABCD内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是n丄n设有下面四个命题14 8 2 4P1 :若复数z满足丄R,则z R ;zP2 :若复数z满足z2R,则z R ;P3:若复数Z1,Z2 满足Z1Z2 R,则Z1 Z2 ;P4:若复数z R,则Z R.其中的真命题为P1, P3 P1, P4 P2, P3 P2, P44•记S n为等差数列{a n}的前n项和.若a4 24 , S4 8,则{a.}的公差为A . 1 B. 2G. 4D. 85 .函数f(x)在( ,)单调递减,且为奇函数.若 f(1)1,则满足 1 f(x 2) 1 的的取值范围是A . [ 2,2]B. [ 1,1] G. [0,4] D. [1,3]6. (1 —)(1 X )6展开式中x 2的系数为X某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组 成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是 梯形,这些梯形的面积之和为右面程序框图是为了求出满足 3n -2n >1000的最小偶数n,那么在禾两个空 白框中,可以分别填入>1000 和 n =n +1 >1000 和 n =n +2 禾口 n =n +1和 n =n +2x +2n),则下面结正确的是32倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线G个单位长度,得到曲线G9.已知曲线 C : y =cos x ,G: y =sin(2 A.把G 上B.把G 上各点的横坐标伸长到原来的 2倍,纵坐n12G.把G 上各点的横坐标缩短到原来的 2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线G个单位长度,得到曲线GD.把G 上各点的横坐标缩短到原来的 2倍,纵坐标不变,再把得到的曲线向右平移 n1210. 已知F为抛物线C: y2=4x的焦点,过F作两条互相垂直的直线11, 12,直线I i与C交于A B两点,直线I 2与C交于D E两点,则|AB+| DE的最小值为A. 16B. 14C. 12D 1011. 设xyz为正数,且2x3y5z,贝yA. 2x<3y<5zB. 5z<2x<3yC. 3y<5z<2xD. 3y<2x<5z12. 几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们退出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16,…,其中第一项是2°,接下来的两项是20, 21,再接下来的三项是26, 21, 22,依此类推. 求满足如下条件的最小整数N: N>100且该数列的前N项和为2的整数幕.那么该款软件的激活码是二、填空题:本题共4小题,每小题5分,共20分。
高三(2017届)数学模拟试题(理科)第Ⅰ卷(共60分)一、选择题:(共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的).1.设集合A={x|x 2﹣2x ﹣3<0},B={x|y=lnx},则A ∩B=( )A (0,3)B (0,2)C (0,1)D (1,2) 2. 复数z=i 2(1+i)的虚部为( )A. 1B. iC. -1D. - i{}n a 中,4a 与14a 的等比中项为22,则27211log log a a +的值 为( )A .4B .3C .2D .1 4.在四边形ABCD 中,“AB =2DC ”是“四边形ABCD 为梯形”的( ) A.充分不必要条件 B.必要不充分条件 5.已知函数f (x )=A sin(ωx +φ)(x ∈R ,A >0,ω>0, |φ|<2π)的图象(部分)如图所示,则f (x )的解析式是( )A .f (x )=5sin(3πx -6π B.f (x )=5sin(6πx -6π)C.f (x )=5sin(3πx +6π) D. f (x )=5sin(6πx +6π)6.如右图所示的程序框图,若输出的88S =,则判断框内应填入的条件是( )A .3?k >B .4?k >C .5?k >D .6?k >7. 设323log ,log 3,log 2a b c π===,则( )A.a b c >>B.a cb >>C.b ac >> D. b c a >>8.一个几何体的三视图如图所示,且其侧(左)视图是一个等边三角形,则这个几何体的体积为( )x -5y O 5 2 5A .433 B .533 C .23 D .833x y 、满足121y y x x y m ≥⎧⎪≤-⎨⎪+≤⎩,如果目标函数z x y =-的最小值为-1,则实数m =( )A .6B .5C .4D .3 10.函数()2sin f x x x =+的部分图象可能是( )11. 已知双曲线()222210,0x y C a b a b-=>>:的右焦点为F ,过F 且斜率为3的直线交C 于A B 、两点,若4AF FB =,则C 的离心率为A .95 B. 75 C. 58 D. 6512、已知定义在R 上的可导函数f(x)的导函数为/()f x ,满足/()f x <()f x ,且()(2)f x f x -=+,(2)1f =,则不等式()x f x e <的解集为( )A. ()2,-+∞B. (0,+∞)C.(1, +∞)D.(2, +∞)第Ⅱ卷(非选择题 共90分)二、填空题:(本大题共4个小题,每小题5分,共20分). 13. (4y x 的展开式中33x y 的系数为 。
2017年普通高等学校招生全国统一模拟考试理科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,其中第Ⅱ卷第22~24题为选考题,其它题为必考题。
全卷满分150分。
考试时间120分钟. 注意事项:⒈答题前,考生务必把自己的姓名、考生号等填写在答题卡相应的位置上.⒉做选择题时,必须用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号.⒊非选择题必须使用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
⒋所有题目必须在答题卡上指定位置作答,不按以上要求作答的答案无效。
⒌考生必须保持答题卡的整洁.考试结束后,将答题卡交回。
参考公式:柱体体积公式:V Sh =(其中为底面面积,为高)锥体体积公式:13V Sh =(其中为底面面积,为高) 球的表面积、体积公式:2344,3S R V R ==ππ (其中为球的半径)第Ⅰ卷一、选择题:本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12iz i-+=(i是虚数单位)在复平面上对应的点位于 ( )A . 第一象限B . 第二象限C . 第三象限D . 第四象限 2.已知集合M={x|y=l g},N={y|y=x 2+2x+3},则(∁R M)∩N=( )A . {x|0<x <1}B . {x|x>1}C . {x|x≥2} D. {x|1<x<2}3、采用系统抽样方法从960人中抽取32人做问卷调查为此将他们随机编号为1,2 。
