固体物理基础答案解析吴代鸣复习课程
- 格式:doc
- 大小:287.50 KB
- 文档页数:10
大学物理吴锡珑第一册课后答案为了消除人们在日常生活中对气体、液体和固体的污染问题,人们都希望利用气体来处理和储存物质。
人们把气体的应用分为三个阶段:首先,它是指由气体所组成的气体的容器。
例如气球气体的容器。
第二阶段即用气体所组成、储存物质;主要是用来把气体变成液体。
例如,用玻璃容器将气体制成液体。
第三阶段是用气体所组成的固体容器--固体介质容器,例如固体火箭发动机固体燃料的贮槽以及固体液体的容器。
例如,把液体作为固体载体来储存介质的装置叫做水轮泵。
第一阶段通常使用气体来液化气体,例如把乙醇注入液体或者浓硫酸等可以液化气体;第二阶段通常使用气体或液体作为固体载体。
第一段是指人们所利用的材料—固体载体——气体进行物质交换,例如气体是甲烷还是乙烷;第三段是指在空气中以固定的速度运动并不断地变换速度,可以改变分子或原子的性质以及进行各种物质交换试验以达到物质分离和分配目的的系统:①用空气作为介质,②用液体作为吸附剂或扩散剂,③采用气体、空气燃料、液体燃料和固体燃料;④采用液体或固体作为载体装置,以及采用气体或固体燃料和其他物质交换实验取得样品1.空气悬浮时,固体颗粒之间的碰撞和摩擦,其作用是()。
解析:空气悬浮时,固体颗粒之间的碰撞和摩擦作用,是一种物理现象;悬浮物质之间碰撞摩擦产生的力主要由牛顿第三定律控制。
牛顿第三定律认为:物体可以被悬浮物分离成为两部分。
因此,只有当被漂浮物完全压紧或相互融合后,它们才能分离成两部分:被悬浮的物体(即固体颗粒)部分和悬浮物质(即液滴)部分。
该定律中物体的力与摩擦力均为牛顿第三定律的基本要素。
牛顿第二定律认为运动物体的动能为质量×摩擦力;运动单位M×摩擦力是固体之间相对于被悬浮物彼此之间相互摩擦而形成的合力,即一种自由能和一种动能;在实际计算中,通常将一个静止物体和一个运动物体同时当作一个速度不变的移动对象或当两个速度相同时,当没有固体颗粒的作用时,这两个概念只能互换使用、互相补充。
固体物理基础(吴代鸣之高教版)课后1到10题答案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN一. 本章习题P272习题1.试证理想六方密堆结构中c/a=1.633.一. 说明:C 是上下底面距离,a 是六边形边长。
二. 分析:首先看是怎样密堆的。
如图(书图1.10(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a (不管是同层还是上下层之间)。
三.证明:如图OA=a ,OO ’=C/2(中间层是上下面层的一半),AB=a O ’是ΔABC 的三垂线交点33'aAB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl )的面间距。
一、分析:我们想到倒格矢与面间距的关系G d π2=。
倒格矢与晶面族 (hkl )的关系321b l b k b h G++=写出)(321b b b 与正格子基矢 )(c b a的关系。
即可得与晶面族(hkl ) 垂直的倒格矢G。
进而求得此面间距d 。
二、解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢: kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h Gd ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择每个原胞含有几个原子1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
11.设有一维单原子晶格,在简谐近似下,考虑每一原子与其余所有原子的作用,试求格波的色散关系。
解:第n 个原子位移x n ,第n+p 个位移x n+p ,第n-p 个位移x n-p (P=1,2,3,……)。
设最近邻原子间力常数为β1,次近邻β2,再次近邻β3,……βp简谐近似下(由书P47,式3.1.6):∑≠+=ji ij ij x U U 2041β第n个原子的运动方程:)(22n i in n i n nx x x U dtx d M -=∂∂-=∑≠β第n+p 和第n-p 个原子对第n 个原子的作用力:)2()()(n p n p n p p n n p n p n p p x x x x x x x f -+=---=-+-+βββ第n 个原子总的受力:)2(n p n p n p pp px x x f -+=-+∑∑β运动方程:)2(22n p n p n p pnx x x dt x d M -+=-+∑β试探解:)(t naq i n Ae x ω-= 代入运动方程:)2cos 2(0)2(22-=-∴≠-+=-∑∑-paq M x x e x e x Mx p pn n ipaq n ipaq n p pn βωβω所以色散关系为:)cos 1(2)(2pqa Mq pp-=∑βω12. 设有一维双原子晶格,最近邻原子间的力常数交错地等于β和10β,假定两种原子的质量相等,最近邻原子间距为a/2,试求格波的色散关系。
