人教A版数学必修一测验(新课标必修①第二章).doc
- 格式:doc
- 大小:82.00 KB
- 文档页数:4
人教A 版(2019)高中数学课时练 必修第一册第二章一元二次函数、方程和不等式 2.1等式性质与不等式性质一、选择题(60分)1.若2a ≠-,(21)(2)m a a =-+,(2)(3)n a a =+-,则m 、n 的大小关系是( )A .m n =B .m n <C .m n >D .m 、n 关系不确定 2.如果不等式组9080x a x b -≥⎧⎨-<⎩的整数解有n (*n ∈N )个,那么适合这个不等式组的整数a 、b 的有序数对(,)a b 共有( )个A .17个B .64个C .81个D .72个3.已知x ,y ,z 为正整数,x y z ≤≤,则方程11112x y z ++=的解得个数为( ) A .8 B .10C .11D .12 4.已知函数()22f x x mx n =++,则()1f 、()2f 、()3f 与1的大小关系为( )A .没有一个小于1B .至多有一个不小于1C .都不小于1D .至少有一个不小于15.实数a ,b ,c 满足221a a c b =+--且210a b ++=,则下列关系成立的是( )A .b a c >≥B .c a b ≥>C .b c a >≥D .c b a ≥> 6.已知(),,,x f x e x R a b =∈<记()()()()()()1,2A f b f a B b a f a f b =-=-+,则,A B 的大小关系是( )A .AB > B .A B ≥C .A B <D .A B ≤7.设实数a ,b ,c 满足1a b >>,1c >,则下列不等式中不成立的是( )A .b a bc aa b ac +<<+ B .1a bc b a b ac +<<+ C .1a bc c cc b a +<<+ D a bc b ac +<<+8.已知x ,y 是正实数,则下列式子中能使x y >恒成立的是( )A .21x y y x +>+B .112x y y x +>+C .21x y y x ->-D .112x y y x->- 9.已知实数a ,b ,c.A .若|a 2+b+c|+|a+b 2+c|≤1,则a 2+b 2+c 2<100B .若|a 2+b+c|+|a 2+b–c|≤1,则a 2+b 2+c 2<100C .若|a+b+c 2|+|a+b–c 2|≤1,则a 2+b 2+c 2<100D .若|a 2+b+c|+|a+b 2–c|≤1,则a 2+b 2+c 2<10010.集合()*{,,|S x y z x y z N =∈、、,且x y z <<、y z x <<、z x y <<恰有一个成立},若(),,x y z S∈且(),,z w x S ∈,则下列选项正确的是( )A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S ∈D .(),,y z w S ∉,(),,x y w S ∉11.关于x 的不等式()()30x a x -->成立的一个充分不必要条件是11x -<<,则a 的取值范围是( ) A .1a ≤-B .0a <C .2a ≥D .1a ≥ 12.已知0<a <b <1e ,则下列正确的是( )A >>>B >>>C >>>D .以上均不正确二、填空题(20分)13.设0a b >>,若x =,y =x ,y 的大小关系是________(用“<”号连接). 14.已知,,a b a m +均为大于0的实数,给出下列五个论断:①a b >,②a b <,③0m >,④0m <,⑤b m b a m a+>+.以其中的两个论断为条件,余下的论断中选择一个为结论,请你写出一个正确的命题___________.15.设x ,y 是正实数,记S 为x ,1y x +,1y中的最小值,则S 的最大值为______. 16.如果对于任意的正实数x ,不等式1a x x +≥恒成立,则a 的取值范围是_________. 17.设[]x 表示不超过x 的最大整数(例如:[][]22,1.251==),则方程[]3240x x -+=的解为__.三、解答题(70分)18.设a b c R +∈,,,试证:对任意实数x y 、、z 有222x y z ⎫++≥++⎪⎪⎭19.已知0,0a b >>(1)若22a b +=,且211t a b≤++恒成立,求实数t 的最大值; (2)若函数()2f x x a x b =++-的最小值为1,证明:22a b +=;(3)若22m -<<,且()()2220m a m b ab -++-=,设+a b 的最小值为()g m ,求()g m 的值域. 20.符号[]x 表示不大于x 的最大整数()x R ∈,例如[]1.31=,[]22=,[]1.22-=-(1)已知方程[]0x =的解集为M ,不等式[]1x <-的解集为N ,求M 、N ;(2)设方程13x x ⎡⎤+-=⎣⎦的解集为A ,求A ;21.已知00x y >>,,求证:()()22119x y x y xy ++++.22.若实数x 、y 、m 满足|x ﹣m|<|y ﹣m|,则称x 比y 接近m .(1)若2x 比1接近3,求x 的取值范围;(2)已知函数f (x )定义域D=(﹣∞,0)∪(0,1)∪(1,3)∪(3,+∞),对于任意的x∪D ,f (x )等于x 2﹣2x 与x 中接近0的那个值,写出函数f (x )的解析式,若关于x 的方程f (x )﹣a=0有两个不同的实数根,求出a 的取值范围;(3)已知a ,b∪R ,m >0且a≠b ,求证: 比接近0.23.(Ⅰ) (Ⅱ)试比较n n +1与(n +1)n (n ∈N +)的大小,根据(Ⅰ)的结果猜测一个一般性结论,并加以证明.【参考答案】1.C 2.D 3.B 4.D 5.D 6.C 7.D 8.B 9.D 10.B 11.D 12.A13.x y <14.①③推出⑤(答案不唯一还可以①⑤推出③等)1516.解:对于任意的正实数x ,不等式1a x x+恒成立, 即(1)a x x -(0,)x ∈+∞恒成立.令()(1)f x x x =-,只需a 大于等于()f x 的最大值. 1++m mb a 1²++m mb a。
新人教A 版高中数学必修一 第二章一元二次函数、方程和不等式 拔高检测题 (2)一、单选题1.已知m ,n 是正实数,且1m n +=,则12m n+的最小值是( ). A.3 B.3+C .92D .52.已知正数a,b 满足ab =10,则a +b 的最小值是( ) A .10B .25C .5D.3.设x ,y 均为负数,且1x y +=-,那么1xy xy+有( ). A .最大值174-B .最小值174-C .最大值174D .最小值1744.已知0a >,0b >,2a b A +=,B =2abC a b=+,则A ,B ,C 的大小关系为( ). A .A B C ≤≤B .AC B ≤≤C .B C A ≤≤D .C B A ≤≤5.若不等式a 2+b 2+2>λ(a+b )对任意正数a ,b 恒成立,实数λ的取值范围是( ) A .B .(﹣∞,1)C .(﹣∞,2)D .(﹣∞,3)6.若,,a b c 为实数,则下列命题错误的是( ) A .若22ac bc >,则a b > B .若0a b <<,则22a b < C .若0a b >>,则11a b< D .若0a b <<,0c d >>,则ac bd <7.已知a b c >>,下列不等关系一定成立的是( ) A .2ac b ab bc +>+ B .2ab bc b ac +>+ C .2ac bc c ab +>+ D .22a bc b ab +>+8.已知,αβ满足11123αβαβ-≤+≤⎧⎨≤+≤⎩,,则3αβ+的取值范围是( )A .137αβ≤+≤B .313αβ+-5≤≤C .37αβ+-5≤≤D .1313αβ+≤≤ 9.若0x y <<,则下列不等式不成立的是( ) A .2211x y -<- B .()22*nn xy n <∈NC .()2121*n n xyn ++<∈ND .11y x x>- 10.已知“1a >且1b >”,则与此判断等价的是( ) A .2a b +>且1ab > B .2a >且0b > C .0a >且0b >D .10a ->且10b ->11.若不等式212x mx x m ++>+对满足2m <的所有实数m 恒成立,则实数x 的取值范围是() A .22x -<< B .3x ≥C .1x ≤D .1x ≤-或3x ≥12.若关于x 的不等式23ax -<的解集为5133x x ⎧⎫-<<⎨⎬⎩⎭,则a =( ) A .2- B .2 C .3D .3-二、填空题13.如图,某人在垂直于水平地面ABC 的墙面前的点A 处进行射击训练,已知点A 到墙面的距离为AB ,某目标点P 沿墙面的射击线CM 移动,此人为了准确瞄准目标点P ,需计算由点A 观察点P 的仰角θ的大小(仰角θ为直线AP 与平面ABC 所成角).若15,25,30AB m AC m BCM ==∠=︒,则tan θ的最大值为_______.14.在等比数列{a n }和等差数列{b n }中,a 1=b 1>0,a 3=b 3>0,a 1≠a 3,则a 5与b 5的大小关系为________. 15.已知-13a b <+<,且24a b <-<,那么23a b +的取值范围是_________. 16.有下列四个命题:①若“1xy=,则,x y 互为倒数的逆命题;②面积相等的三角形全等的否命题;③“若m 1≥,则2x 2x m 0-+=有实数解”的逆否命题;④“若A B A =,则A B ⊆”的逆否命题.