.960,分组后在第一组采用简单随机抽样的方法抽到的号码为9,抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落人区间[451,750]的人做问卷B,其余的人做问卷C 。
则抽到的人中,做问卷C 的人数为 ( )A。
15B. 10 C. 9 D. 7 4.设{} 是公差为正数的等差数列,若12315a a a ++=,且12380a a a =,则111213a a a ++等于( ) A .120 B. 105 C . 90 D .75 5。
绝密★启用前2017 年普通高等学校招生全国统一考试理科数学本试卷 5 页, 23 小题,满分150 分。
考试用时120 分钟。
注意事项: 1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上。
用 2B 铅笔将试卷类型(B)填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处”。
2.作答选择题时,选出每小题答案后,用2B铅笔在答题卡上对应题目选项的答案信息点涂黑;如需要改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,将试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题 5 分,共 60 分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A x | x 1 ,B{ x |3x1},则A.A I B{ x | x0}B.A U B RC.A U B{ x | x1}D.A I B2.如图,正方形ABCD 内的图形来自中国古代的太极图. 正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称. 在正方形内随机取一点,则此点取自黑色部分的概率是A.1B.48C.1D.243.设有下面四个命题p1:若复数z 满足1R,则z R ;p2:若复数z 满足z2R,则z R ;zp3:若复数z1, z2满足z1z2R,则z1z2;p4:若复数z R ,则z R .其中的真命题为A.p1 , p3B.p1 , p4C.p2 , p3D.p2 , p44.记S n为等差数列{ a n} 的前 n 项和.若 a4a524 , S648 ,则 { a n} 的公差为A.1B. 2C. 4D. 85.函数f ( x)在(, ) 单调递减,且为奇函数.若 f (1)1,则满足 1 f ( x 2) 1的 x 的取值范围是A.[2,2]B.[ 1,1]C.[0,4]D.[1,3]6.(11)(1 x)6展开式中 x2的系数为x2A. 15B. 20C. 30D.35 7.某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形. 该多面体的各个面中有若干个是梯形,这些梯形的面积之和为A. 10B. 12C. 14D. 168.右面程序框图是为了求出满足3n2n1000 的最小偶数 n ,那么在和两个空白框中,可以分别填入A.B.C.D.A1000 n n1和A1000和 n n2A1000和 n n 1 A1000和 n n 229.已知曲线C1: y cos x,C2: y sin(2 x) ,则下3面结论正确的是A.把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向右平移π个6单位长度,得到曲线 C 2B.把C1上各点的横坐标伸长到原来的 2 倍,纵坐标不变,再把得到的曲线向左平移π12个单位长度,得到曲线 C2C.把C1上各点的横坐标缩短到原来的1倍,纵坐标不变,再把得到的曲线向右平移π个26单位长度,得到曲线 C 2D .把 C 1 上各点的横坐 短到原来的1倍, 坐 不 ,再把得到的曲 向左平移π212个 位 度,得到曲C 210.已知 F 抛物 C : y 24 x 的焦点, F 作两条互相垂直的直 l 1, l 2 ,直 l 1 与 C 交于 A 、B 两点,直 l 2 与 C 交于 D 、 E 两点, | AB |+| DE | 的最小A . 16B . 14C . 12D .1011. xyz 正数,且 2x3y 5z ,A . 2x 3y 5zB .C . 3y5z2xD .5z2x 3 y3 y 2x5z12.几位大学生响 国家的 号召,开 了一款 用 件。
2017年普通高等学校招生全国统一考试(全国II )数学(理科)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)【2017年全国Ⅱ,理1,5分】31i i+=+( ) (A )12i + (B )12i - (C )2i + (D )2i -【答案】D 【解析】()()()()3i 1i 3i 42i 2i 1i 1i 1i 2+-+-===-++-,故选D . (2)【2017年全国Ⅱ,理2,5分】设集合{}1,2,4A =,{}240B x x x m =-+=.若{1}A B = ,则B =( )(A ){}1,3- (B ){}1,0 (C ){}1,3 (D ){}1,5【答案】C【解析】集合{}1,2,4A =,24{|}0B x x x m -=+=.若{}1A B = ,则1A ∈且1B ∈,可得140m -+=-,解得3m =, 即有243013{|}{,}B x x x =+==-,故选C .(3)【2017年全国Ⅱ,理3,5分】我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )(A )1盏 (B )3盏 (C )5盏 (D )9盏【答案】B【解析】设这个塔顶层有a 盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a 为首项的等比数列,又总共有灯381盏,∴()71238112712a a -==-,解得3a =, 则这个塔顶层有3盏灯,故选B .(4)【2017年全国Ⅱ,理4,5分】如图,网格纸上小正方形的边长为1,粗实线画出的是某几何 体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( )(A )90π (B )63π (C )42π (D )36π【答案】B【解析】由三视图可得,直观图为一个完整的圆柱减去一个高为6的圆柱的一半,22131036632V πππ=⋅⨯-⋅⋅⨯=,故选B . (5)【2017年全国Ⅱ,理5,5分】设x ,y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩,则2z x y =+的最小值是( )(A )15- (B )9- (C )1 (D )9【答案】A【解析】x 、y 满足约束条件2330233030x y x y y +-≤⎧⎪-+≥⎨⎪+≥⎩的可行域如图:2z x y =+经过可行域的A时,目标函数取得最小值,由32330y x y =-⎧⎨-+=⎩解得()6,3A --,则2z x y =+的最 小值是:15-,故选A .