盐城市东台市2016-2017学年八年级(上)期末数学试卷(解析版)
- 格式:pdf
- 大小:767.13 KB
- 文档页数:24
【关键字】学生学生学业质量调查分析与反馈八年级数学(试卷分值100分,考试时间100分钟,考试形式:闭卷,)题号一二三总分19 20 21 22 23 24 25得分一、选一选,比比谁细心(本大题共8个小题,每小题2分,共16分. 在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)题号 1 2 3 4 5 6 7 8答案1.下列图形中,不是轴对称图形的是(▲ )A B C D2.下列调查中,适合普查的是(▲ )A.中学生最喜爱的电视节目B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查D.中学生上网情况3.在、、、1.732、这五个数中,无理数有(▲ )个A.1 B.C.3 D.44. 已知等腰三角形中一个角等于100o,则它的顶角是(▲ )A.40o B.50o C.80o D.100o5.已知点M(1,)和点N(2,)是一次函数y=﹣2x+1图象上的两点,则与的大小关系是(▲)A.>B.= C.<D.以上都不对6.在元旦联欢会上,3名小朋友分别站在△ABC三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先抢坐到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置是在△ABC的(▲ )A.三边中线的交点B.三条角平分线的交点C.三边笔直平分线的交点D.三边上高的交点7.若正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是(▲)A B C D8.在平面直角坐标系中,对于平面内任意一点(),若规定以下两种变换f和g:①f()=()如f(23)=(32)②g()=()如g(23)=(﹣2﹣3).按照以上变换有:f(g(23))=f(﹣2﹣3)=(﹣3﹣2),那么g(f(﹣67))等于(▲ )A.(76)B.(7﹣6)C.(﹣76)D.(﹣7﹣6)二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分)9.3的平方根是_____________.10.取=1.23731…的近似值,若要求精确到0.01,则___________.11.据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用__________统计图来表示收集到的数据.(条形、扇形、折线中选填一个)12.如图,AC⊥CB,AD⊥DB,要使ΔABC≌ΔABD,可补充的一个条件是;第12题图第13题图13.如图,已知函数和的图像交于点,则根据图像可得,二元一次方程组的解是________________ .14.如图,在△ABC中,AD⊥BC于点D,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为________________.15.一个三角形三边长的比为3:4:5,它的周长是.这个三角形的面积为_________ cm2.16.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:____________________________.17.小聪用刻度尺画已知角的平分线,如图,在∠MAN两边上分别量取AB = AC,AE = AF,连接FC、EB交于点D,作射线AD,则图中全等的三角形共有____________对.第14题图第17题图第18题图18.如图,点M是直线上的动点,过点M作平行于轴的直线交轴于点N,在轴上取一点P,使△MNP为等腰直角三角形,请写出符合条件的点P坐标____________________________.三、解答题(本大题共有7小题,共64分.解答时应写出文字说明、推理过程或演算步骤)19.计算:(每小题4分,共8分)(1)求的值:(x-1)2=25 (2)计算:20. (本题满分9分)为保证中小学生每天锻炼一小时,东台市某中学开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)某班同学的总人数为人;(2)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(3)扇形统计图(2)中表示”篮球”项目扇形的圆心角度数为.21.(本题满分9分) 如图是规格为8×8的正方形网格,每个小方格都是边长为1的正方形,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4);(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是______________;(3)画出△ABC关于关于y轴对称的△A′B′C′.22.(本题满分8分)如图,△ABC中,AB=AC,AB的笔直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.23.(本题满分10分)数学实验:画∠AOB=90°,并画∠AOB 的平分线OC.(1)将一块足够大的三角尺的直角顶点落在OC 的任意一点P 上,使三角尺的两条直角边分别与OA 、OB 交于点E 、F (如图①).度量PE 、PF 的长度,PE ____PF (填>, <,=)(2)将三角尺绕点 P 旋转(如图②),①PE 与PF 相等吗?若相等请进行证明,若不相等请说明理由. ②若2OP ,请直接写出四边形OEPF 的面积:________________.24. (本题满分10分) 甲、乙两人商定举行一次远足活动, A 、B 两地相距10 千米,甲从 A 地出发匀速步行到 B 地,乙从 B 地出发匀速步行到 A 地.两人同时出发,相向而行,设步行时间为x 小时,甲、乙两人离 A 地的距离分别为1y 千米、2y 千米,1y 、2y 与x 的函数关系图像如图所示,根据图像解答下列问题:(1)直接写出1y 、2y 与x 的函数关系式;(2)求甲、乙两人出发后,几小时相遇?相遇时乙离 A 地多少千米? (3)甲、乙两人首次相距 4 千米时所用时间是多少小时?25.(本题满分10分)如图,在平面直角坐标系xOy中,已知点A(-1,0),点B(0,2),点C(3,0),直线a为过点D(0,-1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标_______;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC=S△MAB,请求出M点坐标.2015-2016第一学期八年级数学期末考试答案一、选一选,比比谁细心二、填一填,看看谁仔细9.3±;10.1.41;11.折线;12.答案不唯一;13.⎩⎨⎧-=-=24y x ;14.215;15.24;16.①③②④;17.4; 18.(0,0),(0,43),(0,-3),(0,1).三、解答题19.(1)-4,6(一个2分);(2)4127)5(32+--- =5—(—3)+21(3分)对一个得1分 =8.5 (4分) 20.(1)50; (3分)(2)略,条形图上应标注5或有水平虚线表示对准纵坐标5;(3分) (3)144°. (3分)21. 解答: 解:(1)如图所示,建立平面直角坐标系;(3分) (2)点C 的坐标为(﹣1,1);(3分) (3)△A'B'C'如图所示.(3分) 22.(1)∵AB=AC ,∠A=50°∴∠ABC=∠C=65°……………………..2分 又∵DE 垂直平分AB ∴ DA=DB ,∴∠ABD=∠A=50° ……………………..4分 ∴∠DBC=15° ……………………..5分 (2)∵DE 垂直平分AB∴ DA=DB ,∴ DB+DC=DA+DC=AC …………………..7分 又∵AB=AC=8,△CBD 周长为13∴BC=5 …………………..8分 23.(1) = ………………..2分 (2)解:①PE=PF ……………….3分 过点P 作PM ⊥OA ,PN ⊥OB ,垂足是M ,N , 则∠PME=∠PNF=90°, ∵OP 平分∠AOB , ∴PM=PN ,∵∠AOB=∠PME=∠PNF=90°, ∴∠MPN=90°, ∵∠EPF=90°, ∴∠MPE=∠FPN , 在△PEM 和△PFN 中 ∴△PEM ≌△PFN ,∴PE=PF .……………………………………………………….8分 ②若2OP ,请直接写出四边形OEPF 的面积:___1___.………..10分24.解:(1)y 1=4x (0≤x ≤2.5),y 2= -5x+10(0≤x ≤2);………..4分(2)根据题意可知:两人相遇时,甲、乙离A 地的距离相等,即y 2=y 1,由此得一元一次方程-5x+10=4x ,解这个方程,得x=(小时),当x=时,y 2=-5×+10=(千米)。
2016-2017学年第一学期期末考试八年级数学试题参考答案一、选择题(本题共36分,每小题3分)二、填空题(本题共24分,每小题3分)x;12. 6<x<12;13.4,0),(4,4),(0,4);14.-6;15.①11.②④三、解答题(本题共16分,每小题4分)16.(1))解:方程两边乘以,得------------------------1分解得.--------------------------2分检验:当时,.---------------------------------3分所以,原分式方程的解为.---------------------------4分(2))a2(x﹣y)+4b2(y﹣x)=a2(x﹣y)﹣4b2(x﹣y)------------------------1分=(x﹣y)(a2﹣4b2)---------------------------------------2分=(x﹣y)(a+2b)(a﹣2b).---------------------------------4分17. 解:原式=[﹣]×,=×,-----------------2分=×,-------------------------------------------3分=,--------------------------------------------4分2x+5>1,2x>﹣4,x>﹣2,-------------------------------------------5分∵x是不等式2x+5>1的负整数解,∴x=﹣1,--------------------------------------------6分把x=﹣1代入中得:=3.--------------------------------------------8分18. 解:(1)如图,A′(﹣2,4),B′(3,﹣2),C′(﹣3,1);-----------------3分-- ------6分(2)S△ABC=6×6﹣×5×6﹣×6×3﹣×1×3,=36﹣15﹣9﹣1,=10.--------------------------------------10分19. (1)证明:∵△ABC是等边三角形,∴∠BAC=∠B=60°,AB=AC.--------------------------------2分又∵AE=BD,∴△AEC≌△BDA(SAS).--------------------------------2分∴AD=CE;--------------------------------5分(2)解:∵(1)△AEC≌△BDA,∴∠ACE=∠BAD,--------------------------------7分∴∠DFC=∠FAC+∠ACF=∠FAC+∠BAD=∠BAC=60°.