小学六年级数学竞赛练习题及答案
- 格式:doc
- 大小:91.50 KB
- 文档页数:5
六年级数学第三单元竞赛练习题3一填空1、( )的51是最小的四位数。
2、最大的两位数是( )的31。
3、甲数的51与乙数的61相等,甲数是90,乙数是( )。
4、一台拖拉机,53小时耕地85公顷,1小时耕地多少公顷?正确列式是( ) ;耕地1公顷要多少小时?正确列式是( )。
5、一个数分别与32、74相乘,乘得的两个积的和是1413,原来这个数是( )。
6、一根木头截去全长的31,正好截去31米,这根木头还有( )米。
7、8米的43和30米的( )同样长。
8、甲、乙两数相差0.4,甲的43和乙的65相等,甲、乙两数之和是( )。
9、甲、乙两数相差45,甲数的75等于乙数的65,甲数是( )。
10、一本书共160页,小时第一天读81,第二天读15页,还剩下全书的( )。
11、一根彩带的长度等于它本身长度的43加上43米,这根彩带长( )米。
12、两个数相除,商是60,余数是商的121,被除数是545,除数是( )。
13、实验小学六年级有男生55人,比女生多15人,要使妇生人数占全年级人数的209,需转入( )名学生。
14、一个最简分数,把它的分子扩大3倍,分母缩小2倍后得2134,原分数是( )。
15、学校有彩色粉笔48盒,比白粉笔的83少3盒,学校有白粉笔( )。
16、一捆绳子,用去它的52还多7米,还剩20米,这捆绳子长( )米。
17、梁昕和吴飞从甲地到乙地,梁昕的速度经吴飞的速度快51,已知吴飞行这段路用30分钟,梁昕行这段路用( )分钟。
18、一条路,已修的经没修的少41,这时修了这条路的( )。
19、甲、乙两个数的和是18,如果把甲数的101给乙数,这时甲、乙两数恰好相等,原来乙数比甲数少( )。
20、大伟看一本故事书,第一天看了30页,第二天看的是第一天的32还多5页,两天看了全书页数的175,全书共有( )页。
21、回民小学五年二班,女生人数比全班的53多2人,男生有22人,五年二班一共有( )。
北师大版小学数学六年级上册比赛场次练习卷(带解析)1.4个人两两握手一次,共需握手( )次。
2.学校武术队为了联络方便,设计一种联络方式.一旦有事,先由教练同时通知两位队长,这两位队长再分别同时通知两名同学,依此类推,每人再同时通知两个人.如果每同时通知两人共需1分钟,4分钟可以通知到()名同学.3.用4、1、3这三个数字可以组成()个不同的三位数,它们别是()。
其中最大的是(),最小的是()。
4.3个好朋友见面握手问好,每两人握一次,共握了()次。
5.少年军校共有510名学生,为联络方便,设计了一种联络方式.一旦有事,先由校长通知两名班长,这两名班长再分别通知两名同学,以此类推,每名学生再通知两名学生.如果每同时通知两名学生共需1分钟,通知到所有学生至少需要()分钟。
6.胜利小学四(2)班和四(3)班进行羽毛球对抗赛,约定三局两胜,现在四(3)班估计到了四(2)班的出场次序,四(3)班要想获胜应怎样安排自己队员的出场次序呢?7.江惠从家到江堤—共有()条路可走。
8.4顶不同的帽子,小军和小刚两人各戴一顶,一共有()种不同的搭配方法。
9.小红有2顶不同的帽子,3件不同的上衣,她一共有()种搭配方法.10.小明想买一本英语读物和一本数学读物,一共有()种不同的买法。
11.下面两个盒子里分别装着写有1,2,3,4,5的卡片,从每个盒子里各摸出一张卡片,摸出的两张卡片的数字之和可能是()。
12.有面值分别是1角、2角、5角、1元的钱币,每两种钱币组合,能组合出()种不同的钱数。
分别是:()。
13.去猴山有()条路。
设计三条能参观很多景点的线路:(线路不要重复)14.4个班的同学举行拔河比赛,每2个班必须赛一场,共要进行()场比赛。
15.学校合唱队为联络方便,设计了一种联络方式,一旦有事,先由领队老师通知队长,接着领队老师、队长通知2名同学,每次接到通知的人都加入到通知的行列……若每通一个电话需1分钟,那么至少经过( )分钟就可通知完合唱队的45人?(包括队长在内)16.笑笑从家到图书馆有()条路可以走?17.贝贝领着小弟弟在公园玩耍,小弟弟走到贝贝处有()条路可走?(涂色部分为供游人行走的路)18.下图中的线段表示贝贝从家到学校所能经过的街道。