(6)【2017年全国Ⅱ,理6,5分】安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )(A )12种 (B )18种 (C )24种 (D )36种【答案】D【解析】4项工作分成3组,可得:24C 6=,安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,可得:336A 36⨯=种,故选D .(7)【2017年全国Ⅱ,理7,5分】甲、乙、丙、丁四位同学一起去向老师询问成语竞赛的成绩.老师说:你们四人中有2位优秀,2位良好,我现在给甲看乙、丙的成绩,给乙看丙的成绩,给丁看甲的成绩.看后甲对大家说:我还是不知道我的成绩.根据以上信息,则( )(A )乙可以知道四人的成绩 (B )丁可以知道四人的成绩(C )乙、丁可以知道对方的成绩 (D )乙、丁可以知道自己的成绩【答案】D【解析】四人所知只有自己看到,老师所说及最后甲说话,甲不知自己的成绩→乙丙必有一优一良,(若为两优,甲会知道自己的成绩;若是两良,甲也会知道自己的成绩)→乙看到了丙的成绩,知自己的成绩→丁看到甲、丁中也为一优一良,丁知自己的成绩,故选D .(8)【2017年全国Ⅱ,理8,5分】执行右面的程序框图,如果输入的1a =-,则输出的S = ( )(A )2 (B )3 (C )4 (D )5【答案】B【解析】执行程序框图,有0S =,1k =,1a =-,代入循环,第一次满足循环,1S =-,1a =,2k =;满足条件,第二次满足循环,1S =,1a =-,3k =;满足条件,第三次满足循环,2S =-,1a =,4k =;满足条件,第四次满足循环,2S =,1a =-,5k =;满足条件,第五次满足循环,3S =-,1a =,6k =;满足条件,第六次满足循环,3S =,1a =-,7k =;76≤不成立,退出循环输出,3S =,故选B .(9)【2017年全国Ⅱ,理9,5分】若双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为( )(A )2 (B (C (D 【答案】A 【解析】双曲线()2222:10,0x y C a b a b-=>>的一条渐近线不妨为:0bx ay +=,圆()2242x y +=-的圆心()2,0, 半径为:2,双曲线()2222:10,0x y C a b a b-=>>的一条渐近线被圆()2242x y +=-所截得的弦长为2,可==得:222443c a c -=,可得2e 4=,即e 2=,故选A . (10)【2017年全国Ⅱ,理10,5分】已知直三棱柱111ABC A B C -中,120ABC ∠= ,2AB =,11BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )(A (B ) (C ) (D 【答案】C【解析】如图所示,设M 、N 、P 分别为AB ,1BB 和11B C 的中点,则1AB 、1BC 夹角为MN和NP 夹角或其补角(因异面直线所成角为0,2π⎛⎤ ⎥⎝⎦,可知112MN AB =,112NP BC ==作BC 中点Q ,则PQM ∆为直角三角形;∵1PQ =,12MQ AC =, ABC ∆中,由余弦定理得2222AC AB BC AB BC cos ABC =+-⋅⋅∠141221172⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭,∴AC =MQ =MQP ∆中,MP =;在PMN ∆中,由余弦定理得222222cos 2MN NP PM MNP MH NP +-+-∠===⋅⋅;又异面 直线所成角的范围是0,2π⎛⎤ ⎥⎝⎦,∴1AB 与1BC,故选C . (11)【2017年全国Ⅱ,理11,5分】若2x =-是函数21`()(1)x f x x ax e -=+-的极值点,则()f x 的极小值为( )(A )1- (B )32e -- (C )35e - (D )1【答案】A【解析】函数()()121x f x x ax e -=+-,得()()()11221x x e f x x a x ax e --'=+++-,2x =-是21`()(1)x f x x ax e -=+-的极值点,得:()4320a a -++-=.得1a =-.可得()()()()211212211x x x e e x x e f x x x x ---'=-+--=+-,函数的极值点为:2x =-,1x =,当2x <-或1x >时,()0f x '>函数是增函数,()2,1x ∈-时,函数是减函数,1x =时,函数取得极小值:()()21111111f e -=--=-,故选A . (12)【2017年全国Ⅱ,理12,5分】已知ABC ∆是边长为2的等边三角形,P 为平面ABC 内一点,则()PA PB PC ⋅+ 的最小值是( )(A )2- (B )32- (C )43- (D )1- 【答案】B【解析】建立如图所示的坐标系,以BC中点为坐标原点,则(A ,()1,0B -,()1,0C ,设(),P x y ,则()PA x y =- ,()1,PB x y =--- ,()1,PC x y =-- ,则()P A P B P C ⋅+222232224x y x y ⎡⎤⎛⎢⎥=-+=+-- ⎢⎥⎝⎭⎣⎦∴当0x =,y =时,取得最小值33242⎛⎫⨯-=- ⎪⎝⎭,故选B . 二、填空题:本题共4小题,每小题5分,共20分.(13)【2017年全国Ⅱ,理13,5分】一批产品的二等品率为0.02,从这批产品中每次随机取一件,有放回地抽取100次,X 表示抽到的二等品件数,则DX =______.【答案】1.96【解析】由题意可知,该事件满足独立重复试验,是一个二项分布模型,其中,0.02p =,100n =, 则()11000.020.98 1.96DX npq np p ==-=⨯⨯=.(14)【2017年全国Ⅱ,理14,5分】函数()23sin 0,42f x x x x π⎛⎫⎡⎤=+-∈ ⎪⎢⎥⎣⎦⎝⎭的最大值是______. 【答案】1【解析】()2233sin 1cos 44f x x x x x =-=--,令cos x t =且[]0,1t ∈, 则()22114f t t t ⎛=-+=-+ ⎝⎭,当t =时,()max 1f t =,即()f x 的最大值为1. (15)【2017年全国Ⅱ,理15,5分】等差数列{}n a 的前n 项和为n S ,33a =,410S =,则11n k k S ==∑______. 【答案】21n n + 【解析】等差数列{}n a 的前n 项和为n S ,33a =,410S =,()423210S a a =+=,可得22a =,数列的首项为1,公差为1,()12n n n S -=,()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭,则11111111121223341n k kS n n =⎡⎤=-+-+-++-⎢⎥+⎣⎦∑122111n n n ⎛⎫=-= ⎪++⎝⎭. (16)【2017年全国Ⅱ,理16,5分】已知F 是抛物线C :28y x =的焦点,M 是C 上一点,FM 的延长线交y轴于点N .若M 为FN 的中点,则FN =_______.【答案】6【解析】抛物线C :28y x =的焦点()2,0F ,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,可知M 的横坐标为:1,则M的纵坐标为:±26FN FM ==.三、解答题:共70分。
