激光加工的应用和发展趋势
- 格式:doc
- 大小:188.50 KB
- 文档页数:9
激光器行业发展概况与市场趋势分析一、激光产业链分析激光具有单色性好、亮度高、方向性好等特点,广泛应用于军用和民用领域。
在民用领域,激光加工工艺在机械、汽车、航空、钢铁、造船、电子等大型制造业产业中正在逐步替代传统加工工艺,在军事领域,激光能量武器成为各国重点支持和发展的新概念武器。
随着中国激光行业的不断升级,激光产业以形成了较为完整的产业链,上游为激光晶体、光学镜片、各类激光器、数控系统等,中游为激光切割机、激光焊接机等激光设备,下游则为材料加工、电子信息等应用行业。
激光器位于激光产业链的中游,是激光的发生装置,主要由泵浦源、增益介质、谐振腔三大核心功能部件组成。
泵浦源为激光器提供光源,增益介质吸收泵浦源提供的能量后将光放大,谐振腔为泵浦光源与增益介质之间的回路,振腔振荡选模输出激光。
二、全球激光器市场规模2018年,全球激光器市场规模约为137.5亿美元,2009年至2018年年均复合增速为11.14%。
现阶段,得益于激光器产品特性的突出优势以及广泛的应用领域,全球激光器市场处于稳步增长的态势,市场容量逐渐扩大,未来有巨大增长空间。
材料加工、通信和光存储市场占全球激光器下游需求约44.8%、27.8%,为最主要应用。
2018年应用于材料加工、通信和光储存的激光器销售收入分别为61.6亿美元和38.2亿美元,分别占全球激光器收入的44.8%和27.8%。
其余科研和军事、医疗和美容、仪表和传感器、其他市场收入分别为12.8亿美元、10.3亿美元、10.2亿美元和4.4亿美元,分别占全球激光器收入的9.3%、7.5%、7.4%和3.2%。
工业激光器为激光器主要应用领域,2018年占激光器总市场规模的36.77%。
2013-2018年全球各类工业激光器的销售收入持续增长,2018年达50.58亿美元,同比增长4.18%,占全球激光器行业比例从2013年的27.74%增长至36.77%。
工业激光器主要用于切割、金属焊接、打标、半导体、金属精加工等领域其中,其中,材料加工中的切割领域占据全球工业激光器约1/3的市场需求。
对激光加工技术的理解与认识一、激光加工技术的定义及原理激光加工技术是指利用激光器产生的高能量密度的激光束,对材料表面进行加工处理的一种先进制造技术。
其原理是利用激光器产生的高能量密度的激光束,通过聚焦透镜将激光束聚集到极小点上,使材料表面瞬间受热融化或汽化,从而实现对材料进行切割、打孔、焊接等各种加工处理。
二、激光加工技术的分类及应用1. 激光切割技术:主要应用于金属材料和非金属材料的切割处理。
2. 激光打孔技术:主要应用于金属板、塑料板、陶瓷等材料的打孔处理。
3. 激光焊接技术:主要应用于金属材料之间或者非金属材料与金属材料之间的焊接处理。
4. 激光雕刻技术:主要应用于木板、有机玻璃等非金属类材料上进行图案雕刻和文字刻写。
三、激光加工技术的优点1. 高精度:激光束可以聚焦到很小的点上,因此可以实现高精度的加工处理。
2. 高效率:激光加工速度快,可以大幅提高生产效率。
3. 无接触性:激光加工过程中不需要与材料接触,从而避免了因接触而产生的磨损和变形等问题。
4. 灵活性:激光加工可以对不同形状、不同材质的材料进行处理,具有很大的灵活性。
四、激光加工技术的缺点1. 高成本:激光器价格昂贵,且维护成本也较高。
2. 容易受环境影响:激光束容易受到环境因素(如气体、尘埃等)影响而发生偏移或散射等问题。
3. 容易产生毒害物质:在某些情况下,激光加工会产生有害气体和废弃物。
五、激光加工技术未来发展趋势1. 多波长多功能化:未来发展趋势是将激光器的波长从单一的红光扩展到多种波长,实现多功能化加工。
2. 智能化:激光加工技术将更加智能化,可以通过计算机程序控制激光器进行自动化生产。
3. 环保化:未来发展趋势是要求激光加工技术在加工过程中尽可能减少对环境的污染和对人体的伤害。
六、结语激光加工技术是一种先进的制造技术,具有高精度、高效率、无接触性和灵活性等优点。
未来发展趋势是多波长多功能化、智能化和环保化。
尽管激光加工技术存在一些缺点,但随着技术的不断发展和完善,其应用范围将会更广泛,为制造业带来更多的机遇和挑战。
全球激光产业及发展趋势全球激光产业及发展趋势引言:激光技术是20世纪最具划时代意义的科技发明之一,在众多领域都有着广泛的应用。
激光的高能量、高光强、高单色性等独特性质使得它在制造、医疗、通信、军事等领域扮演着重要的角色。
本文将对全球激光产业的发展历程进行分析,并探讨激光技术未来的发展趋势。
一、全球激光产业的发展历程1.1 初期发展(20世纪50年代-60年代)激光技术在20世纪50年代中期得到了首次实验验证,被视为激发科技创新的新方向。
激光器的原理由美国物理学家理查德·汉奥在1958年提出,并在1960年由西恩斯激光公司成功制造了第一台激光器。
自此以后,全球范围内对激光技术的研究和应用进入了一个高速发展的阶段。