解:同一维单原子类似,可写出两种原子的运动方程n n n n u v v dt u d M βββ21010122-+=- n n n nv u u dtv d M βββ102122⨯-+=+ 试探解为)(t naq i n Ae u ω-= )(t naq i n Be v ω-=代入运动方程有:n n iaq n n u v e v Mu βββω210102-+=-- n iaq n n n v e u u Mv βββω202-+=-将u n 、v n 代入消去公因子)(t naq i e ω-得BA e AB M A B B e A M iaqiaq βββωβββω202101022-+=--+=--整理,化为关于A 、B 的线性方程组{)20()1(0)1(10)2(22=-++-=+---B M A e B e A M iaqiaq ωβββωβA ,B 有非零解的条件是上式系数行列式等于零,即2220)1()1(102ωβββωβM e e M iaqiaq -+-+---0=有)cos 1(210202400)1)(1(10)20)(2(24222222=+⋅-+--∴=++⋅----aq M M M e e M M iaq iaq βωωβωββββωβωβ即0)cos 1(20222422=-++-qa M M βωωβ 解出:{}2122222)]cos 1(204)22[(2221)(qa M M M M q -⋅-±=βββω])cos 20101(11[21qa M+±=β13.求出一维单原子晶格的模密度,并导出在低温下晶格比热与温度关系。
一.本章习题P272习题1、试证理想六方密堆结构中c/a=1、633、一. 说明:C 就是上下底面距离,a 就是六边形边长。
二. 分析:首先瞧就是怎样密堆的。
如图(书图1、10(a),P8),六方密堆结构每个格点有12个近邻。
(同一面上有6个,上下各有3个)上下底面中间各有一个球,共有六个球与之相切,每个球直径为a 。
中间层的三个球相切,又分别与上下底面的各七个球相切。
球心之间距离为a 。
所以球心之间即格点之间距离均为a(不管就是同层还就是上下层之间)。
三. 证明:如图OA=a,OO ’=C/2(中间层就是上下面层的一半),AB=a O ’就是ΔABC 的三垂线交点33'a AB AO ==∴(由余弦定理)330cos 2,30cos 230cos 2222a a x x a ax x a x ===-+=633.1322384132)2()2()3()2(2222222222''≈===∴+=+=+=a c c a ac a ac OA AO OO2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl)的面间距。
一、分析:我们想到倒格矢与面间距的关系G d π2=。
倒格矢与晶面族 (hkl)的关系321b l b k b h G++=写出)(321b b b 与正格子基矢 )(c b a的关系。
即可得与晶面族(hkl) 垂直的倒格矢G 。
进而求得此面间距d 。
二、解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢:kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl)晶面族垂直的倒格矢 222321)()()(2)(2cl b k a h G k cl j b k i a h b l b k b h G ++=∴++=++=ππ故(hkl) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子?1.分析:考虑选取原胞的条件:(即布拉菲晶格的最小单元)(1)体积最小的重复结构单元(2)只包含一个格点(3)能反映晶格的周期性应将几个原子组合成一个格点,然后构成原胞。
8.证明一维NaCl 晶格的Madelung 常数2ln 2α=。
证明:任选一个离子为参考离子i ,左右两侧对称分布,令ij j r a a =(a 为晶格常数) 则有:111112......1234jj aα⎡⎤±=-+-+⎢⎥⎣⎦∑=同号为-,异号为+。