2017年江西省百所重点高中高考数学模拟试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣6≥0},B={x|﹣3≤x≤3},则A∩B等于()A. B. C.∪{3} D.∪{﹣3}2.设复数z=a+bi(a,b∈R,b>0),且,则z的虚部为()A.B.C.D.3.若sin(α+β)=2sin(α﹣β)=,则sinαcosβ的值为()A.B.C.D.4.在△ABC中,D,E分别为BC,AB的中点,F为AD的中点,若,AB=2AC=2,则的值为()A.B.C.D.5.如图是函数y=f(x)求值的程序框图,若输出函数y=f(x)的值域为,则输入函数y=f(x)的定义域不可能为()A. B. D.∪{2}6.函数f(x)=sin(πx+θ)(|θ|<)的部分图象如图,且f(0)=﹣,则图中m的值为()A.1 B.C.2 D.或27.在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A .21B .﹣21C .441D .﹣4418.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为( )A .3795000立方尺B .2024000立方尺C .632500立方尺D .1897500立方尺9.已知k ≥﹣1,实数x ,y 满足约束条件,且的最小值为k ,则k 的值为( )A .B .C .D .10.设F 1,F 2分别是双曲线(a >0,b >0)的左、右焦点,双曲线上存在一点P 使得∠F 1PF 2=60°,|OP|=3b (O 为坐标原点),则该双曲线的离心率为( )A .B .C .D .11.体积为的正三棱锥A ﹣BCD 的每个顶点都在半径为R 的球O 的球面上,球心O 在此三棱锥内部,且R :BC=2:3,点E 为线段BD 上一点,且DE=2EB ,过点E 作球O 的截面,则所得截面圆面积的取值范围是( )A .B .C .D .12.定义在(0,+∞)上的函数f (x )的导函数f′(x )满足,则下列不等式中,一定成立的是( )A .f (9)﹣1<f (4)<f (1)+1B .f (1)+1<f (4)<f (9)﹣1C .f (5)+2<f (4)<f (1)﹣1D .f (1)﹣1<f (4)<f (5)+2二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若公比为2的等比数列{a n }满足a 7=127a,则{a n }的前7项和为 .14.(x ﹣2)3(x+1)4的展开式中x 2的系数为 .15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+y ﹣3=0相切,则圆C的半径为.16.已知函数f(x)=,若函数g(x)=f(x)﹣ax﹣1有4个零点,则实数a的取值范围为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知atanB=2bsinA.(1)求B;(2)若b=,A=,求△ABC的面积.18.某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?19.如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.(1)求证:AB=BC;(2)若∠ABC=90°,求A1B与平面BCC1B1所成角的正弦值.20.已知椭圆C: +=1(a>b>0)的短轴长为2,且函数y=x2﹣的图象与椭圆C仅有两个公共点,过原点的直线l与椭圆C交于M,N两点.(1)求椭圆C的标准方程;(2)点P为线段MN的中垂线与椭圆C的一个公共点,求△PMN面积的最小值,并求此时直线l的方程.21.已知函数f(x)=e x﹣1+ax,a∈R.(1)讨论函数f(x)的单调区间;(2)若∀x∈22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O 为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.23.已知函数f(x)=|x|+|x﹣3|.(1)求不等式f()<6的解集;(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.2017年江西省百所重点高中高考数学模拟试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A={x|x2﹣x﹣6≥0},B={x|﹣3≤x≤3},则A∩B等于()A. B. C.∪{3} D.∪{﹣3}【考点】1E:交集及其运算.【分析】根据题意,解不等式|x2﹣x﹣6≥0求出集合A,进而由交集的意义计算可得答案.【解答】解:根据题意,x2﹣x﹣6≥0⇒x≤﹣2或x≥3,即A={x|x2﹣x﹣6≥0}=(﹣∞,﹣2]∪;A∩B=∪{3};故选:C.2.设复数z=a+bi(a,b∈R,b>0),且,则z的虚部为()A.B.C.D.【考点】A5:复数代数形式的乘除运算.【分析】利用复数的运算法则、共轭复数的定义、虚部的定义即可得出.【解答】解:复数z=a+bi(a,b∈R,b>0),且,∴a﹣bi=a2﹣b2+2abi.∴a=a2﹣b2,﹣b=2ab.解得a=﹣,b=.则z的虚部为.故选:C.3.若sin(α+β)=2sin(α﹣β)=,则sinαcosβ的值为()A.B.C.D.【考点】GI:三角函数的化简求值.【分析】利用两角和与差公式打开化简,即可得答案.【解答】解:由sin(α+β)=2sin(α﹣β)=,可得sinαcosβ+cosαsinβ=…①sinαcosβ﹣cosαsinβ=…②由①②解得:sin αcos β=, 故选:A .4.在△ABC 中,D ,E 分别为BC ,AB 的中点,F 为AD 的中点,若,AB=2AC=2,则的值为( )A .B .C .D .【考点】9R :平面向量数量积的运算.【分析】根据题意画出图形,结合图形根据平面向量的线性运算与数量积运算性质,计算即可. 【解答】解:如图所示,△ABC 中,D ,E 分别为BC ,AB 的中点,F 为AD 的中点,,且AB=2AC=2,∴=(+)•=(﹣+)•(+)=﹣﹣•+=﹣×12﹣×(﹣1)+×22=. 故选:B .5.如图是函数y=f (x )求值的程序框图,若输出函数y=f (x )的值域为,则输入函数y=f (x )的定义域不可能为( )A .B . D .∪{2} 【考点】EF :程序框图.【分析】模拟程序的运行过程知该程序的功能是求分段函数y=在某一区间上的值域问题;对题目中的选项分析即可.