在初期发展阶段,激光器主要用于科研领域和军事应用,如光谱分析、激光打靶、激光导引等。
同时,激光技术也逐渐应用于制造和医疗领域,如激光刻字机和激光医疗设备等。
1.2 蓬勃发展(20世纪70年代-80年代)20世纪70年代至80年代是全球激光产业的蓬勃发展阶段。
激光在制造业的应用得到了广泛推广,主要用于材料切割、焊接、打孔等加工工艺。
同时,激光技术在医疗领域也有了突破性的进展,如激光治疗仪、激光手术刀等。
此外,激光技术在通信领域也产生了重要的影响。
20世纪80年代中期,全球范围内开始建立光纤通信网络,而激光技术为实现高速、长距离的信息传输提供了重要的支持。
1.3 快速增长(20世纪90年代至今)20世纪90年代至今,全球激光产业进一步加速了其快速增长的步伐。
激光器的精密化和微型化使得激光技术得以应用于更多领域,如纳米技术、生物医学、新能源等。
在制造业方面,激光技术的应用得以进一步扩展,如激光切割机、激光焊接机、激光打标机等设备得到了广泛应用。
激光技术的出现大大提高了制造业的效率和质量,推动了工业化进程。
激光技术在医疗领域也取得了重大突破,如激光矫正术、激光白内障手术等。
激光手术的痛苦小、恢复快等优势逐渐被认可,为患者提供了更好的治疗选择。
激光技术的发展及应用引言随着激光技术的飞速发展和广泛应用激光已成为工业生产,科学探测和现代军事战争中极为重要的工具。
总结了激光技术在工业生产,军事,国防,医疗等行业中的应用,提出激光技术应用领域的发展趋势。
“激光”一词是“LASER”的意译。
LASER原是Light amplificati on by stimulated emissi on of radiation取字头组合而成的专门名词,在我国曾被翻译成“莱塞”、“光激射器” 、“光受激辐射放大器”等。
激光具有普通光源发出的光的所有光学特性,是上世纪 60 年代所诞生和发展起来的新技术。
1964年,钱学森院士提议取名为“激光”,既反映了“受激辐射”的科学内涵,又表明它是一种很强烈的新光源,贴切、传神而又简洁,得到我国科学界的一致认同并沿用至今。
激光不是普通的光,其特性是任何光都无法比拟的。
激光能量密度高,其亮度比太阳表面还高数百亿倍;[1]激光方向性强,其发散度仅为毫弧度量级,所以用途非常广泛。
由于激光的优异特性,使激光在工业生产,科技探测,军事等方面得到了广泛应用,激光渗透到社会的各个行业,而且发展潜力还非常大,激光也成为了当代科学发展最快的科学领域之一。
一、激光发展史激光技术的启蒙研究发展就完全印证了上面的话。
最早对激光做出理论研究的人是爱因斯坦,1916年爱因斯坦提出受激辐射的概念,即处于高能级的原子受外来光子作用,当外来光子的频率与其跃迁频率恰好一致时,原子就会从高能级跃迁到低能级,并发射与外来光子完全相同的另一光子,新发出的光子不仅在频率方面与外来光子相一致,而且在发射方向、偏振态以及位相等方面均与外来光子相一致,因此,受激辐射具有相干性;在发生受激辐射时,一个光子变成了两个光子,利用这个特点,可实现光放大,并且能够得到自然条件下得不到的相干光.受激辐射提出后,陆续有科学家进行研究。
如1916-1930年间拉登堡及其合作者对氖的色散的研究并于1933年绘制出色散系数随放电带电流密度变化的曲线。
激光在工业加工领域中的应用激光作为一种重要的光学技术,在工业加工领域中得到了广泛的应用。
激光具有高能量、高光束质量、高单色性等优点,可以对各种材料进行切割、焊接、打孔等各种精密加工工艺,因此被誉为工业制造的“利剑”。
一、激光技术在工业加工中的应用1. 激光切割技术激光切割技术是利用激光在被切割材料表面产生高温和压力,使材料熔化、汽化并产生裂纹,从而实现对材料的分离。
这种加工方法适用于多种材料,如金属、非金属、塑料、木材等。
激光切割工艺具有精度高、速度快、效率高、加工深度可控等优点,被广泛应用于汽车制造、航空航天、机床制造等工业领域。
2. 激光焊接技术激光焊接技术是利用激光对被焊接材料进行高能量聚焦,将材料表面熔化并产生反应,从而实现材料的粘结。
激光焊接技术适用于各种金属、合金、非金属等材料的焊接。
激光焊接工艺具有高效率、低热影响区、焊接质量高等优点,被广泛应用于汽车制造、机器人制造、电子器件制造等领域。
3. 激光打孔技术激光打孔技术是利用激光在材料表面产生高热和气体压力,使材料表面产生熔融和汽化,从而实现对材料进行小孔的加工。
激光打孔工艺具有精度高、加工速度快、钻孔质量好等优点,被广泛应用于汽车零部件制造、航空航天制造、电子设备制造等工业领域。
4. 激光雕刻技术激光雕刻技术是利用激光在特定材料表面进行局部加热,使其表面产生不同的化学和物理变化,从而形成图案、字母和图像等效果。
激光雕刻工艺具有精度高、加工速度快、制作效果好等优点,被广泛应用于工艺品、礼品、家居装饰等领域。
二、激光技术在未来的应用前景随着先进制造技术的不断发展,激光技术在工业加工领域中的应用前景越来越广阔。
未来,激光技术将成为更多行业的突破口,其应用领域也将更加广泛。