已知级数234l n (1)......234x x x x x +=-+-+令x=1 则得:111l n 21......234=-+-+ 故Madelung 常数2ln 2α=。
9.若离子间的排斥势用-r/eρλ来表示,只考虑最近邻离子间的排斥作用,试导出离子晶体结合能的表达式,并讨论参数λ和ρ应如何决定。
解:设最近邻离子间距离为r ,则ij j r a r =(以离子i 为原点)2/0204()4ij r ij ijij ij e e r r r u r e r ρλπεπε-⎧-=⎪⎪=⎨⎪±⎪⎩,(最近邻,),(最近邻以外)总的相互作用能为:2/()0124Nr j i j Ne U e ra ρλπε-≠⎡⎤=-±-⎢⎥⎢⎥⎣⎦∑∑最近邻 2/0..........................(1)24r Ne U Z e r ραλπε-⎡⎤∴=-+⎢⎥⎣⎦; 其中Z 为最近邻离子数 由平衡条件00r r U r =∂⎛⎫= ⎪∂⎝⎭得02/200.........................(2)4r e Z e r ρραλπε-= 得20001.......................(3)24N e U r r αρπε⎡⎤=-⎢⎥⎣⎦ 结合能0()c E U r =- 对于NaCl 等离子晶体:02201...................(4)9r rU K Nr r =⎛⎫∂= ⎪∂⎝⎭02/32000121............(5)184r e Z K e r r ραλπερ-⎡⎤-∴=+⎢⎥⎣⎦将(2)代入(5)得: 22320000121..................(6)1844e e K r r r ααπεπερ⎡⎤=-+⋅⎢⎥⎣⎦202400.........................(7)272e r e r K αραπε∴=+ 由(2)得:02/200......................(8)4r e e r Zρραλπε=则4220002003611243r K e e U r e πεααπεα⎛⎫⎛⎫-=-- ⎪⎪⎝⎭⎝⎭10.如果NaCl 晶体中离子的电荷增加一倍,假定排斥势不变,试估计晶体的结合能以及离子间的平衡距离将产生多大变化?解:总相互作用能20........(1)24n N e B U r r απε⎛⎫=--⎪⎝⎭ 02210000...........(2)24n r r U N e nB r r r απε+=⎛⎫∂⎛⎫=-= ⎪ ⎪∂⎝⎭⎝⎭得到:11'0024..............(2)n nB r e πεα-⎛⎫=⎪⎝⎭由(2)得到:2100...............(3)4n e B r nαπε-=将(3)代入(1)得: 20001()1........(4)8N e U r r n απε⎛⎫=-- ⎪⎝⎭当电荷由e 变为2e 时,由(2·)和(4)可得:1010(2)4()n r e r e -= 1(2)4()nn U e U e -= 11.在一维单原子晶格中,若考虑每一个原子与其余所有原子都有作用,在简谐近似下求格波的色散关系。
固体物理基础答案解析吴代鸣1.试证理想六方密堆结构中c/a=1.633.证明:如图所示,六方密堆结构的两个晶格常数为a 和c 。
右边为底面的俯视图。
而三个正三角形构成的立体结构,其高度为2.若晶胞基矢c b a,,互相垂直,试求晶面族(hkl )的面间距。
解:c b a ,,互相垂直,可令k c c j b b i a a===,,晶胞体积abc c b a v =⨯⋅=)(倒格子基矢: kcj b i a abc b a v b j b i a k c abc a c v b ia k c jb abc c b v b πππππππππ2)(2)(22)(2)(22)(2)(2321=⨯=⨯==⨯=⨯==⨯=⨯=而与 (hkl )晶面族垂直的倒格矢222321)()()(2)(2cl b k a h G k c l j b k i a h b l b k b h G ++=∴++=++=ππ故(hkl ) 晶面族的面间距222222)()()(1)()()(222cl b k a h cl b k a h G d ++=++==πππ3.若在体心立方晶胞的每个面中心处加一个同类原子,试说明这种晶体的原胞应如何选择?每个原胞含有几个原子? 答:通过分析我们知道,原胞可选为简单立方,每个原胞中含有5个原子。
体心,八个顶点中取一个,对面面心各取一个原子(即三个)作为基元。
布拉菲晶格是简单立方格子。