其中真命题为_____17.设,a b 为正实数,则下列结论:①若221a b -=,则1a b -<;②若111b a-=,则1a b -<;1=,则1a b -<;④若1,1a b ≤≤,则1a b ab -<-.其中正确的有______.18.设直线l :a 2x +4y -a =0(a >0),当此直线在x ,y 轴上的截距之和最小时,直线l 的方程为________.三、解答题19.设矩形ABCD (其中AB BC >)的周长为24,如图所示,把它沿对角线AC 对折后,AB 交DC 于点P .设AB x =,求ADP △的最大面积.20.设桌面上有一个由铁丝围成的封闭曲线,周长是2L .回答下面的问题:(1)当封闭曲线为平行四边形时,用直径为L 的圆形纸片是否能完全覆盖这个平行四边形?请说明理由.(2)求证:当封闭曲线是四边形时,正方形的面积最大. 21.关于x 的方程2(1)430m x x m -+--=. (1)求证:方程总有实根.(2)若方程的解集中只含有正整数,求整数m 的值.22.已知函数2*()2,(,)f x ax x c a c N =++∈满足①(1)5f =;②6(2)11f <<.(1)求函数()f x 的解析表达式;(2)若对任意[]1,2x ∈,都有()21f x mx -≥成立,求实数m 的取值范围.23.在一个限速40km /h 的弯道上,甲.乙两辆汽车相向而行,发现情况不对,同时刹车,但还是相碰了.事发后现场测得甲车的刹车距离略超过12m ,乙车的刹车距离略超过10m .又知甲,乙两种车型的刹车距离s m 与车速x km /h 之间分别有如下关系:20.10.01s x x =+甲,20.050.005s x x =+乙.问超速行驶谁应负主要责任?24.为鼓励大学毕业生自主创业,某市出台了相关政策:由政府协调,企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.某大学毕业生按照相关政策投资销售一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月的销售量y (单位:件)与销售单价x (单位:元)之间的关系近似满足一次函数:10500y x =-+.(1)设他每月获得的利润为w (单位:元),写出他每月获得的利润w 与销售单价x 的函数关系. (2)相关部门规定,这种节能灯的销售单价不得高于25元.如果他想要每月获得的利润不少于3000元,那么政府每个月为他承担的总差价的取值范围是多少?25.已知命题p :{}12x x x ∀∈<≤≤,2210x ax -+>恒成立;命题q :x ∃∈R ,()2110x a x +-+<.(1)若p 是真命题,求a 的取值范围; (2)若p 、q 一真一假,求a 的取值范围. 26.关于x 的方程x 2-2x +a =0,求a 为何值时: (1)方程一根大于1,一根小于1;(2)方程一个根在(-1,1)内,另一个根在(2,3)内; (3)方程的两个根都大于零?参考答案1.B 【解析】 【分析】由题意将所给的代数式进行恒等变形,然后结合均值不等式的结论即可求得最小值. 【详解】 由题意可得:()12122333n m m n m n m n m n ⎛⎫+=++=++≥+=+ ⎪⎝⎭当且仅当12m n n m mn +=⎧⎪⎨=⎪⎩时等号成立.据此可得12m n+的最小值是3+故选:B . 【点睛】本题主要考查基本不等式求最值的方法,“1”的灵活巧妙应用等知识,意在考查学生的转化能力和计算求解能力. 2.D 【解析】 【分析】根据基本不等式求最值,即得结果. 【详解】a b +≥=a b ==D .【点睛】本题考查利用基本不等式求最值,考查基本分析求解能力,属基础题. 3.D 【解析】 【分析】设a x =-,b y =-,由题意结合均值不等式可得ab 的取值范围,然后结合函数1y x x=+的图像即可确定1xy xy+的性质与最值.【详解】设a x =-,b y =-,则0a >,0b >.由1a b +=≥14ab ≤. 由函数1y x x =+的图像得,当104ab <≤时,1ab ab +在14ab =处取得最小值, 11117444xy ab xy ab ∴+=++=≥,当且仅当12x y ==-时取等号成立. 综上可得,1xy xy +有最小值174. 故选:D .【点睛】本题主要考查对勾函数的应用,基本不等式求最值的方法,等价转化的数学思想等知识,意在考查学生的转化能力和计算求解能力. 4.D 【解析】 【分析】由题意结合均值不等式可比较AB 的大小,然后结合不等式的性质比较BC 的大小即可. 【详解】由于0a >,0b >,故a b +≥,则2a b+≥,即A B ≥,结合02a b +<≤2a b≥+,两边乘以ab 2ab a b ≥+,即B C ≥.据此可得:C B A ≤≤. 故选:D . 【点睛】本题主要考查基本不等式的应用,比较大小的方法等知识,意在考查学生的转化能力和计算求解能力.。
章末质量检测(二) 一元二次函数、方程和不等式考试时间:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.设M =2a(a -2)+7,N =(a -2)(a -3),则有( ) A .M>N B .M ≥N C .M<N D .M ≤N2.若集合A ={x|x 2+2x>0},B ={x|x 2+2x -3<0},则A ∩B =( ) A .{x|-3<x<1} B .{x|-3<x<-2}C .RD .{x |-3<x <-2或0<x <1}3.若a ,b ,c ∈R 且a >b ,则下列不等式中一定成立的是( ) A .ac >bc B .(a -b )c 2>0C .1a <1bD .-2a <-2b4.函数y =2x +2x -1(x >1)的最小值是( )A .2B .4C .6D .85.若实数2是不等式3x -a -4<0的一个解,则a 可取的最小正整数是( ) A .1 B .2 C .3 D .46.我国的烟花名目繁多,其中“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h (单位:m)与时间t (单位:s)之间的关系为y =-4.9t 2+14.7t +17,那么烟花冲出后在爆裂的最佳时刻距地面高度约为( )A .26米B .28米C .30米D .32米7.中国南宋大数学家秦九韶提出了“三斜求积术”,即已知三角形三边长求三角形面积的公式:设三角形的三条边长分别为a ,b ,c ,则三角形的面积S 可由公式S =p (p -a )(p -b )(p -c ) 求得,其中p 为三角形周长的一半,这个公式也被称为海伦-秦九韶公式,现有一个三角形的边长满足a =3,b +c =5,则此三角形面积的最大值为( )A .32B .3C .7D .118.已知两个正实数x ,y 满足2x +1y=1,并且x +2y ≥m 2-2m 恒成立,则实数m 的取值范围( )A .-2<m <4B .-2≤m ≤4C .m <-2或m >4D .m ≤-2或m ≥4二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项是符合题目要求的,全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列表达式的最小值为2的有( )A .当ab =1时,a +bB .当ab =1时,b a +abC .a 2-2a +3D .a 2+2 +1a 2+210.关于x 的不等式ax 2+bx +c <0的解集为{x |x <-2或x >3},则下列正确的是( ) A .a <0B .关于x 的不等式bx +c >0的解集为{x |x <-6}C .a +b +c >0D .关于x 的不等式cx 2-bx +a >0的解集为⎩⎨⎧⎭⎬⎫x ⎪⎪x <-13或x >12 11.若a ,b ,c 为实数,下列说法正确的是( ) A .若a >b ,则ac 2>bc 2 B .若a <b <0,则a 2>ab >b 2C .“关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件是“a >0,b 2-4ac ≤0”D .“a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件 12.设a >1,b >1且ab -(a +b )=1,那么( )A .a +b 有最小值2+22B .a +b 有最大值2+22C .ab 有最大值1+2D .ab 有最小值3+22三、填空题(本题共4小题,每小题5分,共20分.把答案填在题中的横线上.) 13.不等式-x 2+2x +8>0的解集是________.14.若正数x ,y 满足x +y =xy ,则x +4y 的最小值等于________.15.已知a >0,b >0,若不等式2a +1b ≥m2a +b恒成立,则m 的最大值为________.16.已知关于x 的不等式x 2-5ax +2a 2<0(a >0)的解集为(x 1,x 2),则x 1+x 2+ax 1x 2的最小值是________.四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤.)17.(本小题满分10分)在①一次函数y =ax +b 的图象过A (0,3),B (2,7)两点,②关于x 的不等式1<ax +b ≤3的解集为{x |3<x ≤4},③{1,a }⊆{a 2-2a +2,a -1,0}这三个条件中任选一个,补充在下面的问题中并解答.问题:已知________,求关于x 的不等式ax 2-3x -a >0的解集.18.