小学数学六年级竞赛试题解决问题练习440道学校名称:班级:学号:姓名:1.一种VCD影碟机的售价是600元,比原来降价415。
原来的价钱是多少元?2.小明读一本书,第一天读了这本书的13多5页,第二天读了这本书的12少一页,第三天读完剩下的21页。
这本书共多少页?3.某工程队要铺设一条公路,前20天已铺设了2。
8千米,照这样计算,剩下的4。
2千米,还要多少天才能铺完?(用比例解)4.一项工程,甲独做要10小时,乙独做要15小时。
现在甲乙合做,多少小时可以完成?5. 一张课桌比一把椅子贵10元,如果椅子的单价是课桌单价的35,课桌和椅子的单价各是多少元?6. 有一袋大米,第一周吃了40%,第二周吃了12千克,还剩6千克。
这袋大米原来有多少千克 ?7. 将一个体积是753.6立方米的圆柱体钢材熔铸成一个底面半径是4厘米的圆锥体模型,这个圆珠笔锥体模型的高是多少厘米?8.某化工厂采用新技术后,每天用原料18吨,这样原来6天用的原料,现在可以用10天,这个厂现在比过去每天节约多少吨原料?9.加工一批零件,师傅独做8小时完成,徒弟独做10小时完成,师徒二人合作2.5小时后,还没有加工的零件占这批零件的几分之几?10.用边长15厘米的方砖给教室铺地,需要2000块;如果用边长25厘米的方砖铺地需要多少块?11.一根圆柱形钢材,截下2米,量得它得横截面得直径是4厘米,如果每立方厘米的钢重7.8克,截下的这段钢材重多少千克?(得数保留整千克数)12. 一列火车从甲地开往乙地,已经行了35,离乙地还有450千米,甲乙两地之间的路程是多少千米?13. 小红看一本故事书,第一天看了45页,第二天看了全书的 14,第二天看的页数恰好比第一天多20%,这本书一共有多少页?14. 把一个棱长6分米的正方体木块,削成一个最大的圆锥体,需要削去多少立方分米的木块?15. 服装厂接到生产1200件衬衫的任务,前3天完成了40%,照这样计算,完成生产任务还要多少天?16. 甲乙两港相距140千米,一艘轮船从甲港驶向乙港用了4。
小学六年级奥数练习及答案解析十讲小学六年级奥数题及答案1.某市举行小学数学竞赛,结果不低于80分的人数比80分以下的人数的4倍还多2人,及格的人数比不低于80分的人数多22人,恰是不及格人数的6倍,求参赛的总人数?解:设不低于80分的为A人,则80分以下的人数是(A-2)/4,及格的就是A+22,不及格的就是A+(A-2)/4-(A+22)=(A-90)/4,而6*(A-90)/4=A+22,则A=314,80分以下的人数是(A-2)/4,也即是78,参赛的总人数314+78=3922.电影票原价每张若干元,现在每张降低3元出售,观众增加一半,收入增加五分之一,一张电影票原价多少元?解:设一张电影票价x元(x-3)×(1+1/2)=(1+1/5)x(1+1/5)x这一步是什么意思,为什么这么做(x-3){现在电影票的单价}×(1+1/2){假如原来观众总数为整体1,则现在的观众人数为(1+2/1)}左边算式求出了总收入(1+1/5)x{其实这个算式应该是:1x*(1+5/1)把原观众人数看成整体1,则原来应收入1x 元,而现在增加了原来的五分之一,就应该再*(1+5/1),减缩后得到(1+1/5x)}如此计算后得到总收入,使方程左右相等3.甲乙在银行存款共9600元,如果两人分别取出自己存款的40%,再从甲存款中提120元给乙。
这时两人钱相等,求乙的存款答案取40%后,存款有9600×(1-40%)=5760(元)这时,乙有:5760÷2+120=3000(元)乙原来有:3000÷(1-40%)=5000(元)4.由奶糖和巧克力糖混合成一堆糖,如果增加10颗奶糖后,巧克力糖占总数的60%。
再增加30颗巧克力糖后,巧克力糖占总数的75%,那么原混合糖中有奶糖多少颗?巧克力糖多少颗?答案加10颗奶糖,巧克力占总数的60%,说明此时奶糖占40%,巧克力是奶糖的60/40=1。