4.试求面心立方结构的(111)和(110)面的原子面密度。
解:(111)面平均每个(111)面有2213613=⨯+⨯个原子。
(111)面面积()222232322)22()2(221a a a a a a =⋅=-⋅ 所以原子面密度22)111(34232aa ==σ(110)面平均每个(110)面有2212414=⨯+⨯个原子。
(110)面面积222a a a =⋅所以(110)面原子面密度22)110(222aa==σ5.设二维矩形格子的基矢为j a a i a a2,21==,试画出第一、二、三、布里渊区。
解:倒格子基矢: jb j a j a j ax x a a a a v b k x a i ax i a x a a a a v b 11323321212212222)(2)(2222)(2===⋅⋅=⨯===⋅⋅=⨯=πππππππ 所以倒格子也是二维矩形格子。
2b方向短一半。
最近邻;,22b b-次近邻;2,2,,2211b b b b--再次近邻;,,,12122121b b b b b b b b---+-再再次近邻;3,322b b-做所有这些点与原点间连线的垂直平分线,围成布里渊区。
再按各布里渊区的判断原则进行判断,得:第一布里渊区是一个扁长方形;第二布里渊区是2块梯形和2块三角形组成;第三布里渊区是2对对角三角和4个小三角以及2个等腰梯形组成。
6.六方密堆结构的原胞基矢为:kc a j a i a a ja i a a=+-=+=32123212321试求倒格子基矢并画出第一布里渊区。
解:原胞为简单六方结构。
原胞体积:c a j i j i c a i j ac j i a k c j i a j i a a a a v 2232123)3()3(41)]3(21[)3(21])3(21[)3(21)(=+⋅+=+⋅+=⨯+-⋅+=⨯⋅=倒格子基矢: kca a vb j i a j i a kc c a a a v b j i a k c j i a c a a a v b ππππππππ2)(2)3(2)]3(21[232)(2)3(32])3(21[232)(221321322321=⨯=+-=+⨯=⨯=+=⨯+-=⨯=由此看到,倒格子同原胞一样,只是长度不同,因此倒格子仍是简单六方结构。
(注意:倒格子是简单六方,而不是六方密堆)选六边形面心处格点为原点,则最近邻为六个角顶点,各自倒格矢的垂直平分面构成一个六面柱体。
次近邻为上下底面中心,其垂直平分面为上下平行平面。
再次近邻是上下面六个顶角,其垂直平分面不截上面由最近邻和次近邻垂直平分面构成的六角柱体。
所以第一布里渊区是一个六角柱体。
比倒格子六方要小。
7.略8、证明一维NaCl 晶体的马德隆常数为2ln 2=α证明:,,则左右两侧对称分布任选一参考离子i最近距离)为晶格常数(正负离子;这里令a a a r j ij =.为其中,异号为+;同号; (4131211121)=那么,有:-⎥⎦⎤⎢⎣⎡+-+-=±∑j j a α (4)32)1ln(利用展开式:432+-+-=+x x x x x (4)1312112ln ,得:1令+-+-==x 2ln 2=∴α9、若离子间的排斥势用ρλre -来表示,只考虑最近邻离子间的排斥作用,试导出离子晶体结合能的表达式,并讨论参数λ和ρ应如何决定。
解:离子为原点)(以,则设最近邻离子间距离为i r a r r j ij =⎪⎪⎩⎪⎪⎨⎧±=-=-,(最近邻以外)4),(最近邻,4)(0202/ij ij ij r ij r e r r r e er u ij πεπελρ ⎥⎦⎤⎢⎣⎡-±-=∑∑-≠最近邻/)(02142总相互作用能为:ρλπεr Nij jea re N U为最近邻离子数其中)1......(....................;42/02Z e Z r e NU r ⎥⎦⎤⎢⎣⎡+-=∴-ρλπεα)2.....(....................4;得:0由平衡条件:/20020ρλπεραr r r eZ r e r U -===⎪⎪⎭⎫ ⎝⎛∂∂)3...(....................142得:0002⎥⎦⎤⎢⎣⎡-=r r e NU ρπεα )(结合能0r U E c -=)4.........(. (91)等离子晶体:对于0220r r r U Nr K NaCl =⎪⎪⎭⎫⎝⎛∂∂= )5..(..........142181/2300200⎥⎦⎤⎢⎣⎡+-=∴-ρρλπεαr e Z r e r K )6........(..........1442181得:)5(代入)2(将200230020⎥⎦⎤⎢⎣⎡⋅+-=ρπεαπεαr e r e r K )7.....(.. (7224)00202Kr e r e πεααρ+=∴ )8..(....................4得:)2(由/20020ρπεραλreZr e =10、如果NaCl 结构晶体中离子的电荷增加一倍,假定排斥势不变,试估计晶体的结合能及离子间的平衡距离将产生多大变化。