(本小题满分12分)正数x ,y 满足1x +9y=1.(1)求xy 的最小值; (2)求x +2y 的最小值.19.(本小题满分12分)甲厂以x 千克/时的速度匀速生产某种产品(生产条件要求1≤x ≤10),每小时可获得利润100⎝⎛⎭⎫5x +1-3x 元.要使生产该产品2小时获得的利润不低于3 000元,求x 的取值范围.20.(本小题满分12分)已知a >0,b >0且ab =1. (1)求a +2b 的最小值;(2)若不等式x 2-2x <14a +9b恒成立,求实数x 的取值范围.21.(本小题满分12分)(1)比较a 2+13与6a +3的大小;(2)解关于x 的不等式x 2-(3m +1)x +2m 2+2m ≤0.22.(本小题满分12分)2020 年初,新冠肺炎疫情袭击全国,在党和国家强有力的抗疫领导下,我国控制住疫情,之后一方面防止境外输入,另一方面复工复产.某厂经调查测算,某种商品原来每件售价为25元,年销售量8万件.(1)据市场调查,若价格每提高1元,销售量将相应减少2000件,要使销售的总收入不低于原收入,该商品每件定价最多为多少元?(2)为了扩大该商品的影响力,提高年销售量,公司决定明年对该商品进行全面技术革新和营销策略改革,并将定价提高到x 元.公司拟投入16()x 2-600 万元作为技改费用,投入50万元作为固定宣传费用,投入15x 万元作为浮动宣传费用.试问:当该商品明年的销售量a 至少应达到多少万件时,才可能使明年的销售收入不低于原收入与总投入之和?并求出此时商品的每件定价.1.解析:M -N =(2a 2-4a +7)-(a 2-5a +6)=a 2+a +1=⎝⎛⎭⎫a +122+34>0,∴M >N . 故选A. 答案:A 2.解析:A ={x |x 2+2x >0}={x |x <-2或x >0},B ={x |x 2+2x -3<0}={x |-3<x <1},∴A ∩B ={x |-3<x <-2或0<x <1}.故选D. 答案:D3.解析:∵a ,b ,c ∈R 且a >b ,∴取c =0,可排除A ,B ;取a =1,b =-1可排除C.由不等式的性质知当a >b 时,-2a <-2b ,故D 正确.答案:D4.解析:因为y =2x +2x -1(x >1),=2(x -1)+2x -1+2≥22(x -1)·2x -1+2=6,当且仅当2(x -1)=2x -1即x =2时取等号,此时取得最小值6.故选C.答案:C5.解析:∵实数2是不等式3x -a -4<0的一个解, ∴代入得:6-a -4<0,解得a >2, ∴a 可取的最小整数是3.故选C. 答案:C6.解析:∵y =-4.9t 2+14.7t +17,∴烟花冲出后在爆裂的最佳时刻为t =-14.72×(-4.9)=1.5,此时y =-4.9×1.52+14.7×1.5+17≈28, 故选B. 答案:B7.解析:由题意p =12(3+5)=4S =4(4-a )(4-b )(4-c )=4(4-b )(4-c )=4(bc -4)≤ 4×⎝⎛⎭⎫b +c 22-16=9=3, 当且仅当4-b =4-c ,即b =c 时等号成立﹐ ∴此三角形面积的最大值为3. 故选B. 答案:B8.解析:因为x +2y ≥m 2-2m 恒成立,则m 2-2m ≤(x +2y )min ,x +2y =(x +2y )⎝⎛⎭⎫2x +1y =4+4y x +x y ≥4+24y x ×x y =4+2×2=8, 当且仅当⎩⎨⎧4y x =x y 2x +1y=1即⎩⎪⎨⎪⎧x =4y =2时等号成立,所以x +2y 的最小值为8,所以m 2-2m ≤8,即()m -4()m +2≤0, 解得:-2≤m ≤4, 故选B. 答案:B9.解析:对选项A ,当a ,b 均为负值时,a +b <0,故最小值不为2;对选项B ,因为ab =1,所以a ,b 同号,所以b a >0,a b >0,b a +a b ≥2b a ·ab=2,当且仅当b a =ab,即a =b =±1时取等号,故最小值为2; 对选项C ,a 2-2a +3=(a -1)2+2,当a =1时,取最小值2;对选项D ,a 2+2+1a 2+2≥2a 2+2·1a 2+2=2,当且仅当a 2+2=1a 2+2,即a 2+2=1时,取等号,但等号显然不成立,故最小值不为2.故选BC.答案:BC10.解析:由已知可得a <0且-2,3是方程ax 2+bx +c =0的两根,A 正确,则由根与系数的关系可得:⎩⎨⎧-2+3=-ba-2×3=ca,解得b =-a ,c =-6a ,则不等式bx +c >0可化为:-ax -6a >0,即x +6>0,所以x >-6,B 错误, a +b +c =a -a -6a =-6a >0,C 正确,不等式cx 2-bx +a >0可化为:-6ax 2+ax +a >0,即6x 2-x -1>0,解得x >12或x <-13,D 正确,故选ACD. 答案:ACD11.解析:A 选项,若a >b ,c =0,则ac 2=bc 2,A 错;B 选项,若a <b <0,则a 2>ab ,ab >b 2,即a 2>ab >b 2,B 正确;C 选项,不等式ax 2+bx +c ≥0不一定是一元二次不等式,所以不能推出a >0;由a >0,b 2-4ac ≤0,可得出不等式ax 2+bx +c ≥0恒成立,所以“关于x 的不等式ax 2+bx +c ≥0恒成立”的充要条件不是“a >0,b 2-4ac ≤0”,C 错;D 选项,若关于x 的方程x 2+x +a =0有两个异号的实根,则⎩⎪⎨⎪⎧a <0Δ=1-4a >0,即a <0,因此“a <1”是“关于x 的方程x 2+x +a =0有两个异号的实根”的必要不充分条件,D 正确.故选BD. 答案:BD12.解析:由ab -(a +b )=1得:ab =1+(a +b )≤⎝⎛⎭⎫a +b 22(当且仅当a =b >1时取等号), 即()a +b 2-4(a +b )-4≥0且a +b >2,解得:a +b ≥2+22, ∴a +b 有最小值2+22,知A 正确;由ab -(a +b )=1得:ab -1=a +b ≥2ab (当且仅当a =b >1时取等号), 即ab -2ab -1≥0且ab >1,解得:ab ≥3+22, ∴ab 有最小值3+22,知D 正确. 故选AD. 答案:AD13.解析:不等式-x 2+2x +8>0等价于x 2-2x -8<0 由于方程x 2-2x -8=0的解为:x =-2或x =4所以-2<x <4.答案:{x |-2<x <4}14.解析:∵x +y =xy ,∴1x +1y =1,∴x +4y =(x +4y )⎝⎛⎭⎫1x +1y =5+x y +4y x ≥5+2x y ·4y x=9.当且仅当x y =4yx时取等号.答案:915.解析:由2a +1b ≥m 2a +b 得m ≤⎝⎛⎭⎫2a +1b ()2a +b 恒成立,而⎝⎛⎭⎫2a +1b ()2a +b =5+2a b +2b a ≥5+22a b ·2ba =5+4=9,故m ≤9,所以m 的最大值为9. 答案:916.解析:由于a >0,故一元二次方程x 2-5ax +2a 2=0的判别式: Δ=25a 2-4·2a 2=17a 2>0,由韦达定理有:⎩⎪⎨⎪⎧x 1+x 2=5ax 1x 2=2a 2,则: x 1+x 2+a x 1x 2=5a +a 2a 2=5a +12a ≥25a ×12a=10,当且仅当5a =12a ,a =1010时等号成立.综上可得:x 1+x 2+ax 1x 2的最小值是10.答案:1017.解析:若选①,由题得⎩⎪⎨⎪⎧ b =3,2a +b =7,解得⎩⎪⎨⎪⎧a =2,b =3.将a =2代入所求不等式整理得:(x -2)(2x +1)>0,解得x >2或x <-12,故原不等式的解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2. 若选②,因为不等式1<ax +b ≤3的解集为{x |3<x ≤4},所以⎩⎪⎨⎪⎧ 3a +b =1,4a +b =3,解得⎩⎪⎨⎪⎧a =2,b =-5.将a =2代入不等式整理得(x -2)(2x +1)>0,解得x >2或x <-12,故原不等式的解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2.若选③,若1=a 2-2a +2,解得a =1,不符合条件;若1=a -1,解得a =2,则a 2-2a +2=2符合条件.将a =2代入不等式整理得(x -2)(2x +1)>0,解得x >2或x <-12,故原不等式的解集为:⎩⎨⎧⎭⎬⎫x ⎪⎪x <-12或x >2. 18.解析:(1)由1=1x +9y ≥21x ·9y 得xy ≥36,当且仅当1x =9y,即y =9x =18时取等号,故xy 的最小值为36.(2)由题意可得x +2y =(x +2y )⎝⎛⎭⎫1x +9y =19+2y x +9x y ≥19+22y x ·9x y=19+62,当且仅当2y x =9xy,即9x 2=2y 2时取等号,故x +2y 的最小值为19+6 2. 19.解析:根据题意,要使生产该产品2小时获得的利润不低于3 000元,得2×100×⎝⎛⎭⎫5x +1-3x ≥3 000,整理得5x -14-3x≥0,即5x 2-14x -3≥0, 解得x ≥3或x ≤-15,又1≤x ≤10,可解得3≤x ≤10.20.解析:(1)∵a >0,b >0且ab =1, ∴a +2b ≥22ab =22,当且仅当a =2b =2时,等号成立,故a +2b 的最小值为2 2. (2)∵a >0,b >0且ab =1, ∴14a +9b ≥294ab =3,当且仅当14a =9b ,且ab =1,即a =16,b =6时,取等号, 即14a +9b的最小值为3, ∴x 2-2x <3,即x 2-2x -3<0,解得-1<x <3, 即实数x 的取值范围是{}x |-1<x <3.21.