【解答】解:模拟程序的运行过程知,该程序的功能是求分段函数y=在某一区间上的值域问题;x∈时,y=2﹣x∈=,满足题意,A正确;x∈=(4,8],x=2时,y=x2=4,∴x∈,满足题意,B正确;x∈时,若x∈,则y=x2∈,不满足题意,C错误;同理x∈∪{2}时,y∈,满足题意,D正确.故选:C.6.函数f(x)=sin(πx+θ)(|θ|<)的部分图象如图,且f(0)=﹣,则图中m的值为()A.1 B.C.2 D.或2【考点】HK:由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】f(0)=﹣,则sinθ=﹣,求出θ,利用正弦函数的对称性,即可得出结论.【解答】解:f(0)=﹣,则sinθ=﹣,∵|θ|<,∴θ=﹣,∴πx﹣=2kπ+,∴x=2k+,∴=,∴m=,故选B.7.在公差大于0的等差数列{a n}中,2a7﹣a13=1,且a1,a3﹣1,a6+5成等比数列,则数列{(﹣1)n﹣1a n}的前21项和为()A.21 B.﹣21 C.441 D.﹣441【考点】8E:数列的求和.【分析】设公差为d(d>0),运用等差数列的通项公式,可得首项为1,再由等比数列的中项的性质,解方程可得公差d,进而得到等差数列{a n}的通项,再由并项求和即可得到所求和.【解答】解:公差d大于0的等差数列{a n}中,2a7﹣a13=1,可得2a1+12d﹣(a1+12d)=1,即a1=1,a1,a3﹣1,a6+5成等比数列,可得(a3﹣1)2=a1(a6+5),即为(1+2d﹣1)2=1+5d+5,解得d=2(负值舍去)则a n=1+2(n﹣1)=2n﹣1,n∈N*,数列{(﹣1)n﹣1a n}的前21项和为a1﹣a2+a3﹣a4+…+a19﹣a20+a21=1﹣3+5﹣7+…+37﹣39+41=﹣2×10+41=21.故选:A.8.中国古代数学名著《九章算术》卷第五“商功”共收录28个题目,其中一个题目如下:今有城下广四丈,上广二丈,高五丈,袤一百二十六丈五尺,问积几何?其译文可用三视图来解释:某几何体的三视图如图所示(其中侧视图为等腰梯形,长度单位为尺),则该几何体的体积为()A.3795000立方尺B.2024000立方尺C.632500立方尺D.1897500立方尺【考点】L!:由三视图求面积、体积.【分析】由三视图可得,直观图为底面为侧视图是直棱柱,利用图中数据求出体积.【解答】解:由三视图可得,直观图为底面为侧视图,是直棱柱,体积为=1897500立方尺,故选D.9.已知k≥﹣1,实数x,y满足约束条件,且的最小值为k,则k的值为()A.B.C.D.【考点】7C:简单线性规划.【分析】作出不等式组对应的平面区域,利用直线斜率公式,结合数形结合进行求解即可.【解答】解:作出不等式组对应的平面区域如图:的几何意义是区域内的点到定点D(0,﹣1)的斜率,由图象知AD的斜率最小,由得,得A(4﹣k,k),则AD的斜率k=,整理得k2﹣3k+1=0,得k=或(舍),故选:C10.设F1,F2分别是双曲线(a>0,b>0)的左、右焦点,双曲线上存在一点P使得∠F1PF2=60°,|OP|=3b(O为坐标原点),则该双曲线的离心率为()A.B.C.D.【考点】KC:双曲线的简单性质.【分析】利用双曲线的定义与余弦定理可得到a2与c2的关系,从而可求得该双曲线的离心率.【解答】解:设该双曲线的离心率为e,依题意,||PF1|﹣|PF2||=2a,∴|PF1|2+|PF2|2﹣2|PF1|•|PF2|=4a2,不妨设|PF1|2+|PF2|2=x,|PF1|•|PF2|=y,上式为:x﹣2y=4a2,①∵∠F1PF2=60°,∴在△F1PF2中,由余弦定理得,|F1F2|2=|PF1|2+|PF2|2﹣2|PF1|•|PF2|•cos60°=4c2,②即x﹣y=4c2,②又|OP|=3b, +=2,∴2+2+2||•||•cos60°=4||2=36b2,即|PF1|2+|PF2|2+|PF1|•|PF2|=36b2,即x+y=36b2,③由②+③得:2x=4c2+36b2,①+③×2得:3x=4a2+72b2,于是有12c2+108b2=8a2+144b2,∴=,∴e==.故选:D.11.体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,球心O在此三棱锥内部,且R:BC=2:3,点E为线段BD上一点,且DE=2EB,过点E作球O的截面,则所得截面圆面积的取值范围是()A. B. C. D.【考点】LR:球内接多面体.【分析】先求出BC与R,再求出OE,即可求出所得截面圆面积的取值范围.【解答】解:设BC=3a,则R=2a,∵体积为的正三棱锥A﹣BCD的每个顶点都在半径为R的球O的球面上,∴=,∴h=,∵R2=(h﹣R)2+(a)2,∴4a2=(﹣2a)2+3a2,∴a=2,∴BC=6,R=4,∵点E为线段BD上一点,且DE=2EB,∴△ODB中,OD=OB=4,DB=6,cos∠ODB=,∴OE==2,截面垂直于OE时,截面圆的半径为=2,截面圆面积为8π,以OE所在直线为直径时,截面圆的半径为4,截面圆面积为16π,∴所得截面圆面积的取值范围是.故选:B.12.定义在(0,+∞)上的函数f(x)的导函数f′(x)满足,则下列不等式中,一定成立的是()A.f(9)﹣1<f(4)<f(1)+1 B.f(1)+1<f(4)<f(9)﹣1 C.f(5)+2<f(4)<f(1)﹣1 D.f(1)﹣1<f(4)<f(5)+2【考点】6B:利用导数研究函数的单调性.【分析】构造函数g(x)=f(x)﹣,则根据导数可判断g(x)单调递减,于是g(9)<g(4)<g(1),化简即可得出结论.【解答】解:∵,∴f′(x)<,令g(x)=f(x)﹣,则g′(x)=f′(x)﹣<0,∴g(x)在(0,+∞)上是减函数,∴g(9)<g(4)<g(1),即f(9)﹣3<f(4)﹣2<f(1)﹣1,∴f(9)﹣1<f(4)<f(1)+1.故选:A.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.若公比为2的等比数列{a n}满足a7=127a,则{a n}的前7项和为 1 .【考点】89:等比数列的前n项和.【分析】利用等比数列的通项公式列出方程,求出首项,再由等比数列的前n项和公式能求出数列的前7项和.【解答】解:∵公比为2的等比数列{a n}满足a7=127a,∴,解得,∴{a n}的前7项和为S7=•=1.故答案为:1.14.(x﹣2)3(x+1)4的展开式中x2的系数为﹣6 .【考点】DB:二项式系数的性质.【分析】利用二项式定理展开即可得出.【解答】解:(x﹣2)3(x+1)4=(x3﹣6x2+12x﹣8)(x4+4x3+6x2+4x+1),展开式中x2的系数为:﹣6﹣48+48=﹣6.故答案为:﹣6.15.已知圆C过抛物线y2=4x的焦点,且圆心在此抛物线的准线上,若圆C的圆心不在x轴上,且与直线x+y ﹣3=0相切,则圆C的半径为14 .【考点】K8:抛物线的简单性质.【分析】求出抛物线的准线方程x=﹣1,设圆心坐标(﹣1,h),根据切线的性质列方程解出h,从而可求得圆的半径.【解答】解:抛物线y2=4x的焦点为F(1,0),准线方程为x=﹣1,设圆C的圆心为C(﹣1,h),则圆C的半径r=,∵直线x+y﹣3=0与圆C相切,∴圆心C到直线的距离d=r,即=,解得h=0(舍)或h=﹣8.∴r==14.故答案为:14.16.