百分数应用题【题目1】甲数比乙数少20%,那么乙数比甲数多百分之几?【题目2】有一堆糖果,其中奶糖占45%,再放入16块水果糖后,奶糖就只占25%,这堆糖中有奶糖多少块?【题目3】一个正方体的棱长增加原长的1/2,他的表面积比原表面积增加百分之几?【题目4】商店有篮球和排球共45个,其中篮球占60%,当卖出一批篮球后,篮球占现在总数的25%,卖出的篮球是多少个?【题目5】把一个正方形的一边减少20%,另一边增加2公尺,得到一个长方形,他与原来的正方形面积相等,那么正方形的面积是多少平方公尺?【题目6】已知甲校学生数是乙校学生数的40%,甲校女生数是甲校学生数的30%,乙校男生数是乙校学生数的42%,那么,两校女生数占两校学生总数的百分之几?【题目7】把25公克盐放进100公克水里制成盐水,制成的这种盐水,含盐量是百分之几?【题目8】某次会议,昨天参加会议的男代表比女代表多700人,今天男代表减少10%,女代表增加5%,今天共1995人出席会议,昨天参加会议的有多少人?【题目9】有甲、乙两家商店,如甲店的利润增加20%,乙店的利润减少10%,那么,这两店的利润就相同,问原来甲店的利润是原来乙店的利润的百分之几?【题目10】有浓度为3.2%的盐水500公克,为把他变成浓度是8%的盐水,需要使他蒸发掉多少公克的水?【参考答案】1.【解答】20%÷(1-20%)=25%。
2.【解答】16÷【(1-25%)÷25%―(1―45%)÷45%】=9(块)。
3.【解答】【(1+1/2)×(1+1/2)×6】÷(1×1×6)-1 = 125%。
4.【解答】45×60%-18×【25%÷(1-25%)】= 6(个)。
5.【解答】【2×(1-20%)÷20%】2 = 64(平方公尺)。
小学数学六年级奥数《分数的巧算(一)》练习题(含答案)一、填空题1.计算:=÷-⨯+⨯2582.432.02588.6 . 2.=⨯÷⎪⎭⎫ ⎝⎛++1919989898199800980019001900980980190190989898191919 . 3.1000减去它的一半,再减去余下的三分之一,再减去余下的四分之一,依此下去,直到余下的五百分之一,最后剩下 .4.计算:=⨯+⋅⋅⋅+⨯+⨯+⨯100991431321211 . 5.计算:=+++++++496124811241621311814121 . 6.计算:=+--+3121131211 . 7.计算:=⨯+⨯+⨯655161544151433141 . 8.计算:=++⋅⋅⋅+++++⋅⋅⋅+++199719953991199619943989537425313199719961995199619951994543432321 . 9.计算:=⎪⎭⎫ ⎝⎛-⨯-⎪⎭⎫ ⎝⎛+⨯+⎪⎭⎫ ⎝⎛-⨯761231537615312353123176 . 10.计算:⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+++20115110151161121814112191613181614121 = .二、解答题11.尽可能化简427863887116690151. 12.计算:⎪⎭⎫ ⎝⎛+⋅⋅⋅+-+-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+-+⎪⎭⎫ ⎝⎛-+914637281941322314312213211211.13.计算:1999321132112111+⋅⋅⋅++++⋅⋅⋅++++++. 14.计算: ⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-⨯⎪⎭⎫ ⎝⎛⨯-9997319896317531643153314231.———————————————答 案—————————————————————— 1. 513. 原式()12.48.62582582.42582588.6-+=-⨯+⨯= 51351610258==⨯=. 2. 19915. 原式101191019898191000198001000119001001980100119010101981010119⨯⨯⨯÷⎪⎭⎫ ⎝⎛⨯⨯+⨯⨯+⨯⨯= 19981998981998199819⨯⨯⎪⎭⎫ ⎝⎛++= 19915192941998199898193==⨯⨯⨯=.3. 