解析:(1)a 2+13-()6a +3=a 2-6a +10=()a -32+1, 因为()a -32≥0,所以()a -32+1≥1>0, 即a 2+13>6a +3.(2)x 2-()3m +1x +2m 2+2m =()x -2m ()x -m -1.当2m <m +1,即m <1时,解原不等式,可得2m ≤x ≤m +1; 当2m =m +1,即m =1时,解原不等式,可得x =2;当2m >m +1,即m >1时,解原不等式,可得m +1≤x ≤2m . 综上所述,当m <1时,原不等式的解集为{}x |2m ≤x ≤m +1; 当m =1时,原不等式的解集为{2};当m >1时,原不等式的解集为{}x |m +1≤x ≤2m . 22.解析:(1)设每件定价为t 元,依题意得⎝⎛⎭⎫8-t -251×0.2t ≥25×8,整理得t 2-65t +1000≤0,解得25≤t ≤40所以要使销售的总收入不低于原收入,每件定价最多为40元.(2)依题意知当x >25时,不等式ax ≥25×8+50+16()x 2-600+15x 成立等价于x >25时,a ≥150x +16x +15有解,由于150x +16x ≥2150x ×16x =10,当且仅当150x =x6,即x =30时等号成立,所以a ≥10.2当该商品改革后销售量a 至少达到10.2万件时,才可能使改革后的销售收入不低于原收入与总投入之和,此时该商品的每件定价为30元.。
高中数学学习材料鼎尚图文*整理制作高一数学必修一第二章单元测试试题说明:本试题测试时间为50分钟,满分100分一、选择题:(本大题共8小题,每小题6分,共48分)答案填在答题卷答题卡内,否则不计分.1、 函数32+=-x a y (a >0且a ≠1)的图象必经过点 ( )(A )(0,1) (B ) (1,1) (C ) (2,3) (D )(2,4)2、三个数3.0222,3.0log ,3.0===c b a 之间的大小关系是( )(A )b c a <<. (B ) c b a << (C )c a b << (D )a c b <<3、函数 的定义域为 ( )(A )[1,3] (B )),3()1,(+∞⋃-∞ (C )(1,3) (D )(1,2)∪(2,3)4、已知镭经过100年,剩留原来质量的95.76%,设质量为1的镭经过x 年的剩留量为y ,则y 与x 的函数关系是( )(A )y =(0.9576)100x (B )y =(0.9576)100x (C )y =( )x (D )y =1-(0.0424)100x5、函数y =x a log 在[1,3]上的最大值与最小值的和为1,则a =( ) (A ) (B ) 2 (C ) 3 (D )6、下列函数中,在区间(0,2)上不是增函数的是( )(A ) 0.5log (3)y x =- (B ) 12+=x y (C ) 2x y -= (D )x y 22=7、函数 与 ( )在同一坐标系中的图像只可能是( );;;。
8、对于函数f (x )定义域中任意的x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)+f (x 2);② f (x 1·x 2)=f (x 1)+f (x 2 ) ;③1212()()f x f x x x -->0; 1009576.02131xa y =x y a log -=1,0≠>a a 且)34(log 1)(22-+-=x x x f④1212()()()22x x f x f x f ++<.当f (x )=lo g 2 x 时,上述结论中正确结论的序号选项是 (A ) ①④ (B ) ②④ (C )②③ (D )①③二、填空题(本大题共4小题,每小题5分,共20分)9、 函数)5lg()(-=x x f 的定义域是 .10、求值:013312log log 12(0.7)0.252-+-+=________ _. 11、已知幂函数()y f x =的图象经过点(3,3),那么这个幂函数的解析式为 .12、设,0.(),0.x e x g x lnx x ⎧≤=⎨>⎩则1(())2g g =__________ 三、解答题(第12题7分,13题10分,第14题15分,共32分, 解答应写出文字说明,证明过程或演算步骤)13、求log 2.56.25+lg 1001+ln e +3log 122+的值.14、已知m >1,试比较(lg m )0.9与(lg m )0.8的大小.15、已知()(01)x xf x a a a a -=+>≠且(Ⅰ)证明函数f ( x )的图象关于y 轴对称;(4分 )(Ⅱ)判断()f x 在(0,)+∞上的单调性,并用定义加以证明;(7分)(Ⅲ)当x ∈[1,2]时函数f (x )的最大值为25,求此时a 的值. (4分)(Ⅳ)当x ∈[-2,-1]时函数f (x )的最大值为25,求此时a 的值. (4分)高一数学必修一第二章单元测试参考答案一、选择题 DBDA CCAC7、取a =2和a = 作图筛选得A二、填空题 8、 ;9、 4 ;10、 ;11、 . 11、设这个幂函数的解析式为 ,将(3, )代入得21=α 12、.【解析】1ln 2111(())(ln )222g g g e ===. 三、解答题 (本大题有3小题,共32分) 解答应写出文字说明,证明过程或演算步骤)12、解: 原式=2-2+ ln e +6log 22…………3分= +6 …………5分=216 …………7分 14、解:∵m >1,∴lg m >0;以下分类为①lg m >1,②lg m =1;③0<lg m <1三种情形讨论(lg m )0.9与(lg m )0.8的大小.…………2分①当lg m >1即m >10时,(lg m )0.9>(lg m )0.8;…………5分②当lg m =1即m =10时,(lg m )0.9=(lg m )0.8;…………7分③当0<lg m <1即1<m <10时,(lg m )0.9<(lg m )0.8.…………10分15、解:(Ⅰ)要证明函数f ( x )的图象关于y 轴对称则只须证明函数f ( x )是偶函数…1分∵x ∈R …………2分由)()(x f a a a a x f x x x x =+=+=--- …………3分∴函数f ( x )是偶函数,即函数f ( x )的图象关于y 轴对称…………4分(Ⅱ)证明:设210x x <<,则12()()f x f x -=21211111112211)1)(()11()()(x x x x x x x x x x x x x a a a a a a a a a a a a x ++----=-+-=+-+ (1)当a >1时,由0<12x x <,则x 1+x 2>0,则01>x a 、02>x a 、21x x a a <、121>+x x a ;)5,(-∞21x y =21αx y =212121312()()f x f x -<0即12()()f x f x <;(2)当0<a <1时,由0<12x x <,则x 1+x 2>0,则01>x a 、02>x a 、21x x a a >、1021<<+x x a ;12()()f x f x -<0即12()()f x f x <;所以,对于任意a (10≠>a a 且),f (x )在(0,)+∞上都为增函数.(Ⅲ)由(Ⅱ)知f (x )在(0,)+∞上为增函数,则当x ∈[1,2]时,函数f (x )亦为增函数;由于函数f (x )的最大值为25,则f (2)= 25 即25122=+aa ,解得2=a ,或22=a (Ⅳ)由(Ⅰ)(Ⅱ)证知f (x ) 是偶函数且在(0,)+∞上为增函数,则知f (x )在)0,(-∞上为减函数;则当x ∈[-2,-1]时,函数f (x )为减函数由于函数f (x )的最大值为25,则f (-2)= 25 即25122=+a a ,解得2=a ,或22=a。
第二章质量评估(B)(时间:120分钟分值:150分)一、选择题:本题共8小题,每小题5分,共40分.在给出的四个选项中,只有一项是符合题目要求的.1.已知当x>1时,不等式x+1x-1≥a恒成立,则实数a的取值范围是()A.{a|a≤2}B.{a|a≥2}C.{a|a≥3}D.{a|a≤3}答案:D2.已知函数y=12(m-2)x2+(n-8)x+1(m≥0,n≥0),当12≤x≤2时,y随x的增大而减少,则mn的最大值为()A.126B.18C.25D.812答案:B3.若m<n,p<q,且(p-m)(p-n)<0,(q-m)(q-n)<0,则m,n,p,q的大小顺序是()A.m<p<q<nB.p<m<q<nC.m<p<n<qD.p<m<n<q答案:A4.已知x≥52,则y=x2-4x+52x-4有()A.最大值52B.最小值54C.最大值1D.最小值1答案:D5.已知当|x|≤1时,函数y=ax+2a+1的值有正也有负,则实数a的取值范围是()A.a≥-13B.a≤-1C.-1<a<-13D.-1≤a≤-13答案:C6.已知当x∈R时,不等式kx2-kx+1>0恒成立,则k的取值范围是()A.{k|k>0}B.{k|k≥0}C.{k|0≤k<4}D.{k|0<k<4}答案:C7.若关于x的不等式ax2+bx-2>0的解集为{x|-2<x<-14},则a+b 等于()A.-18B.8C.-13D.1答案:C8.已知M=(a+2)(a-4),N=(a+1)(a-3),则 ()A.M>NB.M≥NC.M<ND.M≤N答案:C二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.