激光加工技术在机械加工业中的应用
- 格式:pdf
- 大小:228.15 KB
- 文档页数:2
激光加工技术的应用及未来发展趋势激光加工技术是目前应用最广泛的高精度、高效率加工技术之一,在诸多领域发挥着重要的作用。
本文将从激光加工技术的应用、现状及未来发展趋势等方面展开分析讨论。
一、激光加工技术的应用激光加工技术的应用范围非常广泛,主要涵盖以下几个方面:1. 材料切割。
激光切割技术被广泛应用于金属、非金属材料的加工中,如通过对金属板材进行激光切割,可以高效地完成各种金属零件的制作。
2. 焊接。
激光焊接技术被广泛应用于汽车、机械、电子、航空等诸多领域,可以完成各种材料的高精度焊接,提高了产品的质量和生产效率。
3. 雕刻。
激光雕刻技术是目前应用最广泛的激光加工技术之一,被广泛应用于玉石、皮革、木材、彩金等材料的加工。
4. 理疗医疗。
激光技术在医疗领域应用的最为广泛的领域是激光治疗、激光手术、激光检测等。
二、激光加工技术的现状当前,激光加工技术已经成为了高精度、高效率的加工方法之一。
随着工业加工需求的不断增长,激光加工技术的应用范围也在不断扩大,其应用领域和发展方向也更加多样化。
目前,激光加工技术在中国的应用也非常广泛,尤其在汽车、航空、机械、电子、建筑等领域,激光加工技术的应用已经成为一种趋势。
虽然激光加工技术已经有了广泛的应用,但目前激光加工技术面临的问题也不容忽视。
例如,激光加工过程中的废气处理和粉尘处理问题、激光加工机器的成本昂贵等问题。
三、激光加工技术的未来发展趋势随着科技的不断进步,激光加工技术的应用前景也越来越广阔。
未来,激光加工技术的应用领域还将不断拓展,同时优化激光加工设备也将成为厂家竞争的重点。
未来激光加工技术的发展趋势主要体现在以下几个方面:1. 优化设备、成本更低。
未来的激光加工机将更加高效、便捷,操作起来更加人性化。
同时,通过技术革新和成本的降低,未来激光加工设备的成本会不断被压缩,这对于提高激光加工技术的普及和应用来说非常重要。
2. 更加精细化和智能化。
未来激光加工技术将更加智能化,加工精度将得到更大的提高。
机械制造中的新型材料与先进加工技术在机械制造领域,新型材料和先进加工技术的应用正日益成为推动行业发展的重要因素。
新型材料的引入和先进加工技术的运用,不仅在提高产品质量和性能方面发挥着重要作用,也为机械制造业的创新发展带来了更大的可能性。
本文将探讨机械制造中的新型材料与先进加工技术的应用及其对行业发展的影响。
一、新型材料在机械制造中的应用1. 碳纤维复合材料碳纤维复合材料以其高强度、轻质化和耐腐蚀等优势,成为机械制造中的新宠。
在航空航天、汽车制造和轨道交通等领域,碳纤维复合材料的应用可以大幅减少产品自重,提高运行效率,并且具备较好的耐久性,减少维修成本。
2. 3D打印材料3D打印技术的快速发展催生了各种新型材料的研发和应用。
与传统加工方法相比,3D打印可以实现复杂结构的制造,并且可以根据需求定制材料属性,提高产品的适应性和精度。
目前,金属、陶瓷、高分子材料等都可以通过3D打印技术进行制造,这为机械制造业注入了新的活力和创新力。
3. 高温合金在机械制造中,高温合金的应用主要体现在航空发动机和燃气轮机等领域。
由于高温合金具有优异的耐高温、耐腐蚀和耐磨损性能,能够适应极端环境下的工作条件,因此它成为提高产品性能和可靠性的重要材料。
二、先进加工技术在机械制造中的应用1. 数控加工技术数控加工技术通过计算机对加工过程进行控制,有效提高了加工精度和稳定性。
与传统手工或者半自动加工相比,数控加工技术具有更高的自动化程度和生产效率。
由于数控加工技术能够实现复杂曲线和曲面的加工,从而适应多样化产品的需求,因此在机械制造中得到了广泛应用。
2. 激光加工技术激光加工技术以其无接触、高精度和速度快的特点,成为现代机械制造中的重要工具。
激光切割、激光焊接和激光打标等技术的广泛应用,不仅提高了加工效率,也为制造出更加精细和高质量的产品提供了可能。
3. 精密成形技术精密成形技术包括注塑成形、挤压成形和锻压成形等。
通过精密成形技术,可以实现产品的高精度和高质量,同时减少材料的浪费,提高资源利用率。
机械制造中的先进制造技术与工艺创新机械制造是现代工业领域中的重要部门之一,它涉及到许多制造工艺和技术。