2 1000减去它的一半,余下⎪⎭⎫ ⎝⎛-⨯2111000,再减去余下的31, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯3112111000,再减去余下的41, 余下⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯4113112111000,…, 直到减去余下的五百分之一,最后剩下:⎪⎭⎫ ⎝⎛-⨯⋅⋅⋅⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-⨯500114113112111000 5004994332211000⨯⋅⋅⋅⨯⨯⨯⨯= 2=4. 10099. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=100199199198141313121211 1009910011=-=. 5. 1615. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-++⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=124162162131131181414121211 ⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+4961248124811241 4961311311811-++-= 163131187161231187⨯+=⎪⎭⎫ ⎝⎛-⨯+=161516187=+=. 6. 542. 原式5425144758745873153116311631==⨯==-+=+--+=.7. 123. 原式655660544550433440⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛++⨯⎪⎭⎫ ⎝⎛+= 123150140130=+++++=.8. 21. 原式⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=19972399219962399052842632419971199619961199551441331221=.9. 1原式=()()()532376123765315376231+⨯+-⨯--⨯ 1111=+-=. 10. 14465. 原式⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯+⎪⎭⎫ ⎝⎛+++⨯-⎪⎭⎫ ⎝⎛+++⨯=413121151413121141413121131413121121 ⎪⎭⎫ ⎝⎛-+-⨯⎪⎭⎫ ⎝⎛+++=514131214131211 1446560131225201611234612=⨯=⎪⎭⎫ ⎝⎛+⨯+++=.11. 分子数字之和等于30,故它可以被3整除,分母奇位上数字之和与偶位上数字之和的差为32-21=11,所以它可以被11整除,把这此因数提出,得:1131138896717338896717=⨯⨯.12.原式=⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++⎪⎭⎫ ⎝⎛+⋅⋅⋅++-⎪⎭⎫ ⎝⎛+⋅⋅⋅++++4642413732312822211914131211 91828173727164636261555251+⎪⎭⎫ ⎝⎛+-⎪⎭⎫ ⎝⎛+++⎪⎭⎫ ⎝⎛+++-⎪⎭⎫ ⎝⎛+⋅⋅⋅+++ 9183761061265512764128731298212109+-+⨯-⨯⨯+⨯⨯-⨯⨯+⨯⨯-⨯=9183763534213281845+-+-+-+-= 91837641532730+-+-+=504533=. 13.因为2)1(21+=+⋅⋅⋅++n n n ,所以 原式=200019992432322212⨯+⋅⋅⋅+⨯+⨯+⨯ ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⋅⋅+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-+⎪⎭⎫ ⎝⎛-=2000119991413131212112 100099912000112=⎥⎦⎤⎢⎣⎡-=.14.