--------------------------------10分20. 解:(1)设该种干果的第一次进价是每千克x元,则第二次进价是每千克(1+20%)x 元,…………1分由题意,得=2×+500,解得x=3,经检验x=3是方程的解. (3)分答:该种干果的第一次进价是每千克3元…………5分(2)30009000+-5006+500660%-3000+9000 331+20%⨯⨯⨯⨯()()()…………7分=(1000+2500﹣500)×6+1800﹣12000=3000×6+1800﹣12000=18000+1800﹣12000=7800(元).…………9分答:超市销售这种干果共盈利7800元.…………10分21. 1)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,------------1分由题意知,在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-------------------------------3分∴∠ABC=∠ACB,∴AB=AC;------------------------------4分(2)证明:过点O分别作OE⊥AB于E,OF⊥AC于F,--------------------------5分由题意知,OE=OF.∠BEO=∠CFO=90°,∵在Rt△OEB和Rt△OFC中∴Rt△OEB≌Rt△OFC(HL),-----------6分∴∠OBE=∠OCF,又∵OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴AB=AC;--------------------------9分(3)解:不一定成立,-------------------------10分当∠A 的平分线所在直线与边BC 的垂直平分线重合时AB=AC ,否则AB ≠AC .(如示例图)--------------------------12分22. 解:(1)第一个图形中阴影部分的面积是a 2﹣b 2,第二个图形的面积是(a+b )(a ﹣b ),则a 2﹣b 2=(a+b )(a ﹣b ).故答案是B ; ------------------3分(2)①∵x 2﹣9y 2=(x+3y )(x ﹣3y ),------------------------5分∴12=4(x ﹣3y )------------------------6分得:x ﹣3y=3;------------------------8分 ②111111111+11+-1+1-+1-2233999910010031421009810199=223399991001001101=2100101=200⨯⨯⨯⨯⨯⨯⨯()(﹣)()(1)......()()(1)()......9分............10分......11分......12分。
2016-2017学年度第一学期第一次阶段检测八年级数学试卷共100分 考试时间:100分钟一、选择题:(共8题,每小题3分,共24分)题号 1 2 3 4 5 6 7 8 答案1.下面图案中是轴对称图形的有( )A.4 个B.3个C.2个D.1个2.不能判断两个三个角形全等的条件是( )A .有两角及一边对应相等B .有两边及夹角对应相等C .有三条边对应相等D .有两个角及夹边对应相等3.如图,已知MB=ND ,∠MBA=∠NDC ,下列条件中不能判定△ABM ≌△CDN 的是( )A .∠M=∠NB .AM=CNC .AB=CDD .AM ∥CN4.如图,△ABC 中,AB +AC=6cm ,BC 的垂直平分线l 与AC 相交于点D ,则△ABD 的周长为 cm .( )A.12B.10C.8D.65.如图,AC=AD ,BC=BD ,则有( )A .CD 垂直平分AB B . AB 与CD 互相垂直平分C .AB 垂直平分CDD .CD 平分∠ACB(第3题图)(第4题图)(第5题图)学校: 班级: 姓名: 座位号:装订线内请勿答题6.如图,如果直线是多边形的对称轴,其中∠A=130°,∠B=110°,那么∠BCD的度数等于()A .60°B.50°C.40°D.30°7.如图,用直尺和圆规画∠AOB的平分线OE,其理论依据是()A.SASB.ASAC.AASD.SSS8.如图的2×4的正方形网格中,△ABC的顶点都在小正方形的格点上,这样的三角形称为格点三角形,在网格中与△ABC成轴对称的格点三角形一共有()A.2个B.3个C.4个D.5个二、填空题:(共10题,每小题3分,共30分)9.写出一个你熟悉的轴对称图形的名称:.10.如果△ABC≌△DEC,∠B=60°,∠C=40°,那么∠E=°.11.如图,△ABC≌△DEF,请根据图中提供的信息,写出x=.12.工人师傅在做完门框后,为防止变形,经常如图所示钉上两根斜拉的木条(即图中的AB、CD 两根木条),这样做的数学原理是:13.如图,AB∥DC,请你添加一个条件使得△ABD≌△CDB,可添条件是.(添一个即可)14.将一张长方形纸片如图所示折叠后,再展开.如果∠1=56°,那么∠2=.(第6题图)(第7题图)(第8题图)(第11题图)(第13题图)(第12题图)15.如图,OP 平分∠AOB,PB⊥OB,OA=8cm,PB=3cm,则△POA的面积等于cm2.16.如图,△ABC中,∠ABC与∠ACB的外角平分线交于P,PM⊥AC于M,若PM=6cm,,则点P 到AB的距离为__________.17.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F.若△AEF的周长为10cm,则BC的长为cm18.已知△ABC中,AB=10cm,AC=12cm,AD为边BC上的中线,求中线AD的取值范围:三、解答题(共6题,共46分)19.近年来,国家实施“村村通”工程和农村医疗卫生改革,某县计划在张村、李村之间建一座定点医疗站P,张、李两村座落在两相交公路内(如图所示).医疗站必须满足下列条件:①使其到两公路距离相等;②到张、李两村的距离也相等.请你通过作图确定P点的位置.(本题5分)20.如图,在△ABC和△ABD中,AC与BD相交于点E,AD=BC,∠DAB=∠CBA,求证:AC=BD.(本题6分)(第14题图)(第15题图)(第16题图)(第17题图)21.如图,△ABO≌△CDO,点E、F在线段AC上,且AF=CE.求证:FD=BE.(本题7分)22.已知,如图,AB=AC,BD=CD,DE⊥AB于点E,DF⊥AC于点F,试问:DE和DF相等吗?说明理由.(本题8分)23.两组邻边分别相等的四边形我们称它为筝形,如图,在筝形ABCD中,AB=AD,BC=DC,AC,BD相交于点O.(本题10分)(1)求证:①△A BC≌△ADC;②OB=OD,AC⊥BD;(2)如果AC=6,BD=4,求筝形ABCD的面积.24.如图①A、E、F、C在一条直线上,AE=CF,过E、F分别作DE⊥AC,B F⊥AC,若AB=CD.(本题10分)(1)图①中有对全等三角形,并把它们写出来.(2)求证:G是BD的中点.(3)若将△ABF的边AF沿GA方向移动变为图②时,其余条件不变,第(2)题中的结论是否成立?如果成立,请予证明.八年级数学参考答案一、选择题二、填空题9、答案不唯一(如:线段、角等)10、60度11、20 12、三角形的稳定性13、答案不唯一(如AB=CD,∠A=∠C,∠ADB=∠CBD等)14、68度15、12 16、6cm 17、10cm 18、1cm<AD<11cm三、解答题19、作角平分线和垂直平分线的交点,即是点P20、利用SAS证明△ABC≌△BAD,得AC=BD21、略22、略23、略24、略。
2016-2017年秋期八年级上期末教学质量检测数学试卷出题人:曾琴一、选择题〔本大题共10个小题,每小题3分,共30分〕1.若分式有意义,则x满足的条件是A.x≠0B.x≠3C.x≠-3D.x≠±32.计算:(-x)3·(-2x)的结果是A.-2x4B.-2x3C.2x4D.2x33.在平面直角坐标系中,点A(7,-2)关于x轴对称的点A′的坐标是A.(7,2)B.(7,-2)C.(-7,2) D.(-7,-2)4.若△ABC≌△A′B′C′,且AB=AC=9,△ABC的周长为26cm,则B′C′的长为A.10cmB.9cmC.4cmD.8cm5.如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P为:A.90°﹣α B. 90°+αC. C. 360°﹣α6.分式方程1226x x=+的解为第5题图A.x=-2B.x=2 C.x=-3D.x=37.计算:201423⎛⎫⎪⎝⎭×(-1.5)2015的结果是A.-32B.32C.-23D.238. 下列各图形都是轴对称图形,其中对称轴最多的是A.等腰直角三角形B.直线C.等边三角形D.正方形9.已知△ABC的两边长分别为AB=9、AC=2,第三边BC的长为奇数,则BC的长是A.5B.7C.9D.1110.一个多边形截去一个角后,形成另一个多边形的内角和为720°,那么原多边形的边数为A. 5B. 5或6C. 5或7D. 5或6或7二、填空题(本大题共6个小题,每小题3分,共18分)请将答案直接填在答题卷对应的横线上.11.分解因式:4x2-1=.12.若分式2212xx x-+-=0,则x=.A )BCD 84° (第13题)13.如图,在△ABC 中,点D 是BC 上一点,∠BAD =84°,AB =AD =DC ,则∠CAD =.14.如图,在△ABC 中,EF 是AB 边的垂直平分线,AC =18cm ,BC =16cm 则△BCE 的周长为cm .15.等腰三角形的周长为24cm ,腰长为xcm ,则x 的取值X 围是________.16.已知b a b a +=+111 ,则ba ab +的值。
2016—2017学年八年级(上)期末考试数学试题一、选择题:(每小题3分,共30分) 1、下列实数中属于无理数的是( )A . 3.14B .C . πD .2、下列开方计算正确的是( )A .864±=± B.11121±= C.8643= D.1.001.03-=- 3、下列计算正确的是( )A .632a a a =⋅B .y y y =÷33C .623)(x x =D .224)2(ab ab =-4、下列从左边到右边的变形,属于因式分解的是 ( )A .1)1)(1(2-=-+x x x B .1)2(122+-=+-x x x xC .)4)(4(422y x y x y x -+=-D .2)2(1)3)(1(-=+--x x x5、若x a = 3,x b = 5,则x a +b 的值为 ( )A .8B .15C .35D .536、若=,则p 为( )A .-15B .2C .8D .-27、如图,已知AB=AD ,那么添加下列一个条件后,仍无法判定△ABC ≌△ADC 的是( )A . ∠BCA=∠DCAB . ∠BAC=∠DACC .CB=CDD .∠B=∠D=90°8、如图,等边△ABC 中,BD=CE ,AD 与BE 相交于点P ,则∠APE 的度数是( )A .40°B .45°C .50°D .60°9、若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( ) A . 7cm B . 10cmC . 12cmD .(375+)cm)5)(3(+-x x q px x ++2第8题图第7题图A第10题图10、已知AC 平分∠DAB ,CE ⊥AB 于E ,AB=AD+2BE ,则下列结论:①AE=(AB+AD );②∠DAB+∠DCB=180°;③CD=CB ;④S △ACE-S △BCE=S △ADC .其中正确结论的个数是( )A .1个B .2个C .3个D .4个二、填空题:(每小题3分,共18分) 11、719的平方根是12、若根据表中的数据作出统计图,以便能更清楚地对几座名山的高度进行比较,则应选用 统计图13、分解因式3322x 2y x y xy -+= 。