随着科技的不断进步和创新,机械制造领域也在不断发展和演变。
先进制造技术和工艺的应用不仅提高了机械制造过程的效率,还改善了产品的质量和性能。
本文将探讨机械制造中的先进制造技术和工艺创新。
一、数控技术数控技术是一种基于计算机控制的先进制造技术,它可以对机械加工过程进行自动控制。
传统的机械加工需要依靠工人的经验和技巧,而数控技术可以精确地控制加工过程,提高加工精度和一致性。
数控技术不仅可以应用于常规加工操作,如铣削、钻孔和切割,还可以应用于复杂的曲面加工和多轴加工。
此外,数控技术还可以通过编程实现不同产品的批量生产和灵活制造。
二、激光切割技术激光切割技术是一种高精度的材料切割方法,它利用激光束对材料进行加工。
激光切割技术具有非接触加工、高精度、高效率和适用于各种材料的特点。
在机械制造中,激光切割技术可以用于金属材料和非金属材料的切割和雕刻。
相比传统的切割方法,激光切割技术不会引起材料变形和氧化,可以实现更精细的切割效果。
三、增材制造技术增材制造技术是一种通过逐层添加材料构建三维实体的制造方法。
它可以根据设计要求逐层添加材料,形成复杂的几何形状和内部结构。
机械制造中的增材制造技术包括3D打印和激光熔化沉积等方法。
与传统的机械加工方法相比,增材制造技术可以提高制造效率,减少材料浪费,并且可以制造出更复杂和个性化的产品。
四、智能制造技术智能制造技术是将信息技术与制造技术相结合的一种先进制造技术。
智能制造技术可以将传感器、计算机和网络等技术应用于机械制造过程中,实现自动化、柔性化和智能化的生产。
例如,智能制造技术可以通过监测和分析生产数据,提高生产效率和质量控制。
此外,智能制造技术还可以实现设备之间的互联互通和协作,提高生产系统的整体效率和灵活性。
五、先进材料应用随着科技的不断发展,新型材料的出现为机械制造提供了更多的选择。
农机制造中激光加工技术的运用-农业工程论文-农学论文——文章均为WORD文档,下载后可直接编辑使用亦可打印——摘要:随着我国农机行业的发展,传统加工技术已无法完全满足农机制造的需求,激光加工技术作为新型制造技术,有着加工灵活、对加工材料影响小、可加工的材料种类多等众多优点,恰好满足农机制造自动化、机械化、智能化的需求。
本文分析了激光加工技术在农机中的应用现状,阐述了有关常见的激光加工技术,如激光切割、激光焊接、激光熔覆等在农业机械制造中的研究进展,并对其未来研究方向提出可行性建议。
关键词:农机制造; 激光加工; 激光切割; 激光焊接; 激光熔覆;Abstract:Along with the development of the agricultural machinery industry in our country, traditional processing technology have been unable to fully meet the demand of the agricultural machinery manufacturing, laser processing technology as a newmanufacturing technology,has a flexible processing, little influence on the processing materials, machinable variety of materials, and many other advantages, to meet the needs of agricultural machinery manufacturing automation, mechanization and intelligent.This paper will analyze the application status of laser processing technology in agricultural machinery, and elaborate several common laser processing technology, such as laser cutting, laser welding, laser cladding and other research progress in agricultural machinery manufacturing, and put forward feasible suggestions for future research direction.Keyword:agricultural machinery manufacturing; laser processing; laser cutting; laser welding; laser cladding;0 、引言随着农业现代化发展,传统农业正向现代化农业的过渡,对农机的工作效率和产品质量的要求逐渐提高[1]。