因为()()()()()()()()()11311131111312+---=+--+-=+--K K K K K K K K K ()()()()()()112211222+-+-=+--=K K K K K K K ,所以 原式()()()()()()()()()()()()()()()()()()()()198198298298197197297297151525251414242413132323+-+-⨯+-+-⨯⋅⋅⋅⨯+-+-⨯+-+-⨯+-+-= 99971009698969995647353624251⨯⨯⨯⨯⨯⋅⋅⋅⨯⨯⨯⨯⨯⨯⨯⨯⨯=97259710041=⨯=.。
小学数学六年级奥数《容斥原理(2)》练习题(含答案)一、填空题1.某校有500名学生报名参加学科竞赛,数学竞赛参加者共312名,作文竞赛参加者共353名,其中这两科都参加的有292名,那么这两科都没有参加的人数为 人.2.某门诊部统计某一天挂号的病人,内科150人,外科92人,其中内、外两科都求诊的18人,这一天共来了 个病人.3.两个正方形的纸片盖在桌面上,位置与尺寸如图所示,则它们盖住 (平方厘米).4.不超过30的正整数中,是3的倍数或4的倍数的数有 个.5.在一次运动会中,甲班参加田赛的有15人,参加径赛的有12人,参加田赛又参加径赛的有7人,没有参加比赛的有21人.那么甲班共有 人.6.在桌面上放置着三个两两重叠的圆纸片(如图),它们的面积都是100(cm 2)并知A 、B 两圆重叠的面积是20(cm 2),A 、C 两圆重叠的面积为45(cm 2),B 、C 两圆重叠面积为31(cm 2),三个圆共同重叠的面积为15(cm 2),求盖住桌子的总面积是平方厘米.7.在一次考试中,某班数学得100分的有17人,语文得100分的有13人,两科都得100分的有7人,那么两科中至少有一科得100分的共有 人.全班45人中两科都不得100分的有 人.8.在1,2,3,…,1000这1000个自然数中,既不是2的倍数,又不是3的倍数的数共有 个.9.小于1000的自然数中,是完全平方数而不是完全立方数的数有 个.10.某校有学生960人,其中有510人订阅“作文报”,有330人订阅“数学报”,有120人订阅“科学爱好者”,全校学生中有270人订阅两种报刊,有58人三种报刊都订,那么这学校中没有订阅任何报刊的有 人.2 AB C二、解答题11.70名学生参加体育比赛,短跑得奖的31人,投掷得奖的36人,弹跳得奖的29人,短跑与投掷二项均得奖的12人,跑、跳、投三项均得奖的有5人,只得弹跳奖的有7人,只得投掷奖的有15人.求(1)只得短跑奖的人数;(2)得二项奖的总人数;(3)一项奖均未得的人数.12.64人订A 、B 、C 三种杂志.订A 种杂志的28人,订B 种杂志的有41人,订C 种杂志的有20人, 订A 、B 两种杂志的有10人,订B 、C 两种杂志的有12人,订A 、C 两种杂志的有12人,问三种杂志都订的有多少人?13.求从1到1994中不能被5整除,也不能被6或7整除的自然数的个数.14.夏日的一天,有十个同学去吃冷饮.向服务员交出需要冷饮的统计,数字如下,有6个人要可可,有5个人要咖啡,有5个人要果汁,有3个人既要可可又要果汁,有一个人既要可可、咖啡又要了果汁.求证其中一定有一个人什么冷饮也没有要.———————————————答 案——————————————————————1. 127从图中可以看出:参加数学、作文竞赛的总人数为312+353-292=373(人) 从而可知这两科都没有参加的人数为500-373=127(人).2. 224从图可以看出,来诊病人总数为150+92-18=224(人).3. 10.75把两个正方形面积加起来得22+32=13,但其中多算了一块阴影部分的面积,这部分面积为 1.52=2.25(平方厘米),故两个正方形盖住的总面积是22+32-1.52=13-2.25=10.75(cm 2)4. 15内科 150人 外科92人18 人不超过30的3的倍数有10330=⎥⎦⎤⎢⎣⎡(个),不超过30的4的倍数有7430=⎥⎦⎤⎢⎣⎡-(个);不超过30的3⨯4=12的倍数有24330=⎥⎦⎤⎢⎣⎡⨯(个),因此不超过30的正整数中是3的倍数,或是4的倍数的数共有10+7-2=15(个).5. 