2016-2017学年江苏省盐城市东台市初二(上)期末数学试卷一、选择题:本大题共8小题,每小题3分,共24分,每小题只有一个正确答案,请把你认为正确答案的代号填入表中相应空格内.1.(3分)下列“QQ表情”中属于轴对称图形的是()A.B.C.D.2.(3分)下列各点中,位于直角坐标系第二象限的点是()A.(2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(﹣2,1)3.(3分)在实数、、﹣3.121221222、、3.14、中,无理数共有()A.2个B.3个C.4个D.5个4.(3分)满足下列条件的△ABC,不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=12:13:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:55.(3分)下列事件为必然事件的是()A.打开电视,正在播放东台新闻B.下雨后天空出现彩虹C.抛掷一枚质地均匀的硬币,落地后正面朝上D.早晨太阳从东方升起6.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°7.(3分)下列命题:①无理数都是无限小数;②的平方根是±4;③等腰三角形的对称轴是它顶角的平分线;④三角形三边垂直平分线的交点一定在这个三角形的内部,正确的有()A.1个B.2个C.3个D.4个8.(3分)若A(x1,y1),B(x2,y2)是一次函数y=ax﹣3x+5图象上的不同的两个点,记W=(x1﹣x2)(y1﹣y2),则当W<0时,a的取值范围是()A.a<0B.a>0C.a<3D.a>3二、填空题:本大题共10小题,每小题2分,共20分.9.(2分)﹣8的立方根是.10.(2分)P(3,﹣4)到x轴的距离是.11.(2分)在一个不透明的摇奖箱内装有25个现状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,那么随机抽取一个小球中奖的概率是.12.(2分)直线y=2x﹣2不经过第象限.13.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是.14.(2分)等腰三角形中,如果有一个角等于110°,则它的底角是°.15.(2分)如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是.16.(2分)已知一次函数y=kx+b的图象如图所示.当x<2时,y的取值范围是.17.(2分)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC 等于.18.(2分)如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F 分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是.三、解答题:本大题共7小题,共56分,解答要求写出文字说明、证明过程或演算步骤.19.(8分)(1)计算:+﹣20160;(2)解方程:4x2﹣25=0.20.(6分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷150份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图所示的两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为份,“严加干涉”部分对应扇形的圆心角度数;(2)把条形统计图补充完整;(3)若将“从来不管”和“稍加询问”视为“管理不严”,已知全校共1200名学生,请估计该校对孩子使用手机“管理不严”的家长有多少人.21.(6分)已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.22.(8分)为了倡导低碳交通,方便市民出行,某市推出了公共自行车系统,收费以小时为单位,每次使用不超过1小时的免费,超过1小时后,不足1小时的部分按1小时收费,小聪同学通过调查得知,自行车使用时间为3小时,收费2元;使用时间为4小时,收费3元.她发现当使用时间超过1小时后用车费与使用时间之间存在一次函数的关系.(1)设使用自行车的费用为y元,使用时间为x小时(x为大于1的整数),求y与x的函数解析式;(2)若小聪此次使用公共自行车6小时,则她应付多少元费用?(3)若小聪此次使用公共自行车付费7元,请说明她所使用的时间的范围.23.(8分)在四边形ABCD中,已知AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32.(1)连接BD,试判断△ABD的形状;(2)求BC的长.24.(10分)已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B 地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发小时,乙的速度是km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.25.(10分)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△ABC中,CD是AB边上的中线.那么△ACD和△BCD是“朋友三角形”,并且S=S△BCD.△ACD应用:如图2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,点E在BC上,点F在AD上,BE=AF,AE与BF交于点O.(1)求证:△AOB和△AOF是“朋友三角形”;(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积是(请直接写出答案).2016-2017学年江苏省盐城市东台市初二(上)期末数学试卷参考答案与试题解析一、选择题:本大题共8小题,每小题3分,共24分,每小题只有一个正确答案,请把你认为正确答案的代号填入表中相应空格内.1.(3分)下列“QQ表情”中属于轴对称图形的是()A.B.C.D.【解答】解:A、B、D都不是轴对称图形,C关于直线对称.故选:C.2.(3分)下列各点中,位于直角坐标系第二象限的点是()A.(2,1)B.(﹣2,﹣1)C.(2,﹣1)D.(﹣2,1)【解答】解:A、(2,1)在第一象限,故本选项错误;B、(﹣2,﹣1)在第三象限,故本选项错误;C、(2,﹣1)在第四象限,故本选项错误;D、(﹣2,1)在第二象限,故本选项正确.故选:D.3.(3分)在实数、、﹣3.121221222、、3.14、中,无理数共有()A.2个B.3个C.4个D.5个【解答】解:无理数有:,共2个.故选:A.4.(3分)满足下列条件的△ABC,不是直角三角形的是()A.BC=1,AC=2,AB=B.BC:AC:AB=12:13:5C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5【解答】解:A、当BC=1,AC=2,AB=时,满足BC2+AB2=1+3=4=AC2,所以△ABC为直角三角形;B、当BC:AC:AB=12:13:5时,设BC=12x,AC=13x,AB=5x,满足BC2+AB2=AC2,所以△ABC为直角三角形;C、当∠A+∠B=∠C时,且∠A+∠B+∠C=180°,所以∠C=90°,所以△ABC为直角三角形;D、当∠A:∠B:∠C=3:4:5时,可设∠A=3x°,∠B=4x°,∠C=5x°,由三角形内角和定理可得3x+4x+5x=180,解得x=15°,所以∠A=45°,∠B=60°,∠C=75°,所以△ABC为锐角三角形.故选:D.5.(3分)下列事件为必然事件的是()A.打开电视,正在播放东台新闻B.下雨后天空出现彩虹C.抛掷一枚质地均匀的硬币,落地后正面朝上D.早晨太阳从东方升起【解答】解:∵打开电视,正在播放东台新闻是一个随机事件,∴选项A不正确;∵下雨后天空出现彩虹是一个随机事件,∴选项B不正确;∵抛掷一枚质地均匀的硬币,落地后正面朝上是一个随机事件,∴选项C不正确;∵早晨太阳从东方升起是一个必然事件,∴选项D正确.故选:D.6.(3分)如图,已知AB=AD,那么添加下列一个条件后,仍无法判定△ABC≌△ADC的是()A.CB=CD B.∠BCA=∠DCA C.∠BAC=∠DAC D.∠B=∠D=90°【解答】解:在△ABC和△ADC中∵AB=AD,AC=AC,∴当CB=CD时,满足SSS,可证明△ABC≌△ACD,故A可以;当∠BCA=∠DCA时,满足SSA,不能证明△ABC≌△ACD,故B不可以;当∠BAC=∠DAC时,满足SAS,可证明△ABC≌△ACD,故C可以;当∠B=∠D=90°时,满足HL,可证明△ABC≌△ACD,故D可以;故选:B.7.(3分)下列命题:①无理数都是无限小数;②的平方根是±4;③等腰三角形的对称轴是它顶角的平分线;④三角形三边垂直平分线的交点一定在这个三角形的内部,正确的有()A.1个B.2个C.3个D.4个【解答】解:①无理数都是无限小数,正确;②=4,所以,的平方根是±2,故本小题错误;③等腰三角形的对称轴是它顶角的平分线所在的直线,故本小题错误;④三角形三边垂直平分线的交点一定在这个三角形的内部,错误,等腰直角三角形三边垂直平分线的交点在斜边的中点,故本小题错误;综上所述,命题正确的是①共1个.故选:A.8.(3分)若A(x1,y1),B(x2,y2)是一次函数y=ax﹣3x+5图象上的不同的两个点,记W=(x1﹣x2)(y1﹣y2),则当W<0时,a的取值范围是()A.a<0B.a>0C.a<3D.a>3【解答】解:∵W=(x1﹣x2)(y1﹣y2)<0,∴x1﹣x2与y1﹣y2异号,∴a﹣3<0,解得:a<3.故选:C.二、填空题:本大题共10小题,每小题2分,共20分.9.(2分)﹣8的立方根是﹣2.【解答】解:∵(﹣2)3=﹣8,∴﹣8的立方根是﹣2.故答案为:﹣2.10.(2分)P(3,﹣4)到x轴的距离是4.【解答】解:根据点在坐标系中坐标的几何意义可知,P(3,﹣4)到x轴的距离是|﹣4|=4.故答案为:4.11.(2分)在一个不透明的摇奖箱内装有25个现状、大小、质地等完全相同的小球,其中只有5个球标有中奖标志,那么随机抽取一个小球中奖的概率是.【解答】解:∵5÷25=,∴随机抽取一个小球中奖的概率是.故答案为:.12.(2分)直线y=2x﹣2不经过第二象限.【解答】解:∵y=2x﹣2,∴函数y=2x﹣2经过第一、三、四象限,∴函数y=2x﹣2不经过第二象限,故答案为:二.13.(2分)如图,四边形ABCD的对角线AC、BD相交于点O,△ABO≌△ADO.下列结论:①AC⊥BD;②CB=CD;③△ABC≌△ADC;④DA=DC.其中所有正确结论的序号是①②③.【解答】解:∵△ABO≌△ADO,∴AB=AD,∠BAO=∠DAO,∠AOB=∠AOD=90°,OB=OD,∴AC⊥BD,故①正确;∵四边形ABCD的对角线AC、BD相交于点O,∴∠COB=∠COD=90°,在△ABC和△ADC中,,∴△ABC≌△ADC(SAS),故③正确;∴BC=DC,故②正确.故答案为:①②③.14.(2分)等腰三角形中,如果有一个角等于110°,则它的底角是35°.【解答】解:①当这个角是顶角时,底角=(180°﹣110°)÷2=35°;②当这个角是底角时,另一个底角为110°,因为110°+110°=240°,不符合三角形内角和定理,所以舍去.故答案为:35.15.