激光加工技术的发展及应用研究激光加工技术相信大家已经不会陌生了。
它是一种以激光束为工具进行加工的技术,由于具有高精度、高效率、无损伤、无污染、无接触等优点,激光加工技术在领域中被广泛应用,它有望成为未来工业制造的主流技术之一。
一、激光加工技术的历史与发展激光加工技术的历史可以追溯到20世纪60年代。
1965年,美国一位科学家发明了被称作激光的新型光源,由于其单色性、相干性和高亮度,很快就引起了工业界的关注。
1982年,德国的魏德梅尔(Karl-Otto Mende)博士首次将激光应用于金属加工中。
当时的激光能量仅为几十瓦,但其加工效率已经超过传统的加工方法。
随着激光技术的发展,其在工业制造中的应用也越来越广泛。
特别是现在的高功率激光技术,使得激光加工效率得到了大幅提升。
目前,激光加工技术已经被广泛应用于金属、非金属和复合材料的加工中,成为了现代制造业的一项重要技术。
二、激光加工技术的分类根据激光加工的模式和处理特点,激光加工可以分为以下几类:1. 激光切割技术:主要应用于金属材料的切割,具有高效、高精度、无接触且无热影响等优点,可以在制造过程中减少材料的浪费。
2. 激光钻孔技术:主要应用于金属材料的开孔、钻孔和放电加工,具有高精度、高效率、非接触性等优点,可以实现对规则和不规则形状的孔洞加工。
3. 激光焊接技术:主要应用于金属材料的焊接,具有高强度、高可靠性、无杂质、无变形等优点,可以实现对不同材料与不同厚度的焊接。
4. 激光刻蚀技术:主要应用于半导体微机电系统、热敏电路、4G手机行业等领域,具有高精度、无刻蚀液、无腐蚀残留等优点,可以实现对非接触性的刻蚀加工。
三、激光加工技术的应用1. 机械制造业激光加工技术在机械制造业中的应用领域很广,如金属零部件、工业机器人、汽车和航空零部件等制造中。
从机械加工的角度,激光加工的加工速度比传统加工快,精度高,能够研究制造一些新颖、微小、薄肉、复杂、高精度的工件,具有无可比拟的优势。
激光在工业加工领域中的应用激光作为一种重要的光学技术,在工业加工领域中得到了广泛的应用。
激光具有高能量、高光束质量、高单色性等优点,可以对各种材料进行切割、焊接、打孔等各种精密加工工艺,因此被誉为工业制造的“利剑”。
一、激光技术在工业加工中的应用1. 激光切割技术激光切割技术是利用激光在被切割材料表面产生高温和压力,使材料熔化、汽化并产生裂纹,从而实现对材料的分离。
这种加工方法适用于多种材料,如金属、非金属、塑料、木材等。
激光切割工艺具有精度高、速度快、效率高、加工深度可控等优点,被广泛应用于汽车制造、航空航天、机床制造等工业领域。
2. 激光焊接技术激光焊接技术是利用激光对被焊接材料进行高能量聚焦,将材料表面熔化并产生反应,从而实现材料的粘结。
激光焊接技术适用于各种金属、合金、非金属等材料的焊接。
激光焊接工艺具有高效率、低热影响区、焊接质量高等优点,被广泛应用于汽车制造、机器人制造、电子器件制造等领域。
3. 激光打孔技术激光打孔技术是利用激光在材料表面产生高热和气体压力,使材料表面产生熔融和汽化,从而实现对材料进行小孔的加工。
激光打孔工艺具有精度高、加工速度快、钻孔质量好等优点,被广泛应用于汽车零部件制造、航空航天制造、电子设备制造等工业领域。
4. 激光雕刻技术激光雕刻技术是利用激光在特定材料表面进行局部加热,使其表面产生不同的化学和物理变化,从而形成图案、字母和图像等效果。
激光雕刻工艺具有精度高、加工速度快、制作效果好等优点,被广泛应用于工艺品、礼品、家居装饰等领域。
二、激光技术在未来的应用前景随着先进制造技术的不断发展,激光技术在工业加工领域中的应用前景越来越广阔。
未来,激光技术将成为更多行业的突破口,其应用领域也将更加广泛。