以下是激光技术在未来的应用前景:1. 3D打印技术近年来,3D打印技术在制造业中得到了广泛应用,而激光技术作为其核心技术之一,必将继续发挥重要作用。
基于激光精确加工能力的3D打印机,可以根据客户需求快速生产出所需物品,满足复杂零部件的加工需求。
激光技术的应用和发展一、激光技术的概述激光技术是指通过激光产生和利用的相关技术,是现代高新技术领域的重要组成部分。
激光技术与日常生活和工业生产息息相关,被广泛应用于通讯、医学、制造业、军事等领域。
通过不断的创新和发展,激光技术正在成为科学研究和工业生产的必备工具。
二、激光技术的类型1.气体激光技术气体激光技术是指利用气体作为激光发射介质的相关技术,包括二氧化碳激光、氦-氖激光、氩离子激光等。
这些激光技术在医学、制造业和研究领域的应用非常广泛。
2.固体激光技术固体激光是指利用具有一定折射率并被激发的固体晶体作为激光产生和发射的介质。
常见的固体激光包括各种晶体,如Nd:YAG晶体、红宝石晶体等。
固体激光技术在激光加工、国防军事等领域具有广泛应用。
3.半导体激光技术半导体激光发射机制与电子器件相似,利用半导体物理特性发出激光。
该技术具有工作波长短,成本低廉等优点,已成为光通信、DVD光盘等领域的重要技术。
三、激光技术在通讯领域的应用1.光纤通讯光纤通讯是将信息以激光信号的形式通过光纤传播的通讯方式。
激光信号在光纤中通过大量的反射实现信号的传输。
激光技术的应用使得信息传输的速度得到了大幅提升,同时也改变了人们的通讯方式,成为现代通讯领域的重要技术。
2.卫星通讯卫星通讯是指利用道地球卫星的信息传输方式。
激光通信是卫星通信领域的重要分支,涉及地球卫星通信、空间激光通信等领域。
激光技术的应用使得卫星通讯的信息传输更加快捷,同时也是国家军事通讯必不可少的技术手段。
四、激光技术在医学领域的应用1.激光治疗激光治疗是指利用激光技术进行医疗康复治疗的相关技术。
激光治疗是一种无创、无痛、高效、安全、易操作的先进治疗手段,广泛应用于口腔、皮肤、泌尿系统、光感感官等多个方面。
2.激光手术激光手术是指利用激光技术进行各种医学手术操作的相关技术。
激光手术因其操作简便、恢复迅速、无痛苦等优点,已经成为如眼科、皮肤科、骨科等多种医学科。
激光精密测量与加工中的技术与应用激光是一种特殊的光源,具有单色性、相干性和高能量密度等特点,因此被广泛应用于精密测量和加工领域。
本文将探讨激光精密测量与加工中的技术与应用。
一、激光精密测量技术1.1 激光干涉测量激光干涉测量是一种高精度的非接触式测量方法,主要用于测量形状、位移、振动等参数。
其基本原理是利用激光干涉的特性,通过比较参考光和被测物光的干涉信号,得出被测物的参数。
激光干涉测量在机械制造、航空航天、光学制造等领域具有广泛的应用。
1.2 激光三角测量激光三角测量是一种常用的三维形状测量方法,其主要测量原理是通过激光光束在被测物表面上的反射来确定物体表面的三维坐标。
该技术具有高精度、快速、非接触等优点,已广泛应用于工业制造、医学、建筑设计等领域。
1.3 激光扫描测量激光扫描测量是一种高精度、高效、非接触的三维数据采集技术,其主要特点是可以在短时间内快速获取被测物的三维点云数据。
该技术可以被广泛应用于机械加工、地形测绘、数字化建模等领域。
二、激光精密加工技术2.1 激光打标激光打标是利用激光束将高能量聚焦在被加工物表面的一小块区域上,以改变被加工物表面材料的颜色、形状等,从而实现标记、雕刻等功能。
该技术具有标记位置精度高、操作灵活、制作成本低等优点,广泛应用于电子、医疗、食品等行业。
2.2 激光切割激光切割是一种高精度、高效、非接触式的切割技术,主要应用于金属、塑料、木材等材料的切割。
在激光切割过程中,激光束在被加工物表面产生的高温和高压力作用下,可以快速切割出所需形状的部件,具有加工精度高、切割速度快等特点。
2.3 激光焊接激光焊接是一种高精度、高效、无需添加任何材料的焊接技术,主要应用于金属、塑料等材料的焊接。
在激光焊接过程中,激光束聚焦在被加工物表面,使表面材料瞬间融化并在激光束熔融区形成高温区域,从而实现对被加工物的精密焊接。
三、技术与应用的发展趋势随着科学技术的不断发展,激光精密测量和加工技术也在不断完善和创新。
激光加工技术在微电子制造中的应用近年来,由于微电子制造业的急速发展,激光加工技术逐渐受到了广泛的关注。
激光加工作为一种高精度、高效率、非接触式的加工方式,在微电子制造中的应用也越来越广泛,成为了当前微电子制造中的一个热门技术领域。
本文将重点探讨激光加工技术在微电子制造中的应用。
一、激光切割技术激光切割技术是一种常见的激光加工应用,它广泛应用于微电子制造的切割、修整、清洗等领域。
激光切割技术具有加工速度快、精度高、处理范围广、工艺过程简单等优点,在微电子制造中可以实现对金属、非金属等材料进行精细加工和微观切割。
其中,激光修整技术是激光加工技术在微电子制造中的重要应用之一,其主要应用于微缩技术的制造过程中。