(2分)如图所示的象棋盘上,若帅位于点(1,﹣2)上,相位于点(3,﹣2)上,则炮所在点的坐标是(﹣2,1).【解答】解:由题可得,如下图所示,故炮所在的点的坐标为(﹣2,1),故答案为:(﹣2,1).16.(2分)已知一次函数y=kx+b的图象如图所示.当x<2时,y的取值范围是y<0.【解答】解:观察知,当x<2时,y<0.故答案为:y<0.17.(2分)在△ABC中,AB=10,AC=2,BC边上的高AD=6,则另一边BC 等于10或6.【解答】解:根据题意画出图形,如图所示,如图1所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD+CD=8+2=10;如图2所示,AB=10,AC=2,AD=6,在Rt△ABD和Rt△ACD中,根据勾股定理得:BD==8,CD==2,此时BC=BD﹣CD=8﹣2=6,则BC的长为6或10.故答案为:10或6.18.(2分)如图,在△ABC中,∠C=90°,AC=BC=5,D是AB的中点,点E、F 分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF,在此运动变化的过程中,△CEF周长的最小值是5+.【解答】解:连接CD;∵△ABC是等腰直角三角形,∴∠DCB=∠A=45°,CD=AD=DB;在△ADE与△CFD中,,∴△ADE≌△CDF(SAS);∴ED=DF,∠CDF=∠EDA;∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=∠EDF=90°,∴△DFE是等腰直角三角形,∵∠C=90°,AC=BC=5,∴AB=5,∴当,△CEF周长的最小时,EF取最小值,∴E、F分别为AC、BC中点时,EF的值最小,∴EF=AB=,∴△CEF周长的最小值=CE+CF+EF=AE+CE+EF=AC+EF=5+;故答案为:5+.三、解答题:本大题共7小题,共56分,解答要求写出文字说明、证明过程或演算步骤.19.(8分)(1)计算:+﹣20160;(2)解方程:4x2﹣25=0.【解答】解:(1)原式=2﹣3﹣1=﹣2;(2)方程整理得:x2=,开方得:x=±.20.(6分)某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷150份,每位学生家长1份,每份问卷仅表明一种态度,将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如图所示的两幅不完整的统计图.根据以上信息解答下列问题:(1)回收的问卷数为120份,“严加干涉”部分对应扇形的圆心角度数30°;(2)把条形统计图补充完整;(3)若将“从来不管”和“稍加询问”视为“管理不严”,已知全校共1200名学生,请估计该校对孩子使用手机“管理不严”的家长有多少人.【解答】解:(1)30÷25%=120,×360°=30°故答案为:120,30°;(2)120﹣30﹣10=80,如图所示:(3)×1200=1100,答:该校对孩子使用手机“管理不严”的家长有1100人.21.(6分)已知:如图:△ABC是等边三角形,点D、E分别是边BC、CA上的点,且BD=CE,AD、BE相交于点O.(1)求证:△ACD≌△BAE;(2)求∠AOB的度数.【解答】(1)证明:∵△ABC是等边三角形,∴∠BAC=∠C=60°,BC=AC,∵BD=CE,∴BC﹣BD=AC﹣CE,∴AE=CD,在△ACD和△BAE中∴△ACD≌△BAE(SAS);(2)解:∵△ACD≌△BAE,∴∠CAD=∠ABE,∴∠AOE=∠BAD+∠ABE=∠BAD+∠CAD=∠BAC=60°,∴∠AOB=180°﹣60°=120°.22.(8分)为了倡导低碳交通,方便市民出行,某市推出了公共自行车系统,收费以小时为单位,每次使用不超过1小时的免费,超过1小时后,不足1小时的部分按1小时收费,小聪同学通过调查得知,自行车使用时间为3小时,收费2元;使用时间为4小时,收费3元.她发现当使用时间超过1小时后用车费与使用时间之间存在一次函数的关系.(1)设使用自行车的费用为y元,使用时间为x小时(x为大于1的整数),求y与x的函数解析式;(2)若小聪此次使用公共自行车6小时,则她应付多少元费用?(3)若小聪此次使用公共自行车付费7元,请说明她所使用的时间的范围.【解答】解:(1)设y与x的函数解析式为y=kx+b,,得,即y与x的函数解析式是y=x﹣1;(2)当x=6时,y=6﹣1=5,即若小聪此次使用公共自行车6小时,则她应付5元费用;(3)当y=7时,7=x﹣1,得x=8,∴小聪此次使用公共自行车付费7元,说明她所使用的时间的范围是7<x≤8.23.(8分)在四边形ABCD中,已知AB=AD=8,∠A=60°,∠D=150°,四边形的周长为32.(1)连接BD,试判断△ABD的形状;(2)求BC的长.【解答】解:(1)∵AB=AD=8,∠A=60°,∴△ABD是等边三角形;(2)∵∠BDC=150°﹣60°=90°,∴设BC=x 由勾股定理可知:x2=(16﹣x)2+82,解得:x=10,∴BC=10.24.(10分)已知A、B两地相距40km,甲、乙两人沿同一公路从A地出发到B 地,甲骑摩托车,乙骑自行车,图中CD、OE分别表示甲、乙离开A地的路程y(km)与时间x(h)的函数关系的图象,结合图象解答下列问题.(1)甲比乙晚出发1小时,乙的速度是10km/h;(2)在甲出发后几小时,两人相遇?(3)甲到达B地后,原地休息0.5小时,从B地以原来的速度和路线返回A地,求甲在返回过程中与乙相距10km时,对应x的值.【解答】解:(1)由图象可得,甲比乙晚出发1小时,乙的速度是:20÷2=10km/h,故答案为:1,10;(2)设甲出发x小时,两人相遇,[40÷(2﹣1)]x=10(x+1),解得,x=,即在甲出发小时后,两人相遇;(3)设OE所在直线的解析式为y=kx,20=2k,得k=10,∴OE所在直线的解析式为y=10x;设甲车在返回时对应的函数解析式为y=ax+b,则,得,即甲车在返回时对应的函数解析式为y=﹣40x+140,∴|﹣40x+140﹣10x|=10,解得,,x2=3,即甲在返回过程中与乙相距10km时,对应x的值是或3.25.(10分)定义:我们把三角形被一边中线分成的两个三角形叫做“朋友三角形”.性质:“朋友三角形”的面积相等.如图1,在△ABC中,CD是AB边上的中线.那么△ACD和△BCD是“朋友三角形”,并且S=S△BCD.△ACD应用:如图2,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AB=AD=4,BC=6,点E在BC上,点F在AD上,BE=AF,AE与BF交于点O.(1)求证:△AOB和△AOF是“朋友三角形”;(2)连接OD,若△AOF和△DOF是“朋友三角形”,求四边形CDOE的面积.拓展:如图3,在△ABC中,∠A=30°,AB=8,点D在线段AB上,连接CD,△ACD和△BCD是“朋友三角形”,将△ACD沿CD所在直线翻折,得到△A′CD,若△A′CD与△ABC重合部分的面积等于△ABC面积的,则△ABC的面积是8或8(请直接写出答案).【解答】(1)证明:∵AD∥BC,∴∠OAF=∠OEB,在△AOF和△EOB中,,∴△AOF≌△EOB(AAS),∴OF=OB,则AO是△ABF的中线.∴△AOB和△AOF是“朋友三角形”;(2)解:∵△AOF和△DOF是“朋友三角形”,=S△DOF,∴S△AOF∵△AOF≌△EOB,=S△EOB,∴S△AOB∵△AOB和△AOF是“朋友三角形”=S△AOF,∴S△AOB∴S △AOF =S △DOF =S △AOB =S △EOB ,=×4×2=4,∴四边形CDOE 的面积=S 梯形ABCD ﹣2S △ABE =×(4+6)×4﹣2×4=12;拓展:解:分为两种情况:①如图1所示:∵S △ACD =S △BCD .∴AD=BD=AB=4,∵沿CD 折叠A 和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,∴S △DOC =S △ABC =S △BDC =S △ADC =S △A′DC ,∴DO=OB ,A′O=CO ,∴四边形A′DCB 是平行四边形,∴BC=A′D=4,过B 作BM ⊥AC 于M ,∵AB=8,∠BAC=30°,∴BM=AB=4=BC ,即C 和M 重合,∴∠ACB=90°,由勾股定理得:AC==4,∴△ABC 的面积=×BC ×AC=×4×4=8;②如图2所示:∵S △ACD =S △BCD .∴AD=BD=AB ,∵沿CD 折叠A 和A′重合,∴AD=A′D=AB=×8=4,∵△A′CD 与△ABC 重合部分的面积等于△ABC 面积的,∴S △DOC =S △ABC =S △BDC =S △ADC =S △A′DC ,∴DO=OA′,BO=CO ,∴四边形A′BDC是平行四边形,∴A′C=BD=4,过C作CQ⊥A′D于Q,∵A′C=4,∠DA′C=∠BAC=30°,∴CQ=A′C=2,=2S△ADC=2S△A′DC=2××A′D×CQ=2××4×2=8;∴S△ABC即△ABC的面积是8或8;故答案为:8或8.附赠:初中数学考试答题技巧一、答题原则大家拿到考卷后,先看是不是本科考试的试卷,再清点试卷页码是否齐全,检查试卷有无破损或漏印、重印、字迹模糊不清等情况。
江苏省东台市四校2016-2017学年八年级上学期第一次月检测数学试卷一、单选题(共8小题)1.如图,下列图案是我国几家银行的标志,其中是轴对称图形的有()A.1个B.2个C.3个D.4个考点:轴对称与轴对称图形答案:C试题解析:根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此可知只有第三个图形不是轴对称图形.根据轴对称图形的定义:第二个图形和第三个图形有2条对称轴,是轴对称图形,符合题意;第一个图形找不到对称轴,则不是轴对称图形,不符合题意.第四个图形有1条对称轴,是轴对称图形,符合题意;轴对称图形共有3个.故选C.2.已知△ABC≌△DEF,∠A=80°,∠E=50°,则∠F的度数为()A.30°B.50°C.80°D.100°考点:全等三角形的性质答案:B试题解析:∵△ABC≌△DEF,∴∠A=∠D,∠B=∠E,∠C=∠F,∵∠A=80°,∠E=50°,∴∠B=∠E=50°,∴∠F=180º-80º-50º=50º,故选B。
3.已知图中的两个三角形全等,则的度数是()A.72°B.60°C.58°D.50°考点:全等三角形的性质答案:D试题解析:∵两个全等三角形的对应边和对应角相等,∴=50°。
故选D。