已知函数f(x)=,若函数g(x)=f(x)﹣ax﹣1有4个零点,则实数a的取值范围为(0,1).【考点】52:函数零点的判定定理.【分析】由题意,a>0,a+1>1,h(x)=ax+1与y=f(x)有两个不同的交点,x≤0,f(x)=e x与h(x)=ax+1有1个交点(0,1),函数g(x)=f(x)﹣ax﹣1有4个零点,只需要x≤0,f(x)=e x与h(x)=ax+1有另1个交点,求出函数在(0,1)处切线的斜率,即可得出结论.【解答】解:由题意,a>0,a+1>1,h(x)=ax+1与y=f(x)有两个不同的交点,x≤0,f(x)=e x与h(x)=ax+1有1个交点(0,1),∵函数g(x)=f(x)﹣ax﹣1有4个零点,∴只需要x≤0,f(x)=e x与h(x)=ax+1有另1个交点x≤0,f′(x)=e x,f′(0)=1,∴a<1,综上所述,0<a<1,故答案为(0,1).三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知atanB=2bsinA.(1)求B;(2)若b=,A=,求△ABC的面积.【考点】HR:余弦定理;HP:正弦定理.【分析】(1)根据题意,将atanB=2bsinA变形可得asinB=2bsinAcosB,由正弦定理可得sinAsinB=2sinBsinAcosB,分析可得cosB=,由B的范围可得答案;(2)由三角形内角和定理可得C的大小,进而由正弦定理可得c=×sinC=,由三角形面积公式S△=bcsinA计算可得答案.ABC【解答】解:(1)根据题意,atanB=2bsinA⇒a=2bsinA⇒asinB=2bsinAcosB,由正弦定理可得sinAsinB=2sinBsinAcosB,变形可得2cosB=1,即cosB=,又由0<B<π,故B=,(2)由(1)可得:B=,则C=π﹣﹣=,由正弦定理=,可得c=×sinC=,S△ABC=bcsinA=×××=.18.某地区拟建立一个艺术搏物馆,采取竞标的方式从多家建筑公司选取一家建筑公司,经过层层筛选,甲、乙两家建筑公司进入最后的招标.现从建筑设计院聘请专家设计了一个招标方案:两家公司从6个招标总是中随机抽取3个总题,已知这6个招标问题中,甲公司可正确回答其中4道题目,而乙公司能正面回答每道题目的概率均为,甲、乙两家公司对每题的回答都是相独立,互不影响的.(1)求甲、乙两家公司共答对2道题目的概率;(2)请从期望和方差的角度分析,甲、乙两家哪家公司竞标成功的可能性更大?【考点】CH:离散型随机变量的期望与方差;CG:离散型随机变量及其分布列.【分析】(1)利用独立重复试验的概率公式求解甲、乙两家公司共答对2道题目的概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.求出概率,得到X的分布列求解期望;【解答】解:(1)由题意可知,所求概率.(2)设甲公司正确完成面试的题数为X,则X的取值分别为1,2,3.,,.则X的分布列为:∴.设乙公司正确完成面试的题为Y,则Y取值分别为0,1,2,3.,,,则Y的分布列为:∴.(或∵,∴).()由E(X)=D(Y),D(X)<D(Y)可得,甲公司竞标成功的可能性更大.19.如图,在三棱锥ABC﹣A1B1C1中,侧面ACC1A1⊥底面ABC,△A1AC为等边三角形,AC⊥A1B.(1)求证:AB=BC;(2)若∠ABC=90°,求A1B与平面BCC1B1所成角的正弦值.【考点】MI:直线与平面所成的角.【分析】(1)取AC的中点O,连接OA1,OB,推导出AC⊥OA1,AC⊥A1B,从而AC⊥平面OA1B,进而AC⊥OB,由点O为AC的中点,能证明AB=BC.求出A1B与平面BCC1B1所成角的正弦值.【解答】解:(1)证明:取AC的中点O,连接OA1,OB,∵点O为等边△A1AC中边AC的中点,∴AC⊥OA1,∵AC⊥A1B,OA1∩A1B=A1,∴AC⊥平面OA1B,又OB⊂平面OA1B,∴AC⊥OB,∵点O为AC的中点,∴AB=BC.(2)由(1)知,AB=BC,又∠ABC=90°,故△ABC是以AC为斜边的等腰直角三角形,∵A1O⊥AC,侧面ACC1A1O⊥底面上ABC,A1⊥底面ABC以线段OB,OC,OA1所在的直线分别为x轴、y轴、z轴建立如图所示的空间直角坐标系O﹣xyz,设AC=2,则A(0,﹣1,0),,B(1,0,0),C(0,1,0),∴,,,设平面BCC1B1的一个法向量,则有,即,令,则,z0=﹣1,∴,设A1B与平面BCC1B1所成角为θ,则.∴A1B与平面BCC1B1所成角的正弦值为.20.已知椭圆C: +=1(a>b>0)的短轴长为2,且函数y=x2﹣的图象与椭圆C仅有两个公共点,过原点的直线l与椭圆C交于M,N两点.(1)求椭圆C的标准方程;(2)点P为线段MN的中垂线与椭圆C的一个公共点,求△PMN面积的最小值,并求此时直线l的方程.【考点】KL:直线与椭圆的位置关系.【分析】(1)由题意可得:2b=2,解得b=1.联立+y2=1(a>1)与y=x2﹣,可得:x4+x2+=0,根据椭圆C与抛物线y=x2﹣的对称性,可得:△=0,a>1,解得a.(2)①当直线l的斜率不存在时,S△PMN=;当直线l的斜率为0时,S△PMN=.②当直线l的斜率存在且不为0时,设直线l的方程为:y=kx,与椭圆方程联立解得x2,y2.|MN|=2.由题意可得:线段MN的中垂线方程为:y=﹣x,与椭圆方程联立可得|OP|=.利用S△PMN=|MN|×|OP|,与基本不等式的性质即可得出.【解答】解:(1)由题意可得:2b=2,解得b=1.联立+y2=1(a>1)与y=x2﹣,可得:x4+x2+=0,根据椭圆C与抛物线y=x2﹣的对称性,可得:△=﹣4×=0,a>1,解得a=2.∴椭圆C的标准方程为: +y2=1.(2)①当直线l的斜率不存在时,S△PMN==2;当直线l的斜率为0时,S△PMN==2;②当直线l的斜率存在且不为0时.设直线l的方程为:y=kx,由,解得x2=,y2=.∴|MN|=2=4.由题意可得:线段MN的中垂线方程为:y=﹣x,联立,可得x2=,y2=.∴|OP|==2.S△PMN=|MN|×|OP|=≥=,当且仅当k=±1时取等号,此时△PMN的面积的最小值为.∵,∴△PMN的面积的最小值为,直线l的方程为:y=±x.21.已知函数f(x)=e x﹣1+ax,a∈R.(1)讨论函数f(x)的单调区间;(2)若∀x∈22.在直角坐标系xOy中,曲线C1的参数方程为(α为参数),直线C2的方程为y=,以O 为极点,以x轴正半轴为极轴建立极坐标系,(1)求曲线C1和直线C2的极坐标方程;(2)若直线C2与曲线C1交于A,B两点,求+.【考点】Q4:简单曲线的极坐标方程;QH:参数方程化成普通方程.【分析】(1)利用三种方程的转化方法,即可得出结论;(2)利用极坐标方程,结合韦达定理,即可求+.【解答】解:(1)曲线C1的参数方程为(α为参数),直角坐标方程为(x﹣2)2+(y﹣2)2=1,即x2+y2﹣4x﹣4y+7=0,极坐标方程为ρ2﹣4ρcosθ﹣4ρsinθ+7=0直线C2的方程为y=,极坐标方程为tanθ=;(2)直线C2与曲线C1联立,可得ρ2﹣(2+2)ρ+7=0,设A,B两点对应的极径分别为ρ1,ρ2,则ρ1+ρ2=2+2,ρ1ρ2=7,∴+==.23.已知函数f(x)=|x|+|x﹣3|.(1)求不等式f()<6的解集;(2)若k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,求k的取值范围.【考点】R5:绝对值不等式的解法.【分析】(Ⅰ)分类讨论以去掉绝对值号,即可解关于x的不等式f()<6;(Ⅱ)作出函数的图象,结合图象求解.【解答】解:(1)x≤0,不等式可化为﹣x﹣x+3<6,∴x>﹣3,∴﹣3<x≤0;0<x<6,不等式可化为x﹣x+3<6,成立;x≥6,不等式可化为x+x﹣3<6,∴x<9,∴6≤x<9;综上所述,不等式的解集为{x|﹣3<x<9};(2)f(x)=|x|+|x﹣3|.由题意作图如下,k>0且直线y=kx+5k与函数f(x)的图象可以围成一个三角形,由直线过(0,3)可得k=,由直线过(3,3)可得k=,∴.2017年5月23日。