解:)1........(42总相互作用能02⎪⎪⎭⎫ ⎝⎛--=n r B r e NU πεα )2.(..........0421020020=⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛∂∂+=n r r r nB r e N r U πεα )2....(..........4得:'11200-⎪⎪⎭⎫⎝⎛=n e nB r απε)3.....(..........4得:)2(由1002-=n r ne B πεα)4........(118)(得:)1(代入)3(0020⎪⎪⎭⎫ ⎝⎛--=n r e N r U πεα 11100'4)()2(4)()2(可知:)4(和)2(时,由2变为当电荷由--==n nne U e U e r e r e e11、在一维单原子晶格中,若考虑每一院子于其余所有原子都有作用,在简谐近似下求格波的色散关系。
∑∑≠≠+=-=ji ijij j i ij ij u U u x U 20041)(21解:在简谐近似下:βφ)(41个原子的运动方程:第222∑≠∂∂-=∂∂-=j i ij ij n n n u u u U dtu d m n β)(41右边)(2)(2∑∑≠≠+∂∂-=n j nj nj n i in in n u u u ββ))()((41)(2)(2∑∑≠≠-+-∂∂-=n j n j nj n i i n in n u u u u u ββ))()((21)()(∑∑≠≠----=nj n j nj n i i n in u u u u ββ∑≠-=)()(ni n i in u u β∑-+=-+pn p n pn p u u u )2(β∑-+=-=---+------pn aq p n t i aq p n t i pnaq t i naq t i n u Ae Ae Ae m Ae u )2(代入上式得:设))(())(()(2)(ωωωωβω∑-=pp paq m)cos 1(2整理,得:2βω12、设有一维双原子晶格,两种院子的质量相等,最近邻原子间的力常数交错地等于1β和2β,试求格波的色散关系。
nn n n n n n n u u u dtu d m )()()(解:2121121122ββυβυβυβυβ+-+=-+-=-- nn n n n n n n u u u u dt d m υββββυβυβυ)()()(2111211222+-+=-+-=++ )()(;试探解:t naq i n t naq i n Be Ae u ωωυ----==BA AeB m A B Be A m iaqiaq )()(代入方程,得:2121221212ββββωββββω+-+=-+-+=--0)()()(2121221221=+-++--+-ββωββββωββm e e m iaq iaqmaqcos 2经计算,得:212221212ββββββω++±+=13、已知一维单原子晶格的格波色散关系为)cos 1(2)(2qa Mq -=βω试求:(1)格波的模密度g(ω);(2)低温下晶格热容与温度的比例关系。
⎰-=))((2)(解:一维时,模密度q dq lg ωωδπωaqdqMad M aq sin 22;21cos 由色散关系,得:2βωωωβ=-=2/142224⎪⎪⎭⎫ ⎝⎛-=∴ωβωββωωM M Ma d dq⎰⎪⎪⎭⎫ ⎝⎛--⋅=mq M q M M a q q d q l g ωωβωββωωδωωπω02/14222)(4)())(()()(22)( 2/142224⎪⎪⎭⎫ ⎝⎛-=ωβωββωπM M Ma l⎰-∂∂=⎪⎪⎭⎫ ⎝⎛∂∂=mT k d g T T E C B ωυυωωωω01)/exp()(晶格热容:)1项,(因为低温,略去4<<ωω⎰-⋅∂∂=∴mB Tk e d M M a l TC ωωυωωωββωπ01 ⎰∞-∂∂=01ωωβπωd eTM alTk B)似为无穷大主要,所以上限可以近因为低温,频率低的占(⎰∞-=0222)1(dx e e x T k M al xxBβπ3经计算,上面积分=2πT Ma lk C B ⋅=∴βπυ3214、将Debye 模型用于一维晶格,求低温下晶格热容与温度的关系,并和上题的结果进行比较,讨论Debye 模型的合理性。