4.在△ABC内一点P满足PA=PB=PC,则点P一定是△ABC()A.三条角平分线的交点B.三边垂直平分线的交点C.三条高的交点D.三条中线的交点考点:线段的垂直平分线答案:B试题解析:∵在△ABC内一点P满足PA=PB=PC,∴点P一定是△ABC三边垂直平分线的交点.故选B.5.下列语句:①全等三角形的周长相等.②面积相等的三角形是全等三角形. ③若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上.其中正确的有()A.0个B.1个C.2个D.3个考点:全等三角形的性质三角形中的角平分线、中线、高线答案:C试题解析:全等三角形的周长相等,所以①正确;面积相等的三角形不一定是全等三角形,所以②错误;若成轴对称的两个图形中的对称线段所在直线相交,则这个交点一定在对称轴上,所以③正确;角平分线所在直线是角的对称轴,所以④错误.故选C.6.如图,∠E=∠F=90°,∠B=∠C,AE=AF,给出下列结论:①∠1=∠2;②BE=CF;③△ACN≌△ABM;④CD=DN,其中正确的结论有()A.1个B.2个C.3个D.4个考点:全等三角形的性质全等三角形的判定答案:C试题解析:∵∠E=∠F=90°,∠B=∠C,AE=AF,∴△ABE≌△ACF(ASA).∴AC=AB,BE=CF②. ∵∠BAE=∠CAF,△ACN≌△ABM,∵∠1=∠BAE-∠BAC,∠2=∠CAF-∠BAC.∴∠1=∠2①.∴△AEM≌△AFN③.∴AM=AN,∴CM=BN.∴△CDM≌△BDN,∴CD=BD.∴题中正确的结论应该是①②③.7.△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是()A.1个B.2个C.3个D.4个考点:全等三角形的判定答案:D试题解析:①公共边是AC,符合条件的是△ACE;②公共边是BC,符合条件的是△BCF、△CBG、△CBH;③公共边是AB,符合条件的三角形有,但是顶点不在网格上.故选D8.如图,AD平分∠BAC,EG⊥AD于H,则下列等式中成立的是()A.∠α=(∠β+∠γ)B.∠α=(∠β﹣∠γ)C.∠G=(∠β+∠γ)D.∠G=∠α考点:全等三角形的性质全等三角形的判定答案:A试题解析:∵∠α是△BEC的外角,∴∠α=∠β+∠G ①,∵∠γ是△CFG的外角,∴∠γ=∠CFG+∠G ②∵AD平分∠BAC,EG⊥AD于H,AH公共边,∴△AEH≌△AFH,∴AE=AF,∴∠α=∠AFE,而∠AFE=∠CFG,∴∠AFE=∠CFG=∠α,∴∠γ=∠α+∠G ③,①-③得∠α-∠γ=∠β-∠α,∴2∠α=∠β+∠γ,即∠α=(∠β+∠γ).故选A.二、填空题(共10小题)9.如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是(填出一个即可).考点:全等三角形的判定答案:AO=DO或AB=DC或BO=CO试题解析:添加AO=DO或AB=DC或BO=CO后可分别根据ASA、AAS、AAS判定△AOB≌△DOC.故填AO=DO或AB=DC或BO=CO.10.角的对称轴是 .考点:三角形中的角平分线、中线、高线答案:角平分线所在直线试题解析:角的对称轴是角平分线所在直线11.如果△ABC≌△DEF,且△ABC的周长是90cm,AB=30cm,DF=20cm,那么BC的长等于______cm.考点:全等三角形的性质答案:40cm试题解析:∵△ABC≌△DEF,∴AB=DE,BC=EF,AC=DF,∵△ABC的周长是90cm,AB=30cm,DF=20cm,∴AC=20cm,∴BC=40cm。
2016-2017学年江苏省盐城市东台市第四教育联盟八年级(上)第二次月考数学试卷一、精心选一选(本大题共8小题,每小题3分,共24分.每题只有一个正确的选项,请将答案填入相应的答题区.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.2.﹣2的绝对值是()A.2 B.﹣2 C.D.3.已知点Q在第三象限,且到y轴的距离为2,则点Q的坐标可能为()A.(4,﹣2)B.(﹣4,﹣2)C.(2,4) D.(﹣2,﹣4)4.在﹣0.101001,,,﹣,0,中无理数的个数是()A.1个 B.2个 C.3个 D.4个5.下列条件不能判定一个三角形为直角三角形的是()A.三个内角之比为1:2:3B.一边上的中线等于该边的一半C.三边为、、D.三边长为m2+n2、m2﹣n2、2mn(m≠0,n≠0)6.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为9和12两个部分,则这个等腰三角形的腰长为()A.5 B.8 C.5或9 D.6或87.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.8.如图(1),在直角梯形ABCD中,AB∥CD,∠ABC=90°,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y 关于x的函数图象如图(2)所示,则△BCD的面积是()A.3 B.4 C.5 D.6二、细心填一填(本大题共10小题,每小题3分,共30分.请将答案的填入相应的答题区.)9.在函数y=中,自变量x的取值范围是.10.在平面直角坐标系中,点A(﹣4,4)关于x轴的对称点B的坐标为.11.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为cm.12.若将直线y=﹣2x+1向上平移3个单位,则所得直线的表达式为.13.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是.14.点(﹣1,y1)、(2,y2)是直线y=2x﹣1上的两点,则y1y2(填“>”或“=”或“<”).15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是(只添一个条件即可).16.在直线上按照如图所示方式放置面积为S1、S2、S3的三个正方形.若S1=1、S2=3,则S3=.17.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是折.18.如图,平面直角坐标系xOy中,点A(5,﹣2)、点B(3,﹣4),M、N为x轴和y轴上的动点,四边形ABNM的周长最小为.三、耐心答一答(本大题共8小题,共66分.请在相应的答题区内写出解答过程.)19.(1)计算:(π﹣3.14)0+﹣|2﹣|﹣()2;(2)求x的值:(2x﹣1)3﹣=0.20.已知:y与x﹣3成正比例,且当x=﹣2时,y的值为10.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.21.已知与互为相反数,求(x2﹣y2)2的平方根.22.如图,已知一次函数y=kx+b的图象经过A(﹣2,﹣1),B(1,3)两点,并且交x轴于点C,交y轴于点D.(1)求该一次函数的解析式;(2)求△AOB的面积.23.如图,将长方形ABC沿着对角线BD折叠,使点C落在C′处,BC′交AD于点E.(1)试判断△BDE的形状,并说明理由;(2)若AB=4,AD=8,求AE.24.(1)如图1,等腰三角形ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E、DF⊥AC于点F.求证:DE=DF;(2)如图2,等腰三角形ABC中,AB=AC=13,BC=10,点D是BC边上的动点,DE⊥AB于点E、DF⊥AC于点F.请问DE+DF的值是否随点D位置的变化而变化?若不变,请直接写出DE+DF的值;若变化,请说明理由.25.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?26.【方法引领】如图1,点E、F分别是正方形ABCD的BC、CD边上的动点,连接AE、AF和EF,∠EAF=45°.若BE=2,DF=3,求EF的长.聪聪同学的思路是:如图2,将△ABE绕点A逆时针旋转90°,证明△AEF≌△AE’F 从而得到EF=E’F.请你帮助聪聪同学完成解题过程.【灵活应用】如图3,Rt△ABC中,∠ACB=90°,AC=BC.点D、E在边AB上,且∠DCE=45°.若AD=2,BE=3,求DE的长.【拓展提升】如图4,△ABC中∠BAC=45°,AD⊥BC于点D.若CD=2,BD=3,请直接写出△ABC的面积.2016-2017学年江苏省盐城市东台市第四教育联盟八年级(上)第二次月考数学试卷参考答案与试题解析一、精心选一选(本大题共8小题,每小题3分,共24分.每题只有一个正确的选项,请将答案填入相应的答题区.)1.在以下绿色食品、回收、节能、节水四个标志中,是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【解答】解:A、是轴对称图形,故A符合题意;B、不是轴对称图形,故B不符合题意;C、不是轴对称图形,故C不符合题意;D、不是轴对称图形,故D不符合题意.故选:A.2.﹣2的绝对值是()A.2 B.﹣2 C.D.【考点】绝对值.【分析】根据负数的绝对值等于它的相反数解答.【解答】解:﹣2的绝对值是2,即|﹣2|=2.故选:A.3.已知点Q在第三象限,且到y轴的距离为2,则点Q的坐标可能为()A.(4,﹣2)B.(﹣4,﹣2)C.(2,4) D.(﹣2,﹣4)【考点】点的坐标.【分析】根据第三象限内点的横坐标与纵坐标都是负数结合各选项答案解答即可.【解答】解:∵点Q在第三象限,且到y轴的距离为2,∴点Q的横坐标是﹣2,纵坐标是负数,纵观各选项,只有(﹣2,﹣4)符合.故选D.4.在﹣0.101001,,,﹣,0,中无理数的个数是()A.1个 B.2个 C.3个 D.4个【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:,﹣是无理数,故选:B.5.下列条件不能判定一个三角形为直角三角形的是()A.三个内角之比为1:2:3B.一边上的中线等于该边的一半C.三边为、、D.三边长为m2+n2、m2﹣n2、2mn(m≠0,n≠0)【考点】勾股定理的逆定理;三角形内角和定理.【分析】A、根据三角形的内角和等于180°求出最大角即可判断;B、由直角三角形斜边上的中线的性质判断;C、D根据勾股定理的逆定理即可判断.【解答】解:A、三个内角之比为1:2:3,三角形有一个内角为90°,此选项不符合题意;B、直角三角形中,斜边上的中线等于该边的一半,此选项不符合题意;C、()2+()2≠()2,三角形不是直角三角形,此选项正确;D、三边长为(m2+n2)2=(m2﹣n2)2+(2mn)2(m≠0,n≠0),此选项不符合题意,故选C.6.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为9和12两个部分,则这个等腰三角形的腰长为()A.5 B.8 C.5或9 D.6或8【考点】等腰三角形的性质;三角形三边关系.【分析】因为已知条件给出的12或9两个部分,哪一部分是腰长与腰长一半的和不明确,所以分两种情况讨论.【解答】解:根据题意,①当12是腰长与腰长一半时,AC+AC=12,解得AC=8,所以腰长为8;②当9是腰长与腰长一半时,AC+AC=9,解得AC=6,所以腰长为6.故腰长等于6或8.故选:D7.若实数a、b、c满足a+b+c=0,且a<b<c,则函数y=ax+c的图象可能是()A.B.C.D.【考点】一次函数图象与系数的关系.【分析】先判断出a是负数,c是正数,然后根据一次函数图象与系数的关系确定图象经过的象限以及与y轴的交点的位置即可得解.【解答】解:∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定),a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,纵观各选项,只有A选项符合.故选A.8.如图(1),在直角梯形ABCD中,AB∥CD,∠ABC=90°,动点P从点B出发,沿BC,CD运动至点D停止.设点P运动的路程为x,△ABP的面积为y,如果y 关于x的函数图象如图(2)所示,则△BCD的面积是()A.3 B.4 C.5 D.6【考点】动点问题的函数图象.【分析】根据题意,分析P的运动路线,分2个阶段分别讨论,可得BC与CD 的值,进而利用三角形的面积可得答案.【解答】解:动点P从直角梯形ABCD的直角顶点B出发,沿BC,CD的顺序运动,则△ABP面积y在BC段随x的增大而增大;在CD段,△ABP的底边不变,高不变,因而面积y不变化.由图2可以得到:BC=2,CD=3,△BCD的面积是×2×3=3.故选A.二、细心填一填(本大题共10小题,每小题3分,共30分.请将答案的填入相应的答题区.)9.在函数y=中,自变量x的取值范围是x≥1.【考点】函数自变量的取值范围.【分析】因为当函数表达式是二次根式时,被开方数为非负数,所以x﹣1≥0,解不等式可求x的范围.【解答】解:根据题意得:x﹣1≥0,解得:x≥1.故答案为:x≥1.10.