以下是激光技术在未来的应用前景:1. 3D打印技术近年来,3D打印技术在制造业中得到了广泛应用,而激光技术作为其核心技术之一,必将继续发挥重要作用。
基于激光精确加工能力的3D打印机,可以根据客户需求快速生产出所需物品,满足复杂零部件的加工需求。
机械工艺技术新技术有哪些随着科技的不断发展,机械工艺技术也在不断创新与进步。
新技术的不断涌现,为机械工艺提供了更多的可能性和创新的方向。
本文将介绍一些目前较为热门的机械工艺技术新技术。
首先,3D打印技术是近年来备受瞩目的机械工艺技术之一。
它通过数控技术层层堆叠材料,逐渐构建出复杂的三维物体。
相比传统的加工方法,3D打印技术具有制造精度高、生产周期短、成本低等优点。
它可以将设计师的创意直接转化成实体产品,为定制化生产提供了可能。
其次,激光加工技术也是一个重要的机械工艺技术新技术。
激光加工技术利用高能激光束对材料进行加工,具有高精度、高速度、无接触等特点。
它可以用于切割、切削、打孔、焊接等多种应用领域。
激光加工技术广泛应用于汽车、航空航天、电子等行业,提高了生产效率和质量水平。
再次,机器人技术也是目前机械工艺技术的热门领域之一。
机器人技术通过自动化和智能化的手段,替代人工完成重复、繁琐、危险的工作。
它可以用于组装、焊接、搬运等多种工艺环节。
机器人技术的发展为工业生产带来了革命性的变化,提高了生产效率、降低了人力成本、保障了工人安全。
另外,纳米技术也是近年来兴起的机械工艺技术新技术。
纳米技术是一门研究与制造尺度在纳米级别的材料和设备的学科。
纳米技术可以制造出具有新颖性能的纳米材料,如纳米涂层、纳米传感器等。
这些纳米材料在提高材料硬度、耐磨性、导电性等方面具有独特优势,在航空、电子、医疗等领域有广泛应用前景。
最后,虚拟现实技术也在机械工艺技术中得到了应用。
虚拟现实技术通过模拟真实环境,使用户能够感受到身临其境的虚拟体验。
在机械工艺领域,虚拟现实技术可以用于设计模拟、装配演练等方面。
它可以为设计师提供直观的设计工具,为工人提供真实的操作环境,提高了设计和操作的准确性和效率。
综上所述,机械工艺技术的新技术层出不穷,不断推动着机械工艺的进步与创新。
3D打印技术、激光加工技术、机器人技术、纳米技术和虚拟现实技术等都在不同程度上改变了传统的加工方式,为机械工艺带来了更多的可能性和创新的方向。
激光加工技术在工程机械制造中的应用激光加工技术是一种现代高精密加工技术,利用激光束对工件进行切割、焊接、打孔等加工。
随着工程机械行业的不断发展和技术的进步,激光加工技术在工程机械制造中的应用越来越广泛。
本文将从激光加工技术的优势、在工程机械制造中的应用以及未来发展趋势等方面进行探讨。
一、激光加工技术的优势1. 高精度激光加工技术能够实现微米级甚至纳米级的加工精度,可以满足工程机械制造中对零部件精度要求的提高。
2. 高效率激光加工技术可以实现高速加工,提高了生产效率,缩短了加工周期,符合工程机械制造中对生产效率和产能的要求。
3. 无接触加工激光加工过程中不需要与工件发生接触,可以避免因接触而导致的变形和损伤,适用于对工件表面质量要求高的工程机械零部件加工。
4. 灵活性激光加工技术可以实现对各种材料的加工,涵盖了工程机械制造中常用的金属材料和非金属材料。
5. 可实现复杂几何形状加工激光加工技术可以实现对复杂几何形状的工件进行精密加工,满足了工程机械零部件加工中对复杂零件的加工要求。
1. 材料切割工程机械的制造需要对各种金属材料进行切割,传统的切割方法需要借助锯切、剪切等工具,工艺复杂且效率低。
而激光切割技术可以实现对各种材料的快速精密切割,提高了生产效率和切割质量。
2. 焊接激光焊接技术在工程机械制造中得到了广泛应用,可以对各种金属材料进行高品质的焊接,实现了对工件的精密连接,提高了工程机械的零部件质量和可靠性。
3. 孔加工工程机械零部件中常常需要进行孔加工,传统的孔加工方法需要借助钻、锉等工具,工艺繁琐且加工质量难以保障。
而激光孔加工技术可以实现对各种材料的快速精密孔加工,提高了加工质量和孔位精度。
4. 表面处理工程机械零部件需要经常进行表面处理,传统的表面处理方法存在着磨损大、工艺复杂等问题。
而激光表面处理技术可以实现对工件表面的高温熔化,使表面快速冷却,形成致密的涂层,提高了工件的耐磨性和抗腐蚀性。