例如,激光修整器能够精确地切割出各种形状图案,并对不规则的原始形状进行雕刻和修整,从而帮助广大制造商在生产过程中更为便捷地实现了微电子器件的生产和测试。
二、激光刻蚀技术激光刻蚀技术是激光加工技术在微电子制造中的重要应用之一。
此技术采用激光的高功率能量计算原理实现对图形、文字、标识等的刻蚀加工。
激光刻蚀技术具有加工速度快、精度高、工艺过程简单、可以实现对电路板具有高分辨率的刻蚀等优点。
在微电子制造中,激光刻蚀技术主要应用于电路板的刻画,特别是在半导体加工过程中。
使用激光来对样品进行加工处理可以确保电路板的精度、稳定性,同时减少了刻蚀污染因素对样品的影响,为制造商带来了便捷和高效的制造体验。
总结随着微电子制造技术的发展,激光加工技术在该领域中的应用也越来越广泛。
激光切割和激光刻蚀技术作为激光加工技术的两个重要组成部分,已经在微电子制造中获得了广泛的应用和认可。
未来,随着激光技术的不断进步和微电子制造发展趋势的变化,相信激光加工技术将在微电子制造行业中发挥更加重要的作用。
激光加工技术及其应用目录激光加工技术及其应用 (1)1、激光加工技术 (2)1.1激光加工技术的分类 (2)1.2激光加工技术的发展 (3)1.2.1 激光加工技术的标志性成果 (3)1.2.2激光加工产业的发展状况 (5)2、激光加工技术之激光切割 (6)2.1激光切割的机理与分类 (6)2.2影响激光切割质量的因素 (7)2.2.1光束质量对激光切割质量的影响 (7)2.2.2切割工艺对激光切割质量的影响 (8)2.3激光切割表面质量的评判依据 (8)激光作为二十世纪最伟大的科学发明之一,经过五十年的发展已被人们广泛地研究和认识,并为现代科学技术的进步起到了巨大的推动作用。
时至今日,激光应用技术已成为从多领域中不可替代的关键技术,其中激光加工技术是最具代表性、用途最广的激光应用技术,激光加工设备也被誉为材料加工领域的万能工具。
随着激光技术的不断发展,如今已有几十种激光器在工业加工、科学研究、军事、医疗、通讯、环境探测及其航空航天等领域得到应用,激光也成为应用最广泛的现代高新技术之一。
1、激光加工技术1.1激光加工技术的分类已较为成熟的激光加工技术主要有激光切割技术、激光打标技术、激光打孔技术、激光雕刻技术、激光焊接技术、激光表面强化技术、激光调阻技术、激光刻线技术、激光直写技术、激光快速成型技术、激光清洗技术、激光去重平衡技术、激光微细加工技术以及激光修复技术等。
下面对以上激光加工技术特点做一简单的介绍。
1、激光切割激光切割是应用激光聚焦后所产生的高功率密度能量实现的,与传统的材料加工方法相比,激光切割具有更高的切割质量、更高的切割速度、更好的柔性和广泛的材料适应性等优点。
例如,可以利用激光对高硬度、高脆性、高熔点的金属材料进行形状复杂的三维立体零件切割,这也正是激光切割的优势所在。
2、激光打标激光打标是指利用高能量密度激光对工件进行局部照射,使材料表层发生气化或变色的化学反应,从而留下永久性标记的一种方法。
激光加工技术及其应用激光加工作为一种高端加工技术,广泛应用于航天、武器、汽车、电子、医疗等领域。
它是利用激光束的高强度和高可控性进行材料加工的一种技术,可以用于切割、刻蚀、打孔、焊接等多种加工作业。
本文将探讨激光加工技术及其应用领域。
一、激光加工技术简介激光加工技术是指利用激光能量对材料进行切割、刻蚀、钻孔、打孔、焊接等加工作业的技术。
它的原理是利用激光束的高聚焦能力,将激光束集中在小的区域内,使材料局部受热,从而蒸发或熔化。
因为激光束的特殊性质,激光加工具有高精度、高效率、高速度、低损伤、无接触等优点,并且可以加工几乎所有材料。
激光加工技术主要分为激光切割、激光刻蚀、激光钻孔、激光打孔、激光表面处理等几大类。
其中,激光切割是最常见的加工类型之一,它可以用于金属、非金属、纺织品、玻璃等材料的高精度切割。
二、激光加工应用领域(一)、汽车制造随着汽车制造行业的不断发展,对于汽车零部件的制造要求也越来越高。
激光加工技术在汽车制造领域的应用越来越广泛,它可以用于汽车发动机、底盘、车身等各个方面的制造。
例如,在发动机制造中,激光焊接技术可以用于活塞、缸套的制造,其加工速度和质量远远超过传统的加工方法;在车身制造中,激光切割技术可以用于汽车门、车身板等的精细加工,其加工速度和精细度也较高。
(二)、电子制造在电子制造领域,激光加工技术同样发挥着重要作用。
以手机制造为例,激光加工技术可以用于手机屏幕、摄像头制造过程中的精细加工,能够实现高效率、高精度的制造,提高制造的品质和效率。
此外,激光加工技术还可以用于半导体器件、电路板等电子元器件的制造和加工,它比传统的机械加工和化学加工更加高效。
(三)、航空制造在航空制造方面,激光加工技术也有着广泛的应用。
在航空发动机制造中,激光加工技术可以用于制造复杂的叶轮和涡轮叶片,其加工精细度和速度较高,性能更加优良。
此外,激光加工技术还可以用于制造航空器件和机身等各个方面的加工,在提高航空器件的质量和安全性方面发挥了重要作用。