在平面直角坐标系中,点A(﹣4,4)关于x轴的对称点B的坐标为(﹣4,﹣4).【考点】关于x轴、y轴对称的点的坐标.【分析】根据关于x轴的对称时,横坐标不变,纵坐标互为相反数进行填空即可.【解答】解:∵点A(﹣4,4)关于x轴的对称点是B,∴B的坐标为(﹣4,﹣4),故答案为(﹣4,﹣4).11.在直角三角形中,若两条直角边长分别为6cm和8cm,则斜边上的中线为5cm.【考点】直角三角形斜边上的中线;勾股定理.【分析】利用勾股定理求出斜边的长度,然后根据直角三角形斜边上的中线等于斜边的一半的性质解答.【解答】解:根据勾股定理得,斜边==10cm,∴斜边上的中线=×斜边=×10=5cm.故答案为:5.12.若将直线y=﹣2x+1向上平移3个单位,则所得直线的表达式为y=﹣2x+4.【考点】一次函数图象与几何变换.【分析】根据函数图象上下平移的规律可求得答案.【解答】解:∵y=﹣2x+1,∴向上平移3个单位可得到y=﹣2x+1+3=﹣2x+4,故答案为:y=﹣2x+4.13.等腰三角形一腰上的高与另一腰的夹角的度数为20°,则顶角的度数是110°或70°.【考点】等腰三角形的性质.【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【解答】解:此题要分情况讨论:当等腰三角形的顶角是钝角时,腰上的高在外部.根据三角形的一个外角等于与它不相邻的两个内角的和,即可求得顶角是90°+20°=110°;当等腰三角形的顶角是锐角时,腰上的高在其内部,故顶角是90°﹣20°=70°.故答案为:110°或70°.14.点(﹣1,y1)、(2,y2)是直线y=2x﹣1上的两点,则y1<y2(填“>”或“=”或“<”).【考点】一次函数图象上点的坐标特征.【分析】把点的坐标分别代入直线解析式可求得y1、y2,比较其大小即可.【解答】解:∵点(﹣1,y1)、(2,y2)是直线y=2x﹣1上的两点,∴y1=2×(﹣1)﹣1=﹣3,y2=2×2﹣1=3,∵﹣3<3,∴y1<y2,故答案为:<.15.如图,∠1=∠2,要使△ABD≌△ACD,需添加的一个条件是CD=BD(只添一个条件即可).【考点】全等三角形的判定.【分析】由已知条件具备一角一边分别对应相等,还缺少一个条件,可添加DB=DC,利用SAS判定其全等.【解答】解:需添加的一个条件是:CD=BD,理由:∵∠1=∠2,∴∠ADC=∠ADB,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS).故答案为:CD=BD.16.在直线上按照如图所示方式放置面积为S1、S2、S3的三个正方形.若S1=1、S2=3,则S3=2.【考点】全等三角形的判定与性质;正方形的性质.【分析】根据正方形性质得出S1=AB2,S2=DE2,AC2=3,AC=CD,∠ABC=∠ACD=∠DEC=90°,求出∠BAC=∠DCE,根据AAS证△ABC≌△CED,推出BC=DE,在Rt △ABC中,AB2+BC2=AC2=3,求出DE2+AB2=3,即可得出答案.【解答】解:如图,∵四边形ABMN、四边形ACDQ、四边形DEFG是正方形,已知斜放置的一个正方形的面积是3,∴S1=AB2,S2=DE2,AC2=3,AC=CD,∠ABC=∠ACD=∠DEC=90°,∴∠BAC+∠ACB=90°,∠ACB+∠DCE=90°,∴∠BAC=∠DCE,在△ABC和△CED中,,∴△ABC≌△CED(AAS),∴BC=DE,在Rt△ABC中,AB2+BC2=AC2,∴DE2+AB2=S2,∴S1+S3=3,S3=3﹣1=2;故答案为:2.17.小明到超市买练习本,超市正在打折促销:购买10本以上,从第11本开始按标价打折优惠,买练习本所花费的钱数y(元)与练习本的个数x(本)之间的关系如图所示,那么在这个超市买10本以上的练习本优惠折扣是七折.【考点】一次函数的应用.【分析】根据函数图象求出打折前后的单价,然后解答即可.【解答】解:打折前,每本练习本价格:20÷10=2元,打折后,每本练习本价格:(27﹣20)÷(15﹣10)=1.4元,=0.7,所以,在这个超市买10本以上的练习本优惠折扣是七折.故答案为:七.18.如图,平面直角坐标系xOy中,点A(5,﹣2)、点B(3,﹣4),M、N为x轴和y轴上的动点,四边形ABNM的周长最小为10+2.【考点】轴对称-最短路线问题;坐标与图形性质.【分析】作点A关于x轴的对称点A′,作点B关于y轴的对称点B′,连接A′B′交x轴于M,交y轴于N,则此时四边形ABNM的周长最小,然后根据两点间的距离公式即可得到结论.【解答】解:作点A关于x轴的对称点A′,作点B关于y轴的对称点B′,连接A′B′交x轴于M,交y轴于N,则此时四边形ABNM的周长最小,最小值=A′B′+AB,∵点A(5,﹣2)、点B(3,﹣4),∴点A′(5,2)、点B′(﹣3,﹣4),∴AB==2,A′B′==10,∴四边形ABNM的周长最小值=10+2,故答案为:10+2.三、耐心答一答(本大题共8小题,共66分.请在相应的答题区内写出解答过程.)19.(1)计算:(π﹣3.14)0+﹣|2﹣|﹣()2;(2)求x的值:(2x﹣1)3﹣=0.【考点】实数的运算;零指数幂.【分析】(1)原式利用零指数幂法则,绝对值的代数意义,以及平方根定义计算即可得到结果;(2)方程整理后,利用立方根定义计算即可求出x的值.【解答】解:(1)原式=1+﹣+2﹣5=﹣2;(2)方程整理得:(2x﹣1)3=8,开立方得:2x﹣1=2,解得:x=.20.已知:y与x﹣3成正比例,且当x=﹣2时,y的值为10.(1)求y与x之间的函数关系式;(2)当x=2时,求y的值.【考点】待定系数法求一次函数解析式.【分析】(1)首先根据题意设出关系式:y=k(x﹣3)(k≠0),再利用待定系数法把x=﹣2,y=10代入,可得到k的值,再把k的值代入所设的关系式中,可得到答案;(2)把x=2代入(1)中的函数解析式即可求得相应的y值.【解答】解:∵y与x﹣3成正比例,∴关系是设为:y=k(x﹣3)(k≠0),∵当x=﹣2时,y=10,∴10=k(﹣2﹣3),解得:k=﹣2,∴y与x的函数关系式为:y=﹣2(x﹣3)=﹣2x+6;(2)由(1)知,y与x的函数关系式为:y=﹣2x+6.则当x=2时,y=﹣2×2+6=2.21.已知与互为相反数,求(x2﹣y2)2的平方根.【考点】解二元一次方程组;非负数的性质:偶次方;平方根;非负数的性质:算术平方根.【分析】利用非负数的性质列出方程组,求出方程组的解得到x 与y 的值,即可确定出所求.【解答】解:∵与互为相反数,即+=0,∴,解得:,则(x 2﹣y 2)2=9,9的平方根是±3.22.如图,已知一次函数y=kx +b 的图象经过A (﹣2,﹣1),B (1,3)两点,并且交x 轴于点C ,交y 轴于点D .(1)求该一次函数的解析式;(2)求△AOB 的面积.【考点】待定系数法求一次函数解析式;一次函数图象上点的坐标特征.【分析】(1)先把A 点和B 点坐标代入y=kx +b 得到关于k 、b 的方程组,解方程组得到k 、b 的值,从而得到一次函数的解析式;(2)先确定D 点坐标,然后根据三角形面积公式和△AOB 的面积=S △AOD +S △BOD 进行计算.【解答】解:(1)把A (﹣2,﹣1),B (1,3)代入y=kx +b 得,解得.所以一次函数解析式为y=x +;(2)把x=0代入y=x +得y=,所以D 点坐标为(0,),所以△AOB 的面积=S △AOD +S △BOD=××2+××1=.23.如图,将长方形ABC 沿着对角线BD 折叠,使点C 落在C′处,BC′交AD 于点E .(1)试判断△BDE 的形状,并说明理由;(2)若AB=4,AD=8,求AE .【考点】翻折变换(折叠问题);勾股定理;矩形的性质.【分析】(1)由折叠和平行线性质可得:∠ADB=∠EBD ,根据等角对等边得BE=DE ,所以△BDE 是等腰三角形;(2)设AE=x ,则BE=DE=8﹣x ,根据勾股定理列方程可求得AE 的长.【解答】解:(1)△BDE 是等腰三角形,理由是:由折叠得:∠EBD=∠DBC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB=∠DBC ,∴∠ADB=∠EBD ,∴BE=DE ,∴△BDE 是等腰三角形;(2)设AE=x ,则BE=DE=8﹣x ,∵四边形ABCD 是矩形,∴∠A=90°,∴AB2+AE2=BE2,∴42+x2=(8﹣x)2,x=3,∴AE=3.24.(1)如图1,等腰三角形ABC中,AB=AC,点D是BC的中点,DE⊥AB于点E、DF⊥AC于点F.求证:DE=DF;(2)如图2,等腰三角形ABC中,AB=AC=13,BC=10,点D是BC边上的动点,DE⊥AB于点E、DF⊥AC于点F.请问DE+DF的值是否随点D位置的变化而变化?若不变,请直接写出DE+DF的值;若变化,请说明理由.【考点】勾股定理;角平分线的性质;等腰三角形的性质.【分析】(1)连接AD,D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF;(2)连接AD,根据三角形的面积公式即可得到AB•DE+AC•DF=12,进而求得DE+DF的值.【解答】(1)证明:如图1,连接AD.∵AB=AC,点D是BC边上的中点,∴AD平分∠BAC,∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF.(2)解:不变.如图2所示:连接AD,∵AB=AC=13,BC=10,∴△ABC底边BC上的高==12,∴△ABC的面积=×BC×12=60,∴AB•DE+AC•DF=60,∴DE+DF=,故答案为:.25.小明从家骑自行车出发,沿一条直路到相距2400m的邮局办事,小明出发的同时,他的爸爸以96m/min速度从邮局同一条道路步行回家,小明在邮局停留2min后沿原路以原速返回,设他们出发后经过t min时,小明与家之间的距离为s1 m,小明爸爸与家之间的距离为s2 m,图中折线OABD、线段EF分别表示s1、s2与t之间的函数关系的图象.(1)求s2与t之间的函数关系式;(2)小明从家出发,经过多长时间在返回途中追上爸爸?这时他们距离家还有多远?【考点】一次函数的应用.【分析】(1)首先由小明的爸爸以96m/min速度从邮局同一条道路步行回家,求得小明的爸爸用的时间,即可得点D的坐标,然后由E(0,2400),F(25,0),利用待定系数法即可求得答案;(2)首先求得直线BC的解析式,然后求直线BC与EF的交点,即可求得答案.【解答】解:(1)∵小明的爸爸以96m/min速度从邮局同一条道路步行回家,∴小明的爸爸用的时间为:=25(min),即OF=25,如图:设s2与t之间的函数关系式为:s2=kt+b,∵E(0,2400),F(25,0),∴,解得:,∴s2与t之间的函数关系式为:s2=﹣96t+2400;(2)如图:小明用了10分钟到邮局,∴D点的坐标为(22,0),设直线BD即s1与t之间的函数关系式为:s1=at+c(12≤t≤22),∴,解得:,∴s1与t之间的函数关系式为:s1=﹣240t+5280(12≤t≤22),当s1=s2时,小明在返回途中追上爸爸,即﹣96t+2400=﹣240t+5280,解得:t=20,∴s1=s2=480,∴小明从家出发,经过20min在返回途中追上爸爸,这时他们距离家还有480m.26.【方法引领】如图1,点E、F分别是正方形ABCD的BC、CD边上的动点,连接AE、AF和EF,∠EAF=45°.若BE=2,DF=3,求EF的长.聪聪同学的思路是:如图2,将△ABE绕点A逆时针旋转90°,证明△AEF≌△AE’F 从而得到EF=E’F.请你帮助聪聪同学完成解题过程.【灵活应用】如图3,Rt△ABC中,∠ACB=90°,AC=BC.点D、E在边AB上,且∠DCE=45°.若AD=2,BE=3,求DE的长.