正视图 俯视图侧视图2017年高考数学模拟试题与答案(理科)( 满分150分,时长120分钟)说明:本试卷由第Ⅰ卷和第Ⅱ卷组成。
第Ⅰ卷为选择题,第Ⅱ卷为非选择题,将答案写在答题纸上,在本试卷上答题无效。
第Ⅰ卷(选择题 共60分)一、选择题:本大题共有12小题,每小题5分,共60分。
在每小题所给出的四个选项中有且只有一个选项是符合题目要求的1. 集合A={a 2,a +1,-1},B={2a -1,| a -2 |, 3a 2+4},A∩B={-1},则a 的值是 A .2 B .0 或1 C .-1 D .02. 若(x -i )i =y +2i ,x ,y ∈R ,则复数x +y i =A .2+iB .-2+iC .1+2iD .1-2i 3. 由代数式的乘法法则类比推导向量的数量积的运算法则:①“|m·n|=|m|·|n|”类比得到“|a·b|=|a|·|b|”; ②“(m·n)t=m(n·t)”类比得到“(a·b)·c=a·(b·c)”; ③“(m+n)t =mt +nt”类比得到“(a+b)·c=a·c+b·c”; ④“t≠0,mt =xt ⇒m =x”类比得到“p≠0,a·p=x·p ⇒a =x”; ⑤“mn=nm”类比得到“a·b=b·a”; ⑥“ac bc =a b ”类比得到“a·c b·c =a b”.以上的式子中,类比得到的结论正确的个数是 A .1 B .2 C .3 D .4 4. 如图是某几何体的三视图,则该几何体的体积为A. 83B. 435.下列函数在其定义域上既是奇函数又是减函数的是A.()2x f x =B.()sin f x x x =C. 1()f x x=D.x x x f -=)( 6. 设,6.0log ,4.0log ,2.0log 3.02.01.0===c b a 则A. a>c>bB. a>b>cC.b>c>aD.c>b>a 7. 执行如图所示程序框图,则输出的S = A.-2012 B. 2012 C. -2013 D. 20138. 若实数x 、y 满足⎪⎩⎪⎨⎧+-≥≥≥-b x y x y y x 02且y x z +=2的最小值为4,则实数b 的值为9. 等差数列{}n a 前n 项和为n S ,且20162015120162015S S =+,则数列{}n a 的公差为 A .2017 B .2016 C .2 D .110. 已知角θ的顶点与原点重合,始边与x 轴正半轴重合,终边在直线3y x =上,则sin(2)3πθ+=A. B. CD11. 我们把各位数字之和等于6的三位数称为“吉祥数”,例如123就是一个“吉祥数”,则这样的“吉祥数”一共有A .28个B .21个C .35个 D.56个12. 已知函数2,0,()4,0x a x f x x x x ⎧+≤⎪=⎨+>⎪⎩有最小值,则实数a 的取值范围是 A .(4,)+∞ B .(,4]-∞ C .[4,)+∞ D .(,4)-∞第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题5分. 共20分。
2017年全国统一高考数学试卷(理科)(全国新课标III)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={(x,y)|x2+y2=1},B={(x,y)|y=x},则A∩B中元素的个数为()A.3 B.2 C.1 D.02.(5分)设复数z满足(1+i)z=2i,则|z|=()A.B.C.D.23.(5分)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图.根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月D.各年1月至6月的月接待游客量相对于7月至12月,波动性更小,变化比较平稳4.(5分)(x+y)(2x﹣y)5的展开式中的x3y3系数为()A.﹣80 B.﹣40 C.40 D.805.(5分)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y=x,且与椭圆+=1有公共焦点,则C的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=16.(5分)设函数f(x)=cos(x+),则下列结论错误的是()A.f(x)的一个周期为﹣2πB.y=f(x)的图象关于直线x=对称C.f(x+π)的一个零点为x=D.f(x)在(,π)单调递减7.(5分)执行如图的程序框图,为使输出S的值小于91,则输入的正整数N的最小值为()A.5 B.4 C.3 D.28.(5分)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为()A.πB.C.D.9.(5分)等差数列{a n}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{a n}前6项的和为()A.﹣24 B.﹣3 C.3 D.810.(5分)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A. B.C.D.11.(5分)已知函数f(x)=x2﹣2x+a(e x﹣1+e﹣x+1)有唯一零点,则a=()A.﹣B.C.D.112.(5分)在矩形ABCD中,AB=1,AD=2,动点P在以点C为圆心且与BD相切的圆上.若=λ+μ,则λ+μ的最大值为()A.3 B.2C.D.2二、填空题:本题共4小题,每小题5分,共20分。
绝密★启用前
2017年普通高等学校招生全国统一模拟考试
理科数学
本试卷分第Ⅰ卷和第Ⅱ卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将将本试卷和答题卡一并交回。
注意事项:
1.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号县区和科类填写在答题卡和试卷规定的位置上。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
答案卸载试卷上无效。
3. 第Ⅱ卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 参考公式:
如果事件A,B 互斥,那么P(A+B)=P(A)+P(B).