飞秒激光技术在精密加工中的应用一、引言飞秒激光技术是一种高精度加工工艺,近年来在制造业和医疗领域得到广泛应用。
由于其精度高、加工质量好、能耗低等特点,越来越多的企业开始采用这种技术来进行生产和加工。
本文将探讨飞秒激光技术在精密加工中的应用。
二、飞秒激光技术的原理飞秒激光技术是通过高能量的激光束将材料的原子层逐层加热蒸发,并在蒸发的瞬间形成微小的爆炸。
这种爆炸能够产生特殊的力量,使得材料的表面能够被精确而快速地剥离。
同时,激光束的波长很短,一般只有几十飞秒,这也为材料表面的处理提供了更高的准确性和控制性。
三、飞秒激光技术在精密加工中的应用1.高精度加工飞秒激光技术可以实现非常高精度的加工,对于需要高度精确的元件来说非常有用。
比如,飞秒激光可以被用来制造微小的齿轮组件、微机器人和其他精密测量和加工设备。
2.纳米加工飞秒激光的加工技术可以制造出极其细微的孔洞和其他结构,甚至可以到达纳米级别。
这对于微电子学、纳米材料学和生物领域的应用非常有用。
3.表面改性飞秒激光技术可以通过改变材料的表面化学、物理和几何性质来改变材料的性能。
比如,它可以用来改善材料的界面粘合能力、抗腐蚀能力、耐冲击性能、磨损和耗损性能等等。
4.医疗应用飞秒激光技术可以被用来制造高质量的人造眼角膜、隐形眼镜、玻璃体切割器、皮肤切割器和其他医疗设备。
四、飞秒激光技术的发展前景随着先进材料和先进生产技术的不断涌现,飞秒激光技术必将在未来得到更为广泛的应用。
越来越多的国家都开始投入到这个领域的研究和开发中来,预计未来几年内将会出现更多的飞秒激光产品和解决方案。
五、结论飞秒激光技术是一种新型的高精度加工技术,对于精密制造和医疗领域的应用具有重要的意义。
尽管发展前景很有希望,但是现阶段还存在技术难度和成本问题。
希望随着技术不断的完善和降低成本,这种技术可以更加广泛的应用到各个行业中。
机械设计中的新型加工技术与应用在当今科技飞速发展的时代,机械设计领域不断涌现出各种新型加工技术,这些技术不仅极大地提高了生产效率和产品质量,还为机械设计带来了更多的可能性和创新空间。
一、新型加工技术的种类1、激光加工技术激光加工技术是利用高能量密度的激光束对材料进行切割、焊接、表面处理等加工的一种方法。
其具有高精度、高速度、非接触式加工等优点。
在机械设计中,激光切割可用于制造复杂形状的零件,激光焊接能够实现高强度的连接,而激光表面处理则可以提高零件的耐磨性和耐腐蚀性。
2、电火花加工技术电火花加工是通过在工具电极和工件电极之间产生脉冲性的火花放电,从而蚀除工件材料的一种加工方法。
它适用于加工高硬度、高强度、形状复杂的零件,如模具、航空航天零部件等。
3、电解加工技术电解加工是基于电解原理,使工件作为阳极,工具作为阴极,在电解液中通过电化学作用去除材料。
这种加工技术具有加工表面质量好、无残余应力等优点,常用于加工叶片、整体叶轮等复杂形状的零件。
4、水射流加工技术水射流加工是利用高压水射流的冲击力来去除材料的一种加工方法。
其具有无热影响区、加工材料广泛等特点,可用于切割各种材料,包括金属、陶瓷、复合材料等。
5、增材制造技术增材制造,又称3D 打印,是通过逐层堆积材料的方式来制造零件。
它能够实现复杂结构的一体化制造,大大缩短了产品的开发周期,降低了成本。
在机械设计中,增材制造可用于制造个性化的零件、轻量化结构等。
二、新型加工技术的特点1、高精度新型加工技术能够实现微米甚至纳米级别的精度,满足了机械设计中对高精度零件的需求。
例如,激光加工和电火花加工可以在很小的尺寸范围内进行精确加工,保证了零件的配合精度和性能。
2、高效率与传统加工方法相比,新型加工技术在加工速度和效率方面有了显著提高。
例如,水射流加工和激光切割可以快速地完成材料的去除,大大缩短了生产周期。
3、高柔性新型加工技术能够适应不同形状、尺寸和材料的零件加工,具有很高的柔性。
第1篇一、引言随着我国制造业的快速发展,激光技术在各个领域的应用日益广泛。
激光自动化解决方案作为一种高效、精准、环保的加工方式,在制造业中发挥着越来越重要的作用。
本文将从激光自动化解决方案的定义、特点、应用领域、技术优势、发展趋势等方面进行详细介绍。
二、激光自动化解决方案的定义激光自动化解决方案是指利用激光技术,通过计算机控制系统,实现激光加工过程的自动化、智能化和高效化。
该方案主要包括激光加工设备、控制系统、辅助设备等组成,可实现激光切割、焊接、打标、雕刻等多种加工工艺。
三、激光自动化解决方案的特点1. 高精度:激光加工具有极高的精度,可实现微米级加工,满足高精度加工需求。
2. 高效率:激光加工速度快,可实现快速切割、焊接、打标等工艺,提高生产效率。
3. 高质量:激光加工具有稳定的加工质量,可保证产品质量的一致性。
4. 环保:激光加工过程中无污染、无噪音,符合环保要求。
5. 智能化:激光自动化解决方案可实现加工过程的自动化、智能化,降低人工成本。