下列说法不正确的是 ()A.某人月收入x元不高于2 000元可表示为“x<2 000”B.小明的身高为x cm,小华的身高为y cm,则小明比小华矮表示为“x>y”C.某变量x至少是a可表示为“x≥a”D.某变量y不超过a可表示为“y≥a”答案:ABD10.下列命题为假命题的是 ()A.若ac>bc,则a>bB.若a2>b2,则a>bC.若1a >1b,则a<bD.若√a<√b,则a<b答案:ABC11.已知2<x<3,2<y<3,则()A.6<2x+y<9B.2<2x-y<3C.-1<x-y<1D.4<xy<9答案:ACD12.不等式5x-2x2+3>0的充分不必要条件是()A.-12<x<3 B.-12<x<0C.1<x<2D.-1<x<6答案:BC三、填空题:本题共4小题,每小题5分,共20分.13.不等式-x2-3x+4>0的解集为{x|-4<x<1}.14.设x>0,y>0,且x+2y=1,则1x +1y的最小值为3+2√2.15.若关于x的一元二次不等式ax2+bx+1>0的解集为{x|-1< x<13},则ab的值为6.16.建造一个容积为8 m3,深为2 m的长方体无盖水池,如果池底和池壁每平方米的造价分别为120元和80元,那么水池的最低总造价为1 760元.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤.17.(10分)解关于x的不等式x2-(2m+1)x+m2+m<0.解:因为Δ=1>0,所以关于x的方程x2-(2m+1)x+m2+m=0的解为x1=m,x2=m+1,二次函数y=x2-(2m+1)x+m2+m的图象开口向上,且与x 轴有两个交点.又m<m+1,所以不等式的解集为{x|m<x<m+1}.18.(12分)求函数y=-2x 2+x-3x(x>0)的最大值,并求此时x的值.解:因为y=1-(2x+3x ),又x>0,所以2x+3x≥2√6,得-(2x+3x)≤-2√6.因此y≤1-2√6.当且仅当2x=3x ,即当x2=32时,等号成立.由于x>0,故当x=√62时,等号成立.因此y max=1-2√6,此时x=√62.19.(12分)若不等式(1-a)x2-4x+6>0的解集是{x|-3<x<1}.(1)解不等式2x2+(2-a)x-a>0;(2)b为何值时,ax2+bx+3≥0的解集为R?解:(1)由题意知1-a<0,且-3和1是方程(1-a)x2-4x+6=0的两根,所以{1-a<0,41-a=-2,61-a=-3,解得a=3.所以不等式2x2+(2-a)x-a>0即为2x2-x-3>0,解得x<-1或x>32.所以所求不等式的解集为{x|x<-1或x>32}.(2)由(1)知ax2+bx+3≥0即为3x2+bx+3≥0,若此不等式解集为R,则b2-4×3×3≤0,所以-6≤b≤6,故当b∈{b|-6≤b≤6}时,ax2+bx+3≥0的解集为R.20.(12分)已知x>0,y>0,且1x +4y=1,求x+y的最小值.解:因为1x +4y=1,所以x+y=(x+y)·(1x+4y)=5+yx+4xy,又x>0,y>0,所以y x +4xy≥2×√yx·4xy=4.当且仅当yx=4xy,即x=3,y=6时,等号成立.所以当x=3,y=6时,x+y取得最小值9.21.(12分)设a>0,b>0,对任意的实数x>1,有ax+xx-1>b恒成立,试比较√a+1和√b的大小.解:ax+xx-1=ax+1+1x-1=(a+1)+a(x-1)+1x-1,因为x>1,所以x-1>0,ax+1+1x-1≥(a+1)+2√a=(√a+1)2,当且仅当a(x-1)=1x-1(x>1),即x=1+√1a时,等号成立.又ax+xx-1>b恒成立,所以b<(√a+1)2.又a>0,b>0,所以√a+1>√b.22.(12分)某摩托车生产企业,上年度生产摩托车的投入成本为1万元/辆,出厂价为1.2万元/辆,年销售量为1 000辆.本年度为适应市场需求,计划提高产品档次,适度增加投入成本.若每辆车投入成本增加的比例为x (0<x <1),则出厂价相应的提高比例为0.75x ,同时预计年销售量增加的比例为0.6x.已知年利润=(出厂价-投入成本)×年销售量.(1)写出本年度预计的年利润y 与投入成本增加的比例x 的函数解析式;(2)为使本年度的年利润比上年度有所增加,投入成本增加的比例x 应在什么范围内?解:(1)依题意得y =[1.2×(1+0.75x )-1×(1+x )]×1 000×(1+0.6x )(0<x <1). 整理,得y =-60x 2+20x +200(0<x <1).故本年度年利润y 与投入成本增加的比例x 的函数解析式为y =-60x 2+20x +200(0<x <1).(2)要保证本年度的年利润比上年度有所增加,当且仅当{y -(1.2-1)×1 000>0,0<x <1,即{-60x 2+20x >0,0<x <1, 解得0<x <13.。
第二章综合测试答案解析一、 1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D . 2.【答案】D【解析】2=()=a b +-+-+(.+ ,a ∴,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ∈R 恒成立,需22=36480k k k ∆-+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A . 4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +⎧⎨-⎩⨯,,解得=4=3a b ⎧⎨-⎩,,所以4=3=81a b -().故选B . 6.【答案】D【解析】选项A ,c 为实数,∴取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b a a b ab--,0a b <<,0b a ∴->,0ab >,0b a ab -∴,即11a b>,故选项B 不成立;选项C ,0a b <<,∴取=2a -,=1b -,则11==22b a --,2==21a b --,∴此时b aa b ,故选项C 不成立;选项D ,0a b <<,2=0a ab a a b ∴--()>,2=0ab b b a b --()>,22a ab b ∴>>,故选项D 正确.7.【答案】D【解析】210x a x a -++ ()<,10x x a ∴--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D . 8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x∴--≥在02x <<时恒成立.11=2x x x x ---+-- ((当且仅当=1x 时取等号),2a ∴-≥,∴实数a 的最小值是2-.故选B . 9.【答案】A【解析】由题知{}=20N -,,则{}=0M N .故选A . 10.【答案】C【解析】2x >,20x ∴->.11==222=422y x x x x ∴+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a ∴. 11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +⎧⎪+⎨⎪+⎩<≤,>,>,即1311b ca abc a a c b a a⎧+⎪⎪⎪+⎨⎪⎪+⎪⎩<,>>1311b c a ac b a a ⎧+⎪⎪∴⎨⎪--⎪⎩<≤,<,两式相加得024c a ⨯<<.c a ∴的取值范围为02ca<<.12.【答案】D【解析】 二次三项式220ax x b ++≥对一切实数x 恒成立,0a ∴>,且=440ab ∆-≤,1ab ∴≥.又0x ∃∈R ,使2002=0ax x b ++成立,则=0∆,=1ab ∴,又a b >,0a b ∴->.22222==a b a b ab a b a b a b a b +-+∴-+---()(),当且仅当a b -时等号成立.22a b a b+∴-的最小值为D .二、 13.【答案】111a a-+ 【解析】由1a <,得11a -<<.10a ∴+>,10a ->.2111=11a a a +--.2011a - <≤,2111a∴-,111a a∴-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a ∆-⨯⨯≤,解得a ,∴实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则cd ab ab a b --((),即bc ad --<,bc ad ∴>,即③成立;若①③成立,则bc ad ab ab>,即c d a b >,c d a b ∴--<,即②成立;若②③成立,则由②得c d a b >,即0bc adab->, ③成立,0bc ad ∴->,0ab ∴>,即①成立.故可组成3个正确命题.16.【答案】42x -<< 【解析】不等式2162ab x x b a ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++min <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<. 三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a ∆-,9=4a . 所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94. 