41如图所示,易知总人数为(15+12-7)+21=41(人).6. 219由容斥原理知,盖住桌面的总面积为100+100+100-(20+45+31)+15=219(平方厘米).7. 23;22至少一科得100分的有17+13-7=23(人),两科都不得100分的有45-23=22(人).8. 333在1~1000的自然数中,2的倍数有50021000=⎥⎦⎤⎢⎣⎡(个),3的倍数有33331000=⎥⎦⎤⎢⎣⎡(个),2⨯3=6的倍数共有166321000=⎥⎦⎤⎢⎣⎡⨯(个),故是2或是3的倍数共有500+333-166=667(个),从而既不是2的倍数,又不是3的倍数的数共有1000-667=333(个).9. 28小于1000的自然数中,是完全平方数的有12、22、…,312共31个.其中12=13,82=43,272=93.又是完全立方数,故符合条件的数有31-3=28(个)10. 121由容斥原理知,或订“作文报”或订“数学报”或订“科学爱好者”的总人数为510+330+120-270+58=748(人)故三种报刊都没有订的人数为960-748=212(人).11. (1)如图,用矩形表示参赛的70个学生,而用三个圆表示分别在跑、 跳、投中得奖的人.数学 语文 7 17 13设x 为只得短跑奖的人数,y 为只在短跑和弹跳两项得奖的人数,z 为只在弹跑与投掷两项得奖的人数,u 为只在投掷和短跑两项得奖的人数.则有u =12-5=7(人),z =36-15-12=9(人),y =29-5-7=8(人),x =31-12-8=11(人).即只得短跑奖的有11人.(2)得二次奖的人数为y +z +u =8+9+7=24(人).(3)因至少得一次奖的人数为x +y +z +u +5+7+15=62(人),故一项奖均未得的人数为70-62=8(人).12. 设三种杂志均订的人数为x ,则有28+41+20-10-12-12+x =64,解得x =9,即三种杂志都订的有9人.13. 在1~1994中,能被5整除的个数为39851994=⎥⎦⎤⎢⎣⎡;能被6整除的个数为33261994=⎥⎦⎤⎢⎣⎡;能被7整除的个数为28471994=⎥⎦⎤⎢⎣⎡;能被5⨯6=30整除的个数为66301994=⎥⎦⎤⎢⎣⎡;能被5⨯7=35整除的数为56351994=⎥⎦⎤⎢⎣⎡;能被6⨯7=42整除的个数为47421994=⎥⎦⎤⎢⎣⎡;能被5⨯6⨯7=210整除的个数为92101994=⎥⎦⎤⎢⎣⎡. 根据容斥原理,1~1994中或能被5,或能被6,或能被7整除的数的个数为:(398+332+284)-(66+54+47)+9=854,从而不能被5整除,也不能被6或7整除的自然数的个数为1994-854=1140(个).14. 要了冷饮的总人数为6+5+5-3-2-3+1=9(人),但总人数为10人,故一定有一个人什么冷饮也没有要.AB C x。
小学六年级奥数试题(8篇)小学六年级奥数试题(8篇)在学习和工作的日常里,我们都经常看到试题的身影,试题可以帮助参考者清楚地认识自己的知识掌握程度。
你知道什么样的试题才算得上好试题吗?以下是小编整理的小学六年级奥数试题,仅供参考,欢迎大家阅读。
小学六年级奥数试题11、(鸡兔同笼问题)小丽买回0.8元一本和0.4元一本的练习本共50本,付出人民币32元。
0.8元一本的练习本有多少本?2、(年龄问题)5年前父亲的年龄是儿子的7倍。
15年后父亲的年龄是儿子的二倍,父亲和儿子今年各是多少岁?3、(盈亏问题)王老师发笔记本给学生们,每人6本则剩下41本,每人8本则差29本。
求有多少个学生?有多少个笔记本?4、(还原问题)便民水果店卖芒果,第一次卖掉总数的一半多2个,第二次卖掉剩下的一半多1个,第三次卖掉第二次卖后剩下的一半少1个,这时只剩下11个芒果。
求水果店里原来一共有多少个芒果?5、(置换问题)学校买回6张桌子和6把椅子共用去192元。