四、激光自动化解决方案的应用领域1. 金属加工:激光切割、焊接、打标等工艺在航空航天、汽车制造、机械制造等领域得到广泛应用。
2. 非金属加工:激光切割、雕刻、焊接等工艺在纺织、塑料、木材、陶瓷等领域得到广泛应用。
3. 电子制造:激光打标、焊接等工艺在电子产品、集成电路、半导体等领域得到广泛应用。
4. 生物医学:激光切割、焊接等工艺在医疗器械、生物组织工程等领域得到广泛应用。
5. 能源环保:激光切割、焊接等工艺在太阳能电池、风能设备、环保设备等领域得到广泛应用。
五、激光自动化解决方案的技术优势1. 精密加工:激光加工具有极高的精度,可实现微米级加工,满足高精度加工需求。
2. 高效加工:激光加工速度快,可实现快速切割、焊接、打标等工艺,提高生产效率。
3. 稳定加工:激光加工具有稳定的加工质量,可保证产品质量的一致性。
4. 适应性强:激光加工设备可适应各种材料和加工工艺,具有广泛的适用范围。
激光加工的原理及应用激光加工是利用激光束对材料进行切割、焊接、打孔等工艺的一种现代加工技术。
其原理是将激光能量转化为材料的热能,通过控制激光束的位置和功率密度,使激光束与材料相互作用,从而达到对材料进行加工的目的。
激光加工的原理主要包括以下几个方面:1. 激光产生:激光是由激光器产生的一种高纯度、高能量、高频率的电磁波。
常见的激光器有气体激光器、固体激光器、半导体激光器等。
2. 激光导引:激光束通过光学系统的导引,使激光能够准确地照射到目标材料的加工区域。
3. 激光与材料相互作用:激光束在与材料相互作用时,会被材料吸收、反射、透过等。
当激光能量被材料吸收后,会转化为材料的热能,引起材料的热膨胀、熔化、汽化或燃烧等反应。
4. 材料加工:根据不同的加工需求,通过控制激光束的移动速度、功率密度和作用时间等参数,实现对材料的切割、焊接、打孔等加工操作。
激光加工具有以下几个主要的应用领域:1. 切割:激光切割广泛应用于金属材料、塑料、纺织品、木材等各种材料的切割加工中。
激光切割速度快、精度高,可以实现复杂形状的切割,具有很高的加工效率和质量。
2. 焊接:激光焊接可以将不同材料的工件进行连接,广泛应用于汽车制造、电子设备、航空航天等领域。
激光焊接具有焊缝小、热影响区小、焊接强度高等优点,能够提高产品的质量和可靠性。
3. 打孔:激光打孔可以对金属、塑料、玻璃等材料进行精确的穿孔加工。
激光打孔具有孔径小、孔壁光滑、加工速度快等特点,可以在材料上实现微小孔的加工。
4. 雕刻与标记:激光雕刻与标记可以对各种材料进行图案、文字、图像等的刻印加工。
激光雕刻具有高精度、高清晰度、无接触等特点,被广泛应用于装饰、工艺品、医疗器械等领域。
除了以上应用领域外,激光加工还被应用于精密加工、微加工、硬化处理等领域。
它不仅可以提高生产效率,减少能量消耗,还能实现复杂结构的加工和精密微细加工。
随着激光技术的不断进步和广泛应用,激光加工在各个领域的应用前景非常广阔。
激光再制造技术及应用激光再制造技术是一种先进的加工制造技术,利用激光作为能量源,将材料进行熔化、凝固、焊接和表面改性加工,实现对材料的再利用和再生。
激光再制造技术不仅可以减少原材料的消耗,降低环境污染,还可以延长材料的使用寿命,提高资源利用率,因此在工业制造领域具有重要的意义。
本文将重点介绍激光再制造技术的原理、发展现状和应用前景。
一、激光再制造技术的原理激光再制造技术是一种利用激光熔化和沉积材料的制造技术。
其工作原理主要包括激光熔化、熔敷和凝固三个过程。
利用激光束对材料进行加热,使其瞬间熔化;然后,辅以预先设计的程序和工艺参数,控制激光束的移动轨迹,沉积熔化的材料,形成所需的零部件结构;通过控制冷却速率,使熔化的材料迅速凝固成型,完成整个再制造过程。
激光再制造技术具有高精度、高效率、热影响小等优点,可以实现对各种金属、塑料等材料的再利用和再生,广泛应用于航空航天、汽车制造、医疗器械、模具制造、电子设备等领域。
二、激光再制造技术的发展现状激光再制造技术是近年来发展最为迅速的制造技术之一,其在航空航天、汽车制造、医疗器械等行业的应用越来越广泛。
目前,国际上多个国家正在加大对激光再制造技术的研发投入,以提高制造业的技术水平和核心竞争力。
在国际上,激光再制造技术已经被广泛应用于航空航天领域。
美国航空航天局(NASA)、波音公司等相关机构和企业纷纷投入激光再制造技术的研发和应用。
激光再制造技术不仅可以用于制造零部件,还可以用于修复和再生老化和损坏的零部件,有效延长了飞机的使用寿命,提高了飞机的安全性和可靠性。
在国内,激光再制造技术也取得了长足的发展。
我国航空航天、军工制造等领域纷纷加大对激光再制造技术的研发和应用力度,取得了一系列重要成果。
中国航天科工集团公司成立了激光再制造装备重点实验室,致力于激光再制造技术的研究和应用,为我国航空航天领域的发展做出了重要贡献。
三、激光再制造技术的应用前景激光再制造技术具有广阔的应用前景,将在未来的制造业中发挥重要作用。