【拓展提升】如图4,△ABC中∠BAC=45°,AD⊥BC于点D.若CD=2,BD=3,请直接写出△ABC的面积.【考点】四边形综合题;解一元二次方程-因式分解法;全等三角形的判定与性质;勾股定理.【分析】(1)将△ABE绕点A逆时针旋转90°,得△ADE',根据旋转的性质,判定△AEF≌△AE'F(SAS),得出EF=E'F,进而得到E'F=E'D+DF=BE+DF=5,即EF=5;(2)将△ACD绕着点C逆时针旋转90°,得△BCF,连接EF,判定△DCE≌△FCE (SAS),得出DE=FE,最后在△BEF中,根据勾股定理求得EF的长,即可得出结论;(3)将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,判定△BAC≌△QAC(SAS),得到BC=CQ=BD+CD=5,再设AD=x,在Rt△CQE中,运用勾股定理列出关于x的方程,求得x的值,最后根据△ABC的面积=×BC×AD,进行计算即可【解答】解:(1)如图2,将△ABE绕点A逆时针旋转90°,得△ADE',则AE=AE',∠BAE=∠DAE',∠ADE'=90°=∠ADF,∴E',D,F在同一直线上,∵正方形ABCD中,∠EAF=45°,∴∠BAE+∠DAF=45°=∠DAE'+∠DAF=∠E'AF,∴∠EAF=∠E'AF,又∵AF=AF,∴△AEF≌△AE'F(SAS),∴EF=E'F,∵E'F=E'D+DF=BE+DF=5,∴EF=5;(2)如图3,将△ACD绕着点C逆时针旋转90°,得△BCF,连接EF,∴CD=CF,BF=AD=2,∠DCF=90°,∠CBF=∠A=45°,∵∠DCE=45°,∠ACB=90°,∴∠FCE=45°,在△DCE和△FCE中,,∴△DCE≌△FCE(SAS),∴DE=FE,在△BEF中,∵∠EBC=45°,∠CBF=45°,∴∠EBF=90°,∴EF==,∴DE=;(3)△ABC的面积为15.理由:如图4,将△ABD绕着点A逆时针旋转90°,得△AFQ,延长FQ,BC,交于点E,连接CQ,由旋转可得,△ABD≌△AQF,∴AB=AQ,∠BAD=∠FAQ,BD=QF=3,∠F=∠ADC=∠DAF=90°=∠E,∵∠BAC=45°,∴∠BAD+∠DAC=45°,∴∠DAC+∠FAQ=45°,又∵∠DAF=90°,∴∠CAQ=45°,∴∠BAC=∠CAQ.在△BAC和△QAC中,,∴△BAC≌△QAC(SAS),∴BC=CQ=BD+CD=5,设AD=x,则QE=x﹣3,CE=x﹣2.在Rt△CQE中,CE2+QE2=CQ2∴(x﹣2)2+(x﹣3)2=52解得:x1=6,x2=﹣1(舍去),∴AD=6,∴△ABC的面积=×BC×AD=×5×6=15.2017年2月13日。
江苏省东台市八年级上学期期末模拟数学试题 一、选择题 1.若a 满足3a a =,则a 的值为( ) A .1 B .0 C .0或1 D .0或1或1-2.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线相交于点F ,过F 作//DE BC ,交AB 于点D ,交AC 于点E ,若4BD =,7DE =,则线段EC 的长为( )A .3B .4C .3.5D .23.计算3329a b a b a b a-(a >0,b >0)的结果是( ) A .53ab B .23ab C .179ab D .89ab 4.甲、乙两车从A 地出发,匀速驶向B 地.甲车以80km/h 的速度行驶1h 后,乙车才沿相同路线行驶.乙车先到达B 地并停留1h 后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y (km )与乙车行驶时间x (h )之间的函数关系如图所示.下列说法:①乙车的速度是120km/h ;②m =160;③点H 的坐标是(7,80);④n =7.5.其中说法正确的是( )A .①②③B .①②④C .①③④D .①②③④5.下到图形中,不是轴对称图形的是( )A .B .C .D .6.在平面直角坐标系中,点()3,2P -关于x 轴对称的点的坐标是( )A .()3,2B .()2,3-C .()3,2-D .()3,2-- 7.在△ABC 中,∠ACB =90°,CD ⊥AB 于点D ,∠A =30°,以下说法错误的是( ) A .AC =2CD B .AD =2CDC .AD =3BD D .AB =2BC 8.下列各数:4,﹣3.14,227,2π,3无理数有( ) A .1个B .2个C .3个D .4个 9.下列各组数是勾股数的是( )A .6,7,8B .1,3,2C .5,4,3D .0.3,0.4,0.5 10.如图,在△ABC 中,AC 的垂直平分线交AC 于点E ,交BC 于点D ,△ABD 的周长为16cm ,AC 为5cm ,则△ABC 的周长为( )A .24cmB .21cmC .20cmD .无法确定二、填空题11.已知点(,)P m n 在一次函数31y x =-的图像上,则2296m mn n -+=___________.12.若关于x 的分式方程122x x a x x--=--有增根,则a 的值_____________. 13.如果等腰三角形的一个外角是80°,那么它的底角的度数为__________.14.若x +2y =2xy ,则21+x y的值为_____. 15.在平面直角坐标系中,点A (2,1)向左平移3个单位长度,再向下平移4个单位后的坐标为______.16.若分式293x x --的值为0,则x 的值为_______. 17.若直角三角形斜边上的中线是6cm ,则它的斜边是 ___ cm .18.如图,已知正方形ABCD 的边长为4cm ,则图中阴影部分的面积为__________2cm .19.如图,在坐标系中,一次函数21y x =-+与一次函数y x k =+的图像交于点(2,5)A -,则关于x 的不等式21x k x +>-+的解集是__________.20.如图,在平面直角坐标系xOy 中,已知点A (3,4),将OA 绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是 .三、解答题21.如图,四边形ABCD 中,AB CB AD CD ==,,对角线AC ,BD 相交于点O ,,OE AB OF CB ⊥⊥,垂足分别是E 、F ,求证:OE OF =.22.如图,AC=DC ,BC=EC ,∠ACD=∠BCE .求证:∠A=∠D .23.如图,平面直角坐标系中,ABC ∆的顶点都在网格点上,其中C 点坐标为()3,2.(1)填空:点A 的坐标是__________,点B 的坐标是________;(2)将ABC ∆先向左平移3个单位长度,再向上平移1个单位长度,画出平移后的111A B C ∆;(3)求ABC ∆的面积.24.已知21a =+,求代数式223a a -+的值. 25.计算:(1)2a b a a b b a++--; (2)221(1)11x x x -÷+-. 四、压轴题26.如图,在ABC ∆中,90,,8ACB AC BC AB cm ∠=︒==,过点C 做射线CD ,且//CD AB ,点P 从点C 出发,沿射线CD 方向均匀运动,速度为3/cm s ;同时,点Q 从点A 出发,沿AB 向点B 匀速运动,速度为1/cm s ,当点Q 停止运动时,点P 也停止运动.连接,PQ CQ ,设运动时间为()()08t s t <<.解答下列问题:(1)用含有t 的代数式表示CP 和BQ 的长度;(2)当2t =时,请说明//PQ BC ;(3)设BCQ ∆的面积为()2S cm ,求S 与t 之间的关系式.27.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD 的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).28.已知在△ABC 中,AB =AC ,∠BAC =α,直线l 经过点A (不经过点B 或点C ),点C 关于直线l 的对称点为点D ,连接BD ,CD .(1)如图1,①求证:点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②直接写出∠BDC 的度数(用含α的式子表示)为 ;(2)如图2,当α=60°时,过点D 作BD 的垂线与直线l 交于点E ,求证:AE =BD ;(3)如图3,当α=90°时,记直线l 与CD 的交点为F ,连接BF .将直线l 绕点A 旋转的过程中,在什么情况下线段BF 的长取得最大值?若AC =22a ,试写出此时BF 的值.29.如图1中的三种情况所示,对于平面内的点M ,点N ,点P ,如果将线段PM 绕点P 顺时针旋转90°能得到线段PN ,就称点N 是点M 关于点P 的“正矩点”.(1)在如图2所示的平面直角坐标系xOy 中,已知(3,1),(1,3),(1,3)S P Q ---,(2,4)M -.①在点P ,点Q 中,___________是点S 关于原点O 的“正矩点”;②在S ,P ,Q ,M 这四点中选择合适的三点,使得这三点满足:点_________是点___________关于点___________的“正矩点”,写出一种情况即可; (2)在平面直角坐标系xOy 中,直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,点A 关于点B 的“正矩点”记为点C ,坐标为(,)C C C x y .①当点A 在x 轴的正半轴上且OA 小于3时,求点C 的横坐标C x 的值;②若点C 的纵坐标C y 满足12C y -<≤,直接写出相应的k 的取值范围.30.如图,以ABC 的边AB 和AC ,向外作等腰直角三角形ABE △和ACF ,连接 EF ,AD 是ABC 的高,延长DA 交EF 于点G ,过点F 作DG 的垂线交DG 于点H .(1)求证:FHA ADC ≌△△;(2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】只有0和1的算术平方根与立方根相等.【详解】3a a =∴a 为0或1.故选:C .【点睛】本题考查了立方根:如果一个数的立方等于a ,那么这个数叫做a 的立方根或三次方根.也考查了算术平方根.2.A解析:A【解析】【分析】根据△ABC 中,∠ABC 和∠ACB 的平分线相交于点F.求证∠DBF=∠FBC,∠ECF=∠BCF,再利用两直线平行内错角相等,求证出∠DFB=∠DBF ,∠CFE=∠BCF,即BD=DF,FE=CE ,然后利用等量代换即可求出线段CE 的长.【详解】解:∵∠ABC 和∠ACB 的平分线相交于点F,∴∠DBF=∠FBC ,∠ECF=∠BCF,∵DF//BC,交AB 于点D,交AC 于点E.∴∠DFB=∠DBF ,∠CFE=∠BCF ,∴BD=DF=4,FE=CE,∴CE=DE-DF=7-4=3.故选:A.【点睛】本题考查了平行线的性质和角平分线的性质,解决本题的关键是正确理解题意,熟练掌握平行线和角平分线的性质,能够找到相等的量.3.A解析:A【解析】【分析】23a b a ab a ⨯⨯即可求解.【详解】解:∵a >0,b >0,23a b a ab a ⨯⨯=故选:A .【点睛】本题考查二次根式的性质与化简;能够根据二次根式的性质,将所求式子进行正确的化简是解题的关键.4.A解析:A【解析】【分析】根据乙追上甲的时间求出乙的速度可判断①,根据乙由相遇点到达B点所用时间可确定m 的值,即可判断②,根据乙休息1h甲所行驶的路程可判断③,由乙返回时,甲乙相距80km,可求出两车相遇的时间即可判断④.【详解】由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.所以正确的有①②③,故选A.