若=A ∅,则=940a ∆-<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分) 18.【答案】(1)2560x x --+ <,2560x x ∴+->,160x x ∴-+()()>,解得6x -<或1x >,∴不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x ∴--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x ∴--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >. 当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<; 当=0a 时,原不等式的解集是∅;当02a <<时,原不等式的解集是{|x x a <或}2x >; 当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+, 配方得237=416y x -+(). 因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ⎧⎫⎨⎬⎩⎭≤≤.(6分) 由21x m +≥,得21x m -≥, 所以{}2=|1B x x m -≥.(8分) 因为p 是q 的充分条件, 所以A B ⊆. 所以27116m -≤,(10分) 解得实数m 的取值范围是34m ≥或34m -≤.(12分) 20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤, 则{}=|23A B x x ≤≤.(3分) (2)因为=A B A ,所以B A ⊆.①当=B ∅,即23a a +>,3a >时,B A ⊆成立,符合题意.(8分)②当=B ∅,即23a a +≤,3a ≤时, 由B A ⊆,有0233a a ⎧⎨+⎩≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a 、b 为正实数,且11a b+.11a b ∴+(当且仅当=a b 时等号成立), 即12ab ≥.(3分)2221122=a b ab +⨯ ≥≥(当且仅当=a b 时等号成立),22a b ∴+的最小值为1.(6分)(2)11a b+,a b ∴+.234a b ab - ()≥(), 2344a b ab ab ∴+-()≥(),即2344ab ab -()≥(), 2210ab ab -+()≤, 210ab -()≤,a 、b 为正实数,=1ab ∴.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ∈R .当0a <时,解得1a x a +>. 当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ; 当0a <时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭>; 当0a >时,原不等式的解集为1|a x x a +⎧⎫⎨⎬⎩⎭<.(6分) (2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤, 因为2y x x a --≤在0+∞(,)上恒成立, 所以11a x x+-≤在0+∞(,)上恒成立. 令1=1t x x+-,只需min a t ≤, 因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立. 所以a 的取值范围是1a ≤.(12分)第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( ) A .若ac bc >,则a b >B .若22a b >,则a b >C .若a b >,0c <,则a c b c ++<D ,则a b <2.若++,则a ,b 必须满足的条件是( ) A .0a b >> B .0a b <<C .a b >D .0a ≥,0b ≥,且a b ≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ∈R 恒成立,则k 的取值范围是( ) A .01k ≤≤ B .01k <≤ C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +<”的充分不必要条件,则k 的取值范围是( ) A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( ) A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( ) A .22ac bc <B .11a b<C .b aab>D .22a ab b >> 7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( ) A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( ) A .1c a>B .02c a<<C .13c a <<D .03c a<<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x ∃∈R ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1BC .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________. 14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题. 16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________. 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ∈R ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式. (1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ⎧-+⎨⎩,324x ⎫⎬⎭≤≤,{}2=|1B x x m +≥.p x A ∈:,q x B ∈:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ∈R .(1)当=1a 时,求A B ;(2)若=A B A ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+. (1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.。
第二章学习单元一元二次函数、方程和不等式2.1 等式性质与不等式性质A级必备知识基础练1.(多选题)下列关于不等关系的说法正确的是( )A.某隧道入口竖立着“限高4.5米”的警示牌,是指示司机要安全通过隧道,应使车载货物高度h米满足关系为h≤4.5B.用不等式表示“a与b的差是非负数”为a-b>0C.不等式x≥2的含义是指x不小于2D.若a<b或a=b之中有一个正确,则a≤b正确2.已知0<=<NB.M>NC.M=ND.M与N的大小关系不确定3.设实数a=√5−√3,b=√3-1,c=√7−√5,则( )A.b>a>cB.c>b>aC.a>b>cD.c>a>b4.[吉林辽源高一月考]已知实数a,b,c满足c<b<a,ac<0,那么下列选项中正确的是( )A.ab>acB.ac>bcC.ab2>cb2D.ca2>ac25.(多选题)已知a,b,c为非零实数,且a-b≥0,则下列结论正确的有( )A.a+c≥b+cB.-a≤-bC.a2≥b2D.1a ≤1b6.(多选题)若正实数x,y满足x>y,则有下列结论,其中正确的有( )A.xy<y2B.>0)D.1x <1x-y8.若bc-ad≥0,bd>0,求证:a+bb ≤c+dd.B级关键能力提升练9.[北京顺义高一月考]已知实数a,b在数轴上对应的点如图所示,则下列式子中正确的是( )A.1b >1aB.a2>b2C.b-a>0D.|b|a<|a|b10.手机屏幕面积与整机面积的比值叫手机的“屏占比”,它是手机外观设计中一个重要参数,其值大于0且小于1,设计师将某手机的屏幕面积和整机面积同时增加相同的数量,升级为一款新手机的外观,则该手机“屏占比”相比升级之前( )A.“屏占比”不变B.“屏占比”变小C.“屏占比”变大D.变化不确定11.设x,y为实数,满足1≤x≤4,0<y≤2,求x+y及xy满足的范围.12.已知0<a<b,且a+b=1,试比较: (1)a2+b2与b的大小;的大小.(2)2ab与12参考答案学习单元一元二次函数、方程和不等式2.1 等式性质与不等式性质1.ACD 因为“限高4.5米”即为“高度不超过4.5米”.不超过用“≤”表示,故说法A正确;因为“非负数”即为“不是负数”,所以a-b≥0,故说法B错误;因为不等式x≥2表示x>2或x=2,即x不小于2,故说法C正确;因为不等式a≤b表示a<b或a=b,故若a<b或a=b中有一个正确,则a≤b一定正确,故说法D正确.2.B M-N=xy-x-y+1=x(y-1)-(y-1)=(x-1)(y-1).∵0<>N.故选B.3.A √5−√3=√5+√3,√3-1=√3+1√7−√5=√7+√5,∵√3+1<√3+√5<√5+√7,∴√3+1>√5+√3>√7+√5,即b>a>c.4.A 因为c<b<a,且ac<0,所以c<0,a>0,b-a<0.