课 程: 特种加工基础实训教程 题 目: 激光加工技术应用和发展趋势 院 系: 工学院机械系 专 业: 机械设计制造及其自动化 班 级: 姓 名: 学 号: 时 间: 目 录 摘要…………………………………………………………………………………… 2 1 引言……………………………………………………………………………… 2 2 激光的特点……………………………………………………………………… 2 定向发光 …………………………………………………………………… 2 亮度极高 …………………………………………………………………… 2 颜色极纯………………………………………………………………………3 3 激光加工技术的主要应用……………………………………………………………3 激光打孔………………………………………………………………………4 激光快速成型…………………………………………………………………4 激光打标………………………………………………………………………4 激光切割………………………………………………………………………5 激光焊接………………………………………………………………………5 激光热处理……………………………………………………………………6 4 激光加工的发展趋势 ………………………………………………………………6 数控化和多功能化 …………………………………………………………6 高频度和高可靠性 …………………………………………………………7 小型化和集成化………………………………………………………………7 5 结语………………………………………………………………………………… 7 参考文献………………………………………………………………………………7激光加工的应用和发展趋势 摘 要:激光加工在现代产业中展示了强大的优势和发展潜力,成为21世纪的主导技术。本文主要介绍激光加工技术的应用现状和未来的发展趋势。 关键词:激光 激光技术 激光加工 应用与发展趋势 1. 引言 激光是20世纪人类最伟大的发明之一,现在已广泛应用于工业、军事、科学研究与日常生活中。激光具有四大特性:高的单色性、方向性、相干性和亮度性。应用激光固有的四大特性,将具有高能量密度的,能被聚焦到微小空间的激光用于加工的方法叫激光加工。激光加工技术是一项集光、机电、材料及检测于一体的先进技术。激光加工主要涉及:激光焊接、激光切割、激光打标、激光雕刻等.现在一般的激光加工都采用了多项先进技术,多功能集成度高、实用性强、自动化程度高、操作简单、结果直观,而且加工过程中可实现动态同步跟踪显示,具有程序错误自动诊断、限位保护等功能。 2. 激光的特点 定向发光 普通光源是向四面八方发光。要让发射的光朝一个方向传播,需要给光源装上一定的聚光装置,如汽车的车前灯和探照灯都是安装有聚光作用的反光镜,使辐射光汇集起来向一个方向射出。激光器发射的激光,天生就是朝一个方向射出,光束的发散度极小,大约只有弧度,接近平行。1962年,人类第一次使用激光照射月球,地球离月球的距离约38万公里,但激光在月球表面的光斑不到两公里。若以聚光效果很好,看似平行的探照灯光柱射向月球,按照其光斑直径将覆盖整个月球。 亮度极高 在激光发明前,人工光源中高压脉冲氙灯的亮度最高,与太阳的亮度不相上下,而红宝石激光器的激光亮度,能超过氙灯的几百亿倍。因为激光的亮度极高,所以能够照亮远距离的物体。红宝石激光器发射的光束在月球上产生的照度约为勒克斯(光照度的单位),颜色鲜红,激光光斑明显可见。若用功率最强的探照灯照射月球,产生的照度只有约一万亿分之一勒克斯,人眼根本无法察觉。激光亮度极高的主要原因是定向发光。大量光子集中在一个极小的空间范围内射出,能量密度自然极高。 颜色极纯 光的颜色由光的波长(或频率)决定。一定的波长对应一定的颜色。太阳光的波长分布范围约在微米至微米之间,对应的颜色从红色到紫色共7种颜色,所以太阳光谈不上单色性。发射单种颜色光的光源称为单色光源,它发射的光波波长单一。比如氪灯、氦灯、氖灯、氢灯等都是单色光源,只发射某一种颜色的光。单色光源的光波波长虽然单一,但仍有一定的分布范围。如氪灯只发射红光,单色性很好,被誉为单色性之冠,波长分布的范围仍有纳米,因此氪灯发出的红光,若仔细辨认仍包含有几十种红色。由此可见,光辐射的波长分布区间越窄,单色性越好。 3. 激光加工技术的主要应用 激光加工是激光应用最有发展前途的领域,现在已开发出多种激光加工技术。激光加工有以下特点:1)激光加工属无接触加工,激光加工是通过激光光束进行加工,与被加工工件不直接接触,降低了机械加工惯性和机械变形,方便了加工。同时,还可加工常规机械加工不能或很难实现的加工工艺,如内雕、集成电路打微孔、硅片的刻划等。2)加工质量好,加工精度高,加工效率高,由于激光能量密度高可瞬时完成加工,与传统机械加工相比,工件热变形小、无机械变形,使得加工质量显著提高;激光可通过光学聚焦镜聚焦,激光加工光斑非常小,加工精度很高,加工效率高,激光切割可比常规机械切割提高加工效率几十倍甚至上百倍;激光打孔特别是微孔可比常规机械打孔提高效率几十倍至上千倍;激光焊接比常规焊接提高效率几十倍;激光调阻可提高效率上千倍,且精度亦显著提高。