已知3张桌子的价钱和5把椅子的价钱相等,每张桌子和每把椅子各是多少元?6、(安排)烤面包的架子上一次最多只能烤两个面包,烤一个面包每面需要2分钟,那么烤三个面包最少需要多少分钟?7、(油和桶问题)一桶油连桶共重18千克,用去油的一半后,连桶还重9.75千克,原有油多少千克?桶重多少千克?8、(和倍)青青农场一共养鸡、鸭、鹅共12100只,鸭的只数是鸡的2倍,鹅的只数是鸭的4倍,问鸡、鸭、鹅各有多少只?9、(鸡兔同笼)实验小学举行数学竞赛,每做对一题得9分,做错一题倒扣3分,共有12道题,小旺得了84分,小旺做错了几道题?10、(相遇问题)甲、乙两人同时从相距20xx米的两地相向而行,甲每分钟行55米,乙每分钟行45米,如果一只狗与甲同时同向而行,每分钟行120米,遇到乙后,立即回头向甲跑去,遇到甲再向乙跑去。
这样不断来回,直到甲和乙相遇为止,狗共行了多少米?小学六年级奥数试题2标有A、B、C、D、E、F、G记号的七盏灯顺次排成一行,每盏灯安装着一个开关,现在A、C、D、G四盏灯亮着,其余三盏灯是灭的。
小学六年级奥林匹克数学竞赛题及答案1.已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?解题思路:由已知条件可知,一张桌子比一把椅子多的288元,正好是一把椅子价钱的(10-1)倍,由此可求得一把椅子的价钱。
再根据椅子的价钱,就可求得一张桌子的价钱。
答题:解:一把椅子的价钱:288÷(10-1)=32(元)一张桌子的价钱:32×10=320(元)答:一张桌子320元,一把椅子32元。
2. 3箱苹果重45千克。
一箱梨比一箱苹果多5千克,3箱梨重多少千克?解题思路:可先求出3箱梨比3箱苹果多的重量,再加上3箱苹果的重量,就是3箱梨的重量。
答题:解:45+5×3=45+15=60(千克)答:3箱梨重60千克。
3. 甲乙二人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
甲比乙速度快,甲每小时比乙快多少千米?解题思路:根据在距离中点4千米处相遇和甲比乙速度快,可知甲比乙多走4×2千米,又知经过4小时相遇。
即可求甲比乙每小时快多少千米。
答题:解:4×2÷4=8÷4=2(千米)答:甲每小时比乙快2千米。
4. 李军和张强付同样多的钱买了同一种铅笔,李军要了13支,张强要了7支,李军又给张强0.6元钱。
每支铅笔多少钱?解题思路:根据两人付同样多的钱买同一种铅笔和李军要了13支,张强要了7支,可知每人应该得(13+7)÷2支,而李军要了13支比应得的多了3支,因此又给张强0.6元钱,即可求每支铅笔的价钱。
答题:解:0.6÷[13-(13+7)÷2]=0.6÷[13—20÷2]=0.6÷3=0.2(元)答:每支铅笔0.2元。
5.甲乙两辆客车上午8时同时从两个车站出发,相向而行,经过一段时间,两车同时到达一条河的两岸。
由于河上的桥正在维修,车辆禁止通行,两车需交换乘客,然后按原路返回各自出发的车站,到站时已是下午2点。
小学六年级数学竞赛练习题及答案
第一组:填空题。
(每题5分;第3题10分)
1、下面算式中的两个()内应填什么数;才能使这道整数除法题的余数为最大。
()÷25=104……()
2、两根同样长的绳子;一根剪去它的1
2;另一根剪去1
2
米。
这时剩下的两段绳子仍是同样长。
这两根绳子原来长。
3、下面乘法算式中的“来参加数学邀请赛”八个字;各代表一个不同的数字。
其中“赛”代表
9;“来”代表;“参”代表;“加”代表;“数”代表;“学”代表;“邀”
代表;“请”代表。
4、王阿姨用新机器织布。
第一天织布253.5米;以后提高了织布技术;每天都比前一天多织布
15.5米。
第7天她织布米;7天共织布米。
5、下图是由边长a的6个等边三角形拼成的正六边形。
n个这样的正六边形的周长是。
6、甲、乙、丙三个组;甲组6人;乙组5人;丙组4人;现每组各选1人一起参加会议;一共有
种选法;如果三组共同推选一个代表;有种选法。
7、下图中;∠1、∠2、∠3、∠4的和是。
第三组:计算题。
(每题5分)
999×87.5+87.5 19xx99+19xx9+19xx+199+19
732066×55555×(4-3.2÷0.8) 3.49+4.47+3.51+2.38+4.53+2.62
第四组:应用题。
(每题10分)
1、某厂运来一堆煤;如果每天烧煤1500千克;比计划提前一天烧完;如果每天烧1000千克;将比
计划多烧一天。
如果要求按计划规定烧完;每天应烧煤多少千克?