激光加工技术综述作者:张臣吴恒鑫来源:《卷宗》2017年第21期摘要:激光加工作为一种新技术,在机械制造中有着很重要的应用。
本文简要阐述了激光加工的原理、特点,并介绍了它在现实中的应用情况,同时简要介绍了激光加工的最新研究进展。
关键词:激光加工;制造;应用;进展随着航空航天、核电工业的迅猛发展,更多的高性能材料得到应用。
虽然,高性能材料拥有良好的物理、力学性能,但是,却对机械加工工艺提出了更高的要求。
于是,人们开始探索高性能材料的加工方法。
激光作为一种具有亮度高、方向性强、单色性好、相干性强等特点的光源,可以实现难加工材料的加工。
1 激光加工的原理金属材料的激光加工主要是基于光热效应的热加工,其前提是激光被加工材料所吸收并转化为热能。
由于激光的发散角小和单色性好,理论上可以聚焦到尺寸与光的波长相近的小斑点上,再加上其强度高,因此其加工的功率密度很大,温度可达1万摄氏度以上。
在这样的高温下,任何材料都将瞬时急剧熔化和汽化,并爆炸性地高速喷射出来,同时产生方向性很强的冲击。
因此,激光加工是工件在光热效应下产生高温熔融和受冲击波抛出的综合过程。
2 激光加工的主要特点2.1 适用范围广激光加工是一种高能加工方法,几乎所有的材料都能适用。
它既可在大气中加工,又可在真空中加工。
尤其对于某些难加工材料,激光加工是唯一可行的方法。
2.2 设备自动化程度高相比于传统的机械加工系统,激光加工更容易采用数字化信号进行控制。
激光器经常与机器人相结合,其体积小、精度高、灵活方便,特别适合于多品种、变批量的柔性生产。
2.3 生产成本低激光加工属于非接触加工,加工过程中的损耗小、效率高。
在大批量生产中,可以明显降低成本。
激光束不会发生像电子束那样的X射线,而且无加工污染。
2.5 节能环保据相关研究,激光束的能量利用率为常规热加工工艺的10-1000倍,激光加工可节省材料15%-30%。
3 激光加工的应用举例3.1 激光切割技术激光切割是一种应用最广泛、最成熟的激光加工技术,最初被用在硬木板上切割非穿透槽、嵌刀片,制造冲剪纸箱板的模具。
万方数据
矗雹目巨置囵{蓦;ij警,。
c州饥。
忏。
刚卅洲
能是一致的。
从而可以采用当前块周围的块的运动向量来进行目标向量的预测,如图l所示:(1)采用当前块左侧快的运动向量作为参考运动向量;(2)根据对运动向量的统计分析,其在水平和竖直方向上的分布比其他方向大,因此采用十字架搜索模型,进行搜索;(3)十字架模型的搜索步长由参考向量决定,在图二中参考运动向量指向(3,一2)。
根据,可确定步长为3。
在预测运动向量的过程中,考虑到参考向量很可能与目标向量相同,所以除了使用十字架模板搜索十字的4个顶点外,还需对参考向量点进行搜索,(4)经过预测后的运动向量指向的新的搜索中心处于整体BDM最可能存在的区域,从而可以可以进入固定模式,使用SDSP进行反复搜索,直到搜索到最佳匹配位置。
采用这种算法相对于DS算法最大的优点在于,如果参考运动向量为零,则可以跳开LDSP搜索,直接进入SDsP搜索阶段,即使参考运动向量偏离起始中心位置,也可以在DS进行LDSP计算时快速的指向新的起始搜索位置,从而大大加快了搜索速度。
经过使用对。
caltrain”视频序列按照2帧间隔采样后得到的分帧图样进行块匹配算法的性能分析,使用ARPS对比常见搜索算法DS,TSS,4SS,SES和NTsS,从两个方面进行衡量:(1)每个宏快需要的搜索点数;(2)信噪比PSNR。
运行结果如图2a所示。
ARPS使得搜索速度得到极大提高。
而在搜索速度提高的同时,并没有降低搜索质量,如图2b所示,对比PSNR可以发现ARPS的信噪比和DS非常接近,即便相比ES只有轻微的下降,从而并不影响图像质
a每个宏块所需搜索点数b信噪比性能
图2ARPs与常见搜索法的搜索点数和信噪比对比量。
高新技术
3结语
MPEG一4作为主流视频压缩标准具有广阔的前景,0MAP平台因其独有的双核结构适合于多媒体平台的应用。
0MAP与MPEG一4的结合,在移动通信与多媒体信号处理方面将有良好的应用前景。
参考文献
【l】MPEG一4Vide0Vei蚯ca廿onM0ddVer~sion18.0【S】.IS0/IECJTCl/SC29/WGllN3908,Jan。
2001.