3)材料利用率高、经济效益高,激光加工与其他加工技术相比可节省材料10~30‰可直接节省材料成本费,且激光加工设备操作维护成本低,对加工费用降低提供了先决条件。激光加工具有优越的加工性能,使得激光加工技术得到了广泛的应用,并产生了巨大的经济效益和社会效益。激光的空间控制性和时间控制性很好,对加工对象的材质、形状、尺寸和加工环境的自由度都很大,特别适用于自动化加工。激光加工系统与计算机数控技术相结合可构成高效自动化加工设备,已经成为企业实行适时生产的关键技术,为优质、高效和低成本的加工生产开辟了广阔的前景。目前已成熟的激光加工技术包括:激光切割技术、激光焊接技术、激光打标技术、激光快速成形技术、激光打孔技术、激光去重平衡技术、激光蚀刻技术、激光微调技术、激光存储技术、激光划线技术、激光清洗技术、激光热处理和表面处理技术等。本文简单介绍几种常见激光加工技术。 激光打孔 激光打孔技术具有精度高、通用性强、效率高、成木低和综合技术经济效益显著等优点,已成为现代制造领域的关键技术之一,激光打孔在微细孔加工中的应用,解决了一些传统机械加工不能解决的难题,为微孔加工提供了先进的加工手段[8]。目前,工业发达国家已将激光深微孔技术大规模地应用到航空航天、汽车制造、电子仪表、化工等行业。国内目前比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉扮模的生产及钟表和仪表的宝石轴承、吃机叶片、多层印刷线路板等行业的生产中激光打孔的有点:1)激光打孔速度快,效率高,经济效益好;2)激光打孔可获得大的深径比;3)激光打孔可在硬、脆,软等各类材料上进行; 4)激光打孔无工具损耗;5)激光可在难加工材料倾斜面上加工小孔;6)激光打孔适合于数量多、高密度的群孔加工。另外,由于激光打孔过程与工件不接触,因此加工出来的工件清洁,没污染。因为这种打孔是一种蒸发型的、非接触的加工过程,它消除了常规热丝穿孔和机械穿孔带来的残渣,因而十分卫生。而且激光加工时间短,对被加工的材料氧化、变形、热影响区域均较小,不需要特殊保护。激光不仅能对置于空气中的工件打孔,而且也能对置于真空中或其它条件下的工件进行打孔。目前,激光打孔朝着多样化、高速度、孔径更微小的方向发展。 激光快速成型 传统的工业成型技术大部分是遵循“去除法”的,如车削、铣削、钻削、磨削、刨削;另外一些是采用模具进行成形,如铸造、冲压。激光快速成形技术集成了激光技术、CAD/CAM技术和材料技术的最新成果,根据计算机设计出的零件的模型立体图,直接制造出模型,它制造模型的办法是在一层接一层的基础上不断添加材料。激光快速成型法有,液态光敏聚合物选择性固化、薄型材料选择性切割、扮状材料选择性熔复、粉末材料选择性烧结。激光快速成型技术在模具制造中的应用最为广泛,可以用快速成型件直接用作模具;用快速成型件作母模,翻制软模具;用快速成件翻制硬模具。用快速成技术制作模具,既避开了复杂的机械切削加工,又可以保证模具的精度,还可以大大缩知制模时间、节省制模费用,对于形状复杂的精度模具,其优点尤为突出。该技术已在航空航天、电子、汽车、家电等工业领域得到广泛应用。但是,目前还存在着模具寿命相对较知的缺点,即使是金属面、硬背衬模具,其使用寿命也不及真止的金属模,所以快速成模具较适合于单件小批量生产。 激光打标 激光标记机的市场是近几年发展最快的一项应用技术。激光标记是利用高能量密度的激光对工件进行局部照射,使表层材料汽化或发生颜色变化的化学应,从而留下永久性标记的一种技术。激光标记有许多独特的优点,能标记各种字符、图案、数字以及条形码,标记线宽可小于,可深可浅,对很小零件也可打标,这是其他标记力一法不能实现的;激光打的标记属永久性,不像喷墨打印的字可擦掉;可作防伪标记,不易被人假冒;属不接触加工,所以对零件表面没有损伤;标记的字符清晰,质量好;效率很高,成木低,可对多种材料进行标记;由计算机操作易于更换标记内容,也可以一个零件一个标记;由于有以上多种特点,所以应用越来越广泛,特别是多种电子器件、集成电路模块、汽车零件甚至汽车窗玻璃、导线、接插件、工具、医疗器械、精密仪器仪表、线路板、橡胶制品、计算机键盘、手机面板、精美礼品、玻璃制品等等。 激光切割 激光切割是利用激光束的高功率密度的性质。激光束聚焦很小的光点,拥有巨大的能量,可将材料快速加热,使其达到沸点后开始汽化,形成了空洞,再使光束与材料相对运动,在材料表面形成切缝激光切割技术可广泛应用于金属和非金属材料的加工中,可大大减少加工时间,降低加工成本,提高工件质量。脉冲激光适用于金属材料,连续激光适用于非金属材料,后者是激光切割技术的重要应用领域。目前,激光切割主要应用在航空航天工业和汽车制造业中,如飞机框架、尾翼壁板、飞机主旋翼、汽车车架等切割。激光切割的主要特性:1)激光切割的切缝窄,工件变形小;2)激光切割是一种高能量、密度可控性好的无接触加工;3)激光切割具有广泛的适应性和灵活性。 激光焊接