2、筑路队原计划每天筑路720米;实际每天比原计划多筑路80米;这样在规定完成全路修筑任
务的前3天;就只剩下1160米未筑。
这条路全长多少米?
3、下图是两个正方形;边长分别为5厘米和3厘米。
阴影部分的面积是。
4、下面这张发票被墨汁污损了三处(用黑圆点代表被污损部分);请你算出育英中学买了多
少块小黑板?
答案
第一组填空题
1、2624÷25=104 (24)
2、这两根绳原来长1米。
3、“来”代表1;“参”代表2;“加”代表3;“数”代表4;“学”代表5;“邀”代表6;“请”代表7。
4、第7天她织布346.5米;7天共织布2100米。
5、这个新的循环小数是1.1
.
00 1 0 2 0
.
3。
6、n个这样的正六边形的周长是6na。
7、每组各选1人;一共有120种选法;三组共同推选一个代表有15种选法。
8、∠1、∠2、∠3、∠4的和是360°。
9、最多可切割成40块。
第二组选择题
1、十分位
2、直角三角形
3、A=B
4、至少有2个
5、黑>白
6、30°
7、4条
8、□是4
9、周长是14a
第三组计算题
1、999×87.5+87.5
=87.5×(999+1)
=87.5×1000=87500
2、19xx99+19xx9+19xx+199+19
=20xx00-1+20xx0-1+20xx-1+200-1+20-1
=222220-5
=222215
3、732066×55555×(4-3.2÷0.8)=0
4、3.49+4.47+3.51+2.38+4.53+2.62=21
5、0.5×[(5.2+1.8-5.2+1.8)÷(1-0.75)]=7.2
第四组应用题
1、
2、至少打开3个环。
3、共有学生108人。
4、每尺花布单价0.5元。
5、四(1)班43人;四(2)班38人;四(3)班45人;四(4)班41人
6、31.5÷[(31.5×2)÷12-4.5]=42(千米)
7、解法一:
解:设原计划这堆煤烧x天。
1500×(x-1)=1000×(x+1)
1500x-1000x=1000+1500
X=5
1500×(5-1)]÷5=1200(千克)解法二:
(1500+1000)÷(1500-1000)=5(天)1000×(5+1)]÷5=1200(千克)
答:按计划每天烧煤1200千克。
8、解法一:
解:设原计划x天完成。
(720+80)×(x-3)=720x-1160
X=15.5
720×15.5=11160(米)解法二:
[(720+80)×3-1160)÷80=15.5(天)720×15.5=11160(米)
答:这条路全长11160米。
9、解法一:
5×5+3×3-〔5×5÷2+(5+3)×3÷2]=25+9-24.5
=9.5(平方厘米)解法二:
(5-3)×5÷2+[(3+5+3)×3÷2-(5+3)×3÷2]=9.5(平方厘米)
10、解:过A向河作垂线AC;垂足为C;延长AC 到D;使AC=CD;连接BD与河边相交于E;
连AE。
王大伯沿AE走到河边挑水;再沿EB到B点这条路最近。
11、张阿姨和王叔叔、李大伯两人握了手。
12、吴、刘一家; 孙、钱一家; 赵、周一家; 李、张一家; 王、郑一家
13、(13.66-0.3×40-22.66)÷12.5=8(块)
答:买了8块小黑板。