所以ab>ac,故A正确;因为a>b,c<0,所以ac<bc,故B错误;当b=0时,ab2=cb2,故C错误;因为a>c,ac<0,所以ca2<ac2,故D错误.故选A.5.AB 因为a-b≥0,则a≥b,根据不等式性质可知A,B正确;因为a,b符号不确定,所以C,D选项无法确定,故不正确.故选AB.6.BCD A中,由于x,y为正实数,且x>y,两边乘y得xy>y2,故A选项错误;B中,由于x,y为正实数,且x>y,所以)-(y-x)<0,则y(),所以yx <y+mx+m成立,故C选项正确;D中,由于x,y为正实数,且x>y,所以x>x-y>0,取倒数得0<1x <1x-y,故D选项正确.8.证明因为bc-ad≥0,所以ad≤bc.因为bd>0,所以ab ≤cd,所以ab+1≤cd+1,所以a+bb ≤c+dd.9.A 由实数a,b在数轴上对应的点可知b<a<0,因此1b >1a,故A正确;由b<a<0可知a2<b2,故B错误;由b<a,可得b-a<0,故C错误;由b<a<0,|b|a=|a|b,即-ba=-ab,故D错误.故选A.10.C 设升级前“屏占比”为ba ,升级后“屏占比”为b+ma+m(a>b>0,m>0),因为b+ma+m −ba=(a-b)ma(a+m)>0,所以该手机“屏占比”和升级前比变大.11.解∵1≤x≤4,0<y≤2,∴1<x+y≤6;∵1≤x≤4,0<y≤2,∴0<xy≤8.12.解(1)因为0<a<b,且a+b=1,所以0<a<12<b, 则a2+b2-b=a2+b(b-1)=a2-ab=a(a-b)<0,所以a2+b2<b.(2)因为2ab-12=2a(1-a)-12=-2a 2+2a-12=-2a 2-a+14=-2a-122<0,所以2ab<12.。
第二章综合测试一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列结论正确的是( )A .若ac bc >,则a b>B .若22a b >,则a b >C .若a b >,0c <,则a c b c++<D .a b<2.若++,则a ,b 必须满足的条件是( )A .0a b >>B .0a b <<C .a b>D .0a ≥,0b ≥,且a b≠3.已知关于x 的不等式2680kx kx k -++≥对任意x ÎR 恒成立,则k 的取值范围是( )A .01k ≤≤B .01k <≤C .0k <或1k >D .0k ≤或1k ≥4.已知“x k >”是“311x +”的充分不必要条件,则k 的取值范围是( )A .2k ≥B .1k ≥C .2k >D .1k -≤5.如果关于x 的不等式2x ax b +<的解集是{}|13x x <<,那么a b 等于( )A .81-B .81C .64-D .646.若a ,b ,c 为实数,且0a b <<,则下列命题正确的是( )A .22ac bc <B .11a b<C .baab>D .22a ab b >>7.关于x 的不等式210x a x a -++()<的解集中恰有3个整数,则a 的取值范围是( )A .45a <<B .32a --<<或45a <<C .45a <≤D .32a --≤<或45a <≤8.若不等式210x ax ++≥对一切02x <<恒成立,则实数a 的最小值是( )A .0B .2-C .52-D .3-9.已知全集=U R ,则下列能正确表示集合{}=012M ,,和{}2=|+2=0N x x x 关系的Venn 图是( )A BCD10.若函数1=22y x x x +-(>)在=x a 处取最小值,则a 等于( )A .1+B .1或3C .3D .411.已知ABC △的三边长分别为a ,b ,c ,且满足3b c a +≤,则ca 的取值范围为( )A .1c a>B .02c a<C .13c a <<D .03c a<12.已知a b >,二次三项式220ax x b ++≥对一切实数x 恒成立,又0x $ÎR ,使202=0ax x b ++成立,则22a b a b+-的最小值为( )A .1B C .2D .二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.已经1a <,则11a+与1a -的大小关系为________.14.若不等式22210x ax -+≥对一切实数x 都成立,则实数a 的取值范围是________.15.已知三个不等式:①0ab >,②c da b--<,③bc ad >.以其中两个作为条件,余下一个作为结论,则可以组成________个正确命题.16.若不等式2162a bx x b a++<的对任意0a >,0b >恒成立,则实数x 的取值范围是________.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)已知集合{2=|31=0A x ax x ++,}x ÎR ,(1)若A 中只有一个元素,求实数a 的值;(2)若A 中至多有一个元素,求实数a 的取值范围.18.(本小题满分12分)解下列不等式.(1)2560x x --+<;(2)20a x a x --()()>.19.(本小题满分12分)已知集合23=|=12A y y x x ì-+íî,324x üýþ≤≤,{}2=|1B x x m +≥.p x A Î:,q x B Î:,并且p 是q 的充分条件,求实数m 的取值范围.20.(本小题满分12分)已知集合{}2=|30A x x x -≤,{=|23B x a x a +≤≤,}a ÎR .(1)当=1a 时,求A B I ;(2)若=A B A U ,求实数a 的取值范围.21.(本小题满分12分)设a 、b 为正实数,且11a b+.(1)求22a b +的最小值;(2)若234a b ab -()≥(),求ab 的值.22.(本小题满分12分)已知函数=1y ax a -+().(1)求关于x 的不等式0y <的解集;(2)若当0x >时,2y x x a --≤恒成立,求a 的取值范围.第二章综合测试答案解析一、1.【答案】D【解析】当0c <时,A 选项不正确;当0a <时,B 选项不正确;两边同时加上一个数,不等号方向不改变,故C 选项错误.故选D .2.【答案】D【解析】2=()=a b +-+-((.++Q a \,b 必须满足的条件是0a ≥,0b ≥,且a b ≠.故选D .3.【答案】A【解析】当=0k 时,不等式2680kx kx k -++≥化为80≥,恒成立,当0k <时,不等式2680kx kx k -++≥不能恒成立,当0k >时,要使不等式2680kx kx k -++≥对任意x ÎR 恒成立,需22=36480k k k D -+()≤,解得01k ≤≤,故01k <≤.综上,k 的取值范围是01k ≤≤.故选A .4.【答案】A【解析】由311x +<,得3101x -+<,201x x -++<,解得1x -<或2x >.因为“x k >”是“311x +”的充分不必要条件,所以2k ≥.5.【答案】B【解析】不等式2x ax b +<可化为20x ax b --<,其解集是{}|13x x <<,那么由根与系数的关系得13=13=a b +ìí-î´,,解得=4=3a b ìí-î,,所以4=3=81a b -().故选B .6.【答案】D【解析】选项A ,c Q 为实数,\取=0c ,此时22=ac bc ,故选项A 不成立;选项B ,11=b aa b ab--,0a b Q <<,0b a \->,0ab >,0b a ab -\,即11a b>,故选项B 不成立;选项C ,0a b Q <<,\取=2a -,=1b -,则11==22b a --,2==21a b --,\此时b aa b<,故选项C 不成立;选项D ,0a b Q <<,2=0a ab a a b \--()>,2=0ab b b a b --()>,22a ab b \>>,故选项D 正确.7.【答案】D【解析】210x a x a -++Q ()<,10x x a \--()()<,当1a >时,1x a <<,此时解集中的整数为2,3,4,故45a <≤.当1a <时,1a x <<,此时解集中的整数为2-,1-,0,故32a --≤<.故a 的取值范围是32a --≤<或45a <≤.故选D .8.【答案】B【解析】不等式210x ax ++≥对一切02x <<恒成立,1a x x\--≥在02x <<时恒成立.11=2x x x x ---+--Q ()≤(当且仅当=1x 时取等号),2a \-≥,\实数a 的最小值是2-.故选B .9.【答案】A【解析】由题知{}=20N -,,则{}=0M N I .故选A .10.【答案】C【解析】2x Q >,20x \->.11==222=422y x x x x \+-+++--()≥,当且仅当12=2x x --,即=3x 时等号成立.=3a \.11.【答案】B【解析】由已知及三角形三边关系得3a b c a a b c a c b +ìï+íï+î<≤,>,>,即1311b ca abc a a c b a aì+ïïï+íïï+ïî<≤,>,>,1311b c a ac b a a ì+ïï\íï--ïî<≤,<<,两式相加得024c a ´<.c a \的取值范围为02ca<.12.【答案】D【解析】Q 二次三项式220ax x b ++≥对一切实数x 恒成立,0a \>,且=440ab D -≤,1ab \≥.又0x $ÎR ,使2002=0ax x b ++成立,则=0D ,=1ab \,又a b >,0a b \->.22222==a b a b ab a b a b a b a b +-+\-+---()()当且仅当a b -时等号成立.22a b a b+\-的最小值为故选D .