第Ⅰ卷(共50分)
一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的
(1)已知集合2
{|430},{|24}A x x x B x x =-+<=<<,则A B =
(A )(1,3) (B )(1,4)
(C )(2,3)
(D )(2,4)
(2)若复数z 满足
1z
i i
=-,其中i 为虚数为单位,则z = (A )1i - (B )1i + (C )1i --
(D )1i -+
(3)要得到函数sin(4)3
y x π
=-
的图像,只需要将函数sin 4y x =的图像( )
(A )向左平移
12π
个单位
(B )向右平移
12π
个单位 (C )向左平移
3
π
个单位 (D )向右平移
3
π
个单位 (4)已知菱形ABCD 的边长为a ,60ABC ∠=
,则BD CD =
(A )2
32
a -
(B )2
34
a -
(C )
2
34
a
(D )
232
a (5)不等式|1||5|2x x ---<的解集是
(A )(-错误!未找到引用源。
,4) (B )(-错误!未找到引用源。
,1) (C )(1,4)
(D )(1,5)
(6)已知,x y 满足约束条件0,
2,0.x y x y y -≥⎧⎪
+≤⎨⎪≥⎩
若z ax y =+的最大值为4,则a =
(A )3
(B )2
(C )-2
(D )-3
(7)在梯形ABCD 中,2
ABC π
∠=
,//,222AD BC BC AD AB ===。
将梯形ABCD 绕AD 所在
的直线旋转一周而形成的曲面所围成的几何体的体积为
(A )
23
π
(B )错误!未找到引用源。
(C )错误!未找到引用源。
(D )2π
(8)已知某批零件的长度误差(单位:毫米)服从正态分布2(0,3)N ,从中随机取一件,其长度误差落
在区间(3,6)内的概率为
(附:若随机变量ξ服从正态分布2(,)N μσ,则()68.26%P μσξμσ-<<+=,
(22)95.44%P μσξμσ-<<+=.)
(A )4.56%
(B )13.59%
(C )27.18%
(D )31.74%
(9)一条光线从点(-2,-3)射出,经y 轴反射后与圆2
2
(3)(2)1x y ++-=相切,则反射光线所在直
线的斜率为( )
(A )53-或35- (B )32-或2
3- (C )54-或45- (D )43-或3
4
-
(10)设函数21,1,()2,1
x
x x f x x -<⎧=⎨
≥⎩,则满足()
(())2
f a f f a =的a 的取值范围是
(A )2
[,1]3
(B )[0,1]
(C )2
[,)3
+∞
(D )[1,)+∞
第Ⅱ卷(共100分)
二、填空题:本大题共5小题,每小题5分,共25分。
(11)观察下列各式:
0014C =;
011334C C +=; 01225554C C C ++=; 0123377774C C C C +++=;
……
照此规律,当*
n N ∈时,
012121212121...n n n n n C C C C -----++++= .
(12)若“[0,
],tan 4
x x m π
∀∈≤”是真命题,则实数m 的最小值为 .
(13)执行右上边的程序框图,输出的T 的值为 .
(14)已知函数()(0,1)x f x a b a a =+>≠ 的定义域和值域都是[]1,0- ,则a b += .
(15)平面直角坐标系xOy 中,双曲线22
122:1(0,0)x y C a b a b
-=>>的渐近线与抛物线
22:2(0)C x py p =>交于点,,O A B 。
若OAB ∆的垂心为2C 的焦点,则1C 的离心率为 .
三、解答题:本答题共6小题,共75分。
(16)(本小题满分12分)设2
()sin cos cos ()4
f x x x x π
=-+
.
(Ⅰ)求()f x 的单调区间;
(Ⅱ)在锐角ABC ∆中,角,,A B C 的对边分别为,,a b c .若()0,12
A f a ==,求ABC ∆面积的最大值.
(17)(本小题满分12分)如图,在三棱台DEF ABC -中,
2,,A B D E G H =分别为,AC BC 的中点.
(Ⅰ)求证://BD 平面FGH ;
(Ⅱ)若CF ⊥平面,,ABC AB BC CF DE ⊥=,45BAC ∠=
,
求平面FGH 与平面ACFD 所成的角(锐角)的大小.
(18)(本小题满分12分)设数列{}n a 的前n 项和为n S ,已知233n n S =+.
(Ⅰ)求{}n a 的通项公式;
(Ⅱ)若数列{}n b 满足3log 2n n a b =,求{}n b 的前n 项和n T .
(19)(本小题满分12分)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得1-分;若能被10整除,得1分.
(Ⅰ)写出所有个位数字是5的“三位递增数”;
(Ⅱ)若甲参加活动,求甲得分X 的分布列和数学期望EX .
(20)(本小题满分13分)平面直角坐标系错误!未找到引用源。
中,已知椭圆22
22:1(0)
x y C a b a b
+=>>
的离心率为
2
,左、右焦点分别是12,F F .以1F 为圆心以3为半径的圆与以2F 为圆心以1为半径的圆相交,且交点在椭圆C 上.
(Ⅰ)求椭圆C 的方程;
(Ⅱ)设椭圆22
22:1,44x y E P a b
+=为椭圆C 上任意一点,过点P 的直线y kx m =+交椭圆E 于,A B
两点,射线PO 交椭圆E 于点Q .
(ⅰ)求
||
||
OQ OP 的值; (ⅱ)求ABQ ∆面积的最大值.
(21)(本小题满分14分)设函数2
()ln(1)()f x x a x x =++-,其中a R ∈.
(Ⅰ)讨论函数()f x 极值点的个数,并说明理由; (Ⅱ)若0,()0x f x ∀>≥成立,求a 的取值范围.。