【2】YaoNie,andKai—KuangMa.”Adap—tiveROodPatternSearchfOrFastBlock—MatchjngMOtiOnESthnation”,IEEETrans【J】.ImageProcessing,volll,nO.12,pp.1442~1448,December2002.
【3】TI公司,OMAP5912ApplicationsPr0一ceSsorDataManual.Decem_ber2003.【4lTI公司,OMAP59lOVideoEncodingandDecoding,December2003.
【5】钟玉琢,王琪,贺玉文.基于对象的多媒体数据压缩编码国际标准MPEG一4及其校验模型【M】.北京:科学出版社,2000.
(上接8页)
硬背衬模具,其使用寿命也不及真正的金属模,所以快速成形模具较适合于单件小批量生产。
5激光在孔加工方面的应用
激光打孔是最早达到实用化的激光加工技术,也是激光加工的主要应用领域之一。
随着近代工业和科学技术的迅速发展,使用硬度大、熔点高的材料越来越多,而传统的加工方法已不能满足某些工艺要求。
例如在高熔点金属钼板上加工微米量级孔径;在硬质碳化钨上加工几十微米的小孔等,这一类的加工任务用常规机械加工方法很困难,有时甚至是不可能的,而用激光打孔则不难实现。
激光束在空间和时间上高度集中,利用透镜聚焦,可以将光斑直径缩小到微米级从而获得(105~lOl5)W/cm2的激光功率密度。
如此高的功率密度几乎可以在任何材料实行激光打孔,而且与其它方法如机械钻孔,电火花加工等常规打孔手段相比,具有以下显著的优点:1)激光打孔速度快,效率高,经济效益好,
2)激光打孔可获得大的深径比;
3)激光打孔可在硬、脆,软等各类材料上进行,
4)激光打孔无工具损耗;
5)激光可在难加工材料倾斜面上加工小孔,
6)激光打孔适合于数量多,高密度的群孔加工,
另外,由于激光打孔过程与工侔不接触,因此加工出来的工件清洁,没污染。
因为这种打孔是一种蒸发型的、非接触的加工过程,它消除了常规热丝穿孔和机械穿孔带来的残渣,因而十分卫生。
而且激光加工时间短,对被加工的材料氧化、变形,热影响区域均较小,不需要特殊保护。
激光不仅能对置于空气中的工件打孔,而且也能对置于真空中或其它条件下的工件进行打孔。
由此可见,激光是一种高质量,快速打孔的有效工具。
激光加工技术在机械加工工业中的应用,促进了激光加工技术向工业化发展,同时也为对传统机械加工工业的改造,提供了现代工业加工技术的新手段。
随着激光
1O乖斗技资讯SClENCE&TECHNOLOGYINFORMATlON技术的进一步发展和市场的不断扩大,激光加工技术必将在机械加工领域得到更有效、更广泛的应用,大大推进机械加工工业的进步。
同时,对提高产品质量、提高劳动生产率,减少材料消耗有重要意义,也为实现自动化、无污染制造加工提供了技术基础。
参考文献
【l】赵志修.机械制造工艺学【M】.机械工业出版社,199l,5.
【2】冷箭利.激光加工技术在机械工业中的应用【J】.金属加工世界,2007,5.
【3】刘江龙,邹至荣.激光相变硬化机理【N1.全
国高能密度热处理学术年会,1985,12.万方数据。