二、13.【答案】111a a-+【解析】由1a <,得11a -<<.10a \+>,10a ->.2111=11a a a +--.2011a -Q <≤,2111a \-,111a a\-+≥.14.【答案】a【解析】不等式22210x ax -+≥对一切实数x 都成立,则2=44210a D -´´≤,解得a ,\实数a 的取值范围是a .15.【答案】3【解析】若①②成立,则c dab ab a b--()<(),即bc ad --<,bc ad \>,即③成立;若①③成立,则bc ad ab ab ,即c d a b >,c d a b \--<,即②成立;若②③成立,则由②得c d a b >,即0bc ad ab -,Q ③成立,0bc ad \->,0ab \>,即①成立.故可组成3个正确命题.16.【答案】42x -<<【解析】不等式2162a b x x ba ++<对任意0a >,0b >恒成立,等价于2162a bx x b a++m i n <().因为16a b b a +≥(当且仅当=4a b 时等号成立).所以228x x +<,解得42x -<<.三、17.【答案】(1)当=0a 时,31=0x +只有一解,满足题意;当0a ≠时,=94=0a D -,9=4a .所以满足题意的实数a 的值为0或94.(5分)(2)若A 中只有一个元素,则由(1)知实数a 的值为0或94.若=A Æ,则=940a D -<,解得94a >.所以满足题意的实数a 的取值范围为=0a 或94a ≥.(10分)18.【答案】(1)2560x x --+Q <,2560x x \+->,160x x \-+()()>,解得6x -<或1x >,\不等式2560x x --+<的解集是{|6x x -<或}1x >.(4分)(2)当0a <时,=2y a x a x --()()的图象开口向下,与x 轴的交点的横坐标为1=x a ,2=2x ,且2a <,20a x a x \--()()>的解集为{}|2x a x <<.(6分)当=0a 时,2=0a x a x --()(),20a x a x \--()()>无解.(8分)当0a >时,抛物线=2y a x a x --()()的图象开口向上,与x 轴的交点的横坐标为=x a ,=2x .当=2a 时,原不等式化为2220x -()>,解得2x ≠.当2a >时,解得2x <或x a >.当2a <时,解得x a <或2x >.(10分)综上,当0a <时,原不等式的解集是{}|2x a x <<;当=0a 时,原不等式的解集是Æ;当02a <<时,原不等式的解集是{|x x a <或}2x >;当=2a 时,原不等式的解集是{}|2x x ≠;当2a >时,原不等式的解集是{|2x x <或}x a >.(12分)19.【答案】23=12y x x -+,配方得237=416y x -+().因为324x ≤≤,所以min 7=16y ,max =2y .所以7216y ≤.所以7=|216A y y ìüíýîþ≤≤.(6分)由21x m +≥,得21x m -≥,所以{}2=|1B x x m -≥.(8分)因为p 是q 的充分条件,所以A B Í.所以27116m -≤,(10分)解得实数m 的取值范围是34m ≥或34m -≤.(12分)20.【答案】(1)由题意知{}=|03A x x ≤≤,{}=|24B x x ≤≤,则{}=|23A B x x I ≤≤.(3分)(2)因为=A B A U ,所以B A Í.①当=B Æ,即23a a +>,3a >时,B A Í成立,符合题意.(8分)②当=B Æ,即23a a +≤,3a ≤时,由B A Í,有0233a a ìí+î≤,≤,解得=0a .综上,实数a 的取值范围为=0a 或3a >.(12分)21.【答案】(1)a Q 、b 为正实数,且11a b+.11a b \+=a b 时等号成立),即12ab ≥.(3分)2221122=a b ab +´Q ≥≥(当且仅当=a b 时等号成立),22a b \+的最小值为1.(6分)(2)11a b+Q,a b \+.234a b ab -Q ()≥(),2344a b ab ab \+-()≥(),即2344ab ab -()≥(),2210ab ab -+()≤,210ab -()≤,a Q 、b 为正实数,=1ab \.(12分)22.【答案】(1)当=0a 时,原不等式可化为10-<,所以x ÎR .当0a <时,解得1a x a +>.当0a >时,解得1a x a+<.综上,当=0a 时,原不等式的解集为R ;当0a <时,原不等式的解集为1|a x x a +ìüíýîþ>;当0a >时,原不等式的解集为1|a x x a +ìüíýîþ<.(6分)(2)由21ax a x x a -+--()≤,得21ax x x -+≤.因为0x >,所以211=1x x a x x x-++-≤,因为2y x x a --≤在0+¥(,)上恒成立,所以11a x x+-≤在0+¥(,)上恒成立.令1=1t x x+-,只需min a t ≤,因为0x >,所以1=11=1t x x +-≥,当且仅当=1x 时等式成立.所以a 的取值范围是1a ≤.(12分)。
数
学
测
验
(新课标人教A 版必修①:第二章)
测验用时: 45分钟
高一( )班学生 学号 得分 2004.10.22.
一. 选择题(每小题有且仅有一个答案正确,每小题选对得9分,选错和不选均得0分.满分36分.把正确
答案写在答题卡中相应的位置)
1. 下列等式中:44463342
233)3(223,)2(2,,26-=--=-+=
+=b a b a a a .
一定成立的有
( )
(A )0个 (B )1个 (C )2个 (D )3个 2. 设
,
10,1<<>>a y x 则下列关系正确的是
( ) (A )a a
y x
--> (B )ay ax < (C )y x a a < (D )y x a a log log >
3. 某新型电子产品2002年投产,计划2004年使其成本降低36℅.则平均每年应降低成
本( )
(A )18℅ (B )20℅ (C )24℅ (D )36℅ 4. 设)()()2(log )(,log )(212
122
2
11x f x f ,x x f x x f <+==当时, x 的取值范围是
( )
(A )()()+∞⋃∞-,21, (B )()2,1- (C )()()+∞⋃--,21,2 (D )以上都
不对
二.填空题(把答案直接写在答题卡中的横线上,每小题10分,共20分)
5.设A=(){
}xy y lg ,,1, B={}
y x ,,0,且A=B.则x= y= .
6.985316,8,4,2,2从小到大的排列顺序是 三.解答题(解答要有详细过程)
7.(本题满分14分)求值:;2lg 5lg 100lg 20lg 5lg 50lg 2lg -+ 8. (本题满分15分)已知12log ,,4log ,3log 2555表示用b a b a == .
9. (本题满分15分)某工厂2000年开发一种新型农用机械,每台成本为5000元,并以纯利润20℅标价出厂.自2001年开始.,加强内部管理,进行技术革新,使成本降低,2004年平均出厂价尽管只有2000年的80℅,但却实现了纯利润为50℅的高效益.以2000年生产成本为基础,设2000年到2004年生产成本平均每年每台降低的百分数为x,试建立2004年生产成本y 与x 的函数关系式.并求x 的值(可能用到的近似值:24.25,73.13,414.12===).
数学测验
(第二章)
高一( )班学生 学号 得分 2004.10.22.
一.选择题答题卡(每小题有且仅有一个答案正确,每小题选对得9分,选错和不选均得0分.满分36分)
题号 1 2 3 4 得分 答案
二.填空题答题卡(把答案直接写在答题中卡的横线上,每小题10分,共20分)
5. ; 6. < < < < 得分 三.解答题(解答要有详细过程) 7. (本题满分14分)
解:
8.(本题满分15分)
解:
9. (本题满分15分)
解:
数学测验
(第二章)参考答案
2004.10.22.
一.选择题答题卡(每小题有且仅有一个答案正确,每小题选对得9分,选错和不选均得0分.满分36分)
题号 1 2 3 4 得分 答案
A
C
B
C
二.填空题答题卡(把答案直接写在答题卡中的横线上,每小题10分,共20分)
5.-1 -1 ; 6. 32 < 88 < 54 < 916 <2 得分 三.解答题(解答要有详细过程) 7. (本题满分7分)
解:原式=2lg 5lg 2)54lg(5lg )225(lg 2lg -⨯+⨯ =2lg 5lg 2)5lg 2lg 2(5lg )2lg 5lg 2(2lg -+++ =2lg 5lg 2)5(lg 5lg 2lg 2)2(lg 5lg 2lg 22
2
-+++ =1)10(lg )5lg 2(lg 2
2
==+ 8.(本题满分14分)
解: 25log 4log 3log 25log 12log 12log 2
5555525b
a +=+==
9. (本题满分15分)
解:根据题意,由2000年到2004年生产成本经历了4年的降低.所以,
4)1(5000x y -=.
由2000年出厂价为5000(1+20℅)=6000元, 得2004年出厂价为6000×80℅=4800元 由4800=y(1+50℅),得y=3200元. 再由50004
)1(x -=3200,得x=1-
5
5
2=11℅ 所以,由2000年到2004年生产成本平均每年降低11℅.。