【点睛】本题考查通过分段函数图像解决问题,根据题意明确图像中的信息是解题关键.5.C解析:C【解析】【分析】根据轴对称图形的定义,依次对各选项进行判断即可. 轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故此选项错误;B、是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项正确;D、是轴对称图形,故此选项错误;故选:C.【点睛】此题主要考查了轴对称图形,熟记轴对称图形的定义,并能依据定义判断一个图形是不是轴对称图形是解决此题的关键.6.D解析:D【解析】【分析】根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”解答.【详解】解:点()3,2P -关于x 轴对称的点的坐标为()3,2--.故选:D .【点睛】本题考查坐标与图形变化——轴对称.熟记①关于x 轴对称的点,横坐标相同,纵坐标互为相反数;②关于y 轴对称的点,纵坐标相同,横坐标互为相反数.是解决此题的关键.7.B解析:B【解析】【分析】在Rt △ABC 中,由∠A 的度数求出∠B 的度数,在Rt △BCD 中,可得出∠BCD 度数为30°,根据直角三角形中,30°所对的直角边等于斜边的一半,得到BC=2BD ,由BD 的长求出BC 的长,在Rt △ABC 中,同理得到AB=2BC ,于是得到结论.【详解】解:∵△ABC 中,∠ACB =90°,∠A =30°,∴AB =2BC ;∵CD ⊥AB ,∴AC =2CD ,∴∠B =60°,又CD ⊥AB ,∴∠BCD =30°,在Rt △BCD 中,∠BCD =30°,CD 3,在Rt △ABC 中,∠A =30°,AD 3=3BD ,故选:B .【点睛】此题考查了含30°角直角三角形的性质,以及三角形的内角和定理,熟练掌握性质是解本题的关键.8.B解析:B【解析】【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】无理数有2π2个.故选:B .【点睛】本题考查的是无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.9.C解析:C【解析】【分析】欲求证是否为勾股数,这里给出三边的长,只要验证222+=a b c 即可.【详解】解:A 、222768+≠,故此选项错误;BC 、222345+=,故此选项正确;D 、0.3,0.4,0.5,勾股数为正整数,故此选项错误.故选:C .【点睛】本题考查了勾股数的概念,一般是指能够构成直角三角形三条边的三个正整数.验证两条较小边的平方和与最大边的平方之间的关系,从而作出判断.10.B解析:B【解析】【分析】由垂直平分线可得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度即可.【详解】∵DE 是AC 的垂直平分线,∴AD=DC ,∵△ABD 的周长=AB+BD+AD=16,∴△ABC 的周长为AB+BC+AC=AB+BD+AD+AC=16+5=21.故选:B .【点睛】考查线段的垂直平分线的性质,解题关键是由垂直平分线得AD =DC ,进而将求△ABC 的周长转换成△ABD 的周长再加上AC 的长度.二、填空题11.1【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入===.故答案为:1.【解析:1【解析】【分析】直接利用一次函数图象上点的坐标性质直接代入求出即可.【详解】把x=m ,y=n 代入y=3x-1,可得:n=3m-1,把n=3m-1代入2296m mn n -+=223196())31(m m m m -+--=2229186196m m m m m -++-+=1.故答案为:1.【点睛】此题主要考查了一次函数图象上点的坐标性质,正确代入点的坐标求出是解题关键. 12.4【解析】【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】方程变形得:,去分母得:x+x-a=x-2,解得:x=a-解析:4【分析】方程第二个分母提取-1变形后,去分母转化为整式方程,表示出方程的解,令方程的解为2,即可求出a 的值.【详解】 方程变形得:+122x x a x x -=--, 去分母得:x+x-a=x-2,解得:x=a-2, ∵方程122x x a x x--=--有增根, ∴x=2,即a-2=2,解得:a=4,故答案为:4.【点睛】 此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值. 13.40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100解析:40°【解析】【分析】根据三角形的外角性质和等腰三角形的性质求解.【详解】解:∵等腰三角形的一个外角为80°,∴相邻角为180°-80°=100°,∵三角形的底角不能为钝角,∴100°角为顶角,∴底角为:(180°-100°)÷2=40°.故答案为40°.【点睛】本题考查等腰三角形的性质,解题的关键是掌握三角形的内角和定理以及等腰三角形的性质.14.【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式==2,故答案为:2【点睛】此题考查了分式的化简求值,熟解析:【解析】【分析】原式通分并利用同分母分式的加法法则变形,把已知等式代入计算即可求出值.【详解】解:∵x+2y=2xy,∴原式=22x y xyxy xy+==2,故答案为:2【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.15.(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标解析:(-1,-3)【解析】【分析】让点A的横坐标减4,纵坐标减2即可得到平移后的坐标.【详解】点A(2,1)向左平移3个单位长度,再向下平移4个单位长度,平移后点的横坐标为2−3=−1;纵坐标为1−4=−3;即新点的坐标为(-1,-3),故填:(-1,-3).本题考查图形的平移变换,关键是要懂得左右平移只改变点的横坐标,左减右加;上下平移只改变点的纵坐标,上加下减.16.-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2解析:-3【解析】【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:29=030 xx⎧-⎨-≠⎩,解得:x=-3.故答案为:-3.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.17.12【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,∴则它的斜边是:cm;故答案为:12.【点睛】本题考查了直解析:12【分析】根据直角三角形斜边上的中线等于斜边的一半,即可得到答案.【详解】解:∵直角三角形斜边上的中线是6cm,∴则它的斜边是:2612⨯=cm;故答案为:12.【点睛】本题考查了直角三角形的性质,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半.18.8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=×4×4=8cm2.故答案为:8.解析:8【解析】【分析】正方形为轴对称图形,一条对称轴为其对角线所在的直线;由图形条件可以看出阴影部分的面积为正方形面积的一半.【详解】解:依题意有S阴影=12×4×4=8cm2.故答案为:8.【点睛】本题考查轴对称的性质以及正方形的性质,运用割补法是解题的关键.19.【解析】【分析】根据图像解答即可.【详解】由图像可知,关于的不等式的解集是.故答案为:.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细解析:2x >-【解析】【分析】根据图像解答即可.【详解】由图像可知,关于x 的不等式21x k x +>-+的解集是2x >-.故答案为:2x >-.【点睛】本题主要考查一次函数和一元一次不等式的关系及数形结合思想的应用.解决此类问题关键是仔细观察图形,注意几个关键点(交点、原点等),做到数形结合.函数y 1>y 2时x 的范围是函数y 1的图象在y 2的图象上边时对应的未知数的范围,反之亦然.20.(﹣4,3).【解析】试题分析:解:如图,过点A 作AB⊥x 轴于B ,过点A′作A′B′⊥x 轴于B′, ∵OA 绕坐标原点O 逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′解析:(﹣4,3).【解析】试题分析:解:如图,过点A 作AB ⊥x 轴于B ,过点A′作A′B′⊥x 轴于B′,∵OA 绕坐标原点O 逆时针旋转90°至OA′,∴OA=OA′,∠AOA′=90°,∵∠A′OB′+∠AOB=90°,∠AOB+∠OAB=90°,∴∠OAB=∠A′OB′,在△AOB 和△OA′B′中,,∴△AOB ≌△OA′B′(AAS ),∴OB′=AB=4,A′B′=OB=3,∴点A′的坐标为(﹣4,3).故答案为(﹣4,3).考点:坐标与图形变化-旋转三、解答题21.证明见解析.【解析】【分析】欲证明OE=OF ,只需推知BD 平分∠ABC ,所以通过全等三角形△ABD ≌△CBD (SSS )的对应角相等得到∠ABD=∠CBD ,问题就迎刃而解了.【详解】在△ABD 和△CBD 中,AB CB AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),∴∠ABD=∠CBD ,∴BD 平分∠ABC .又∵OE ⊥AB ,OF ⊥CB ,∴OE=OF .【点睛】本题考查了全等三角形的判定与性质,角平分线的性质,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.22.证明见试题解析.【解析】试题分析:首先根据∠ACD=∠BCE 得出∠ACB=∠DCE ,结合已知条件利用SAS 判定△ABC 和△DEC 全等,从而得出答案.试题解析:∵∠ACD=∠BCE ∴∠ACB=∠DCE 又∵AC=DC BC=EC ∴△ABC ≌△DEC ∴∠A=∠D考点:三角形全等的证明23.(1)()41-,,()5,3;(2)画图见解析;(3)72【解析】【分析】(1)利用点的坐标的表示方法写出A 点和B 点坐标;(2)利用点的坐标平移规律写出点1A 、1B 、1C 的坐标,然后描点得到111A B C ∆; (3)用一个矩形的面积分别减去三个三角形的面积可得到△ABC 的面积.【详解】解:(1)()41-,;()5,3(2)如图所示:111A B C ∆即为所求;(3)37S 421222ABC ∆=⨯---=. 【点睛】 此题考查坐标与图形变化——平移,解题关键在于掌握在平面直角坐标系内,把一个图形各个点的横坐标都加上(或减去)一个整数a ,相应的新图形就是把原图形向右(或向左)平移a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个整数a ,相应的新图形就是把原图形向上(或向下)平移a 个单位长度.24.4【解析】试题分析:先将223a a -+变形为(a-1)2+2,再将21a =代入求值即可.试题解析:223a a -+=221a a -++2=(a-1)2+2当2+1时,原式=2+1-1)2+2=2)2+2=2+2=4. 25.(1)1-;(2)1x x-. 【解析】【分析】(1)根据异分母分式的加减法法则计算即可;(2)先把括号里的通分,再根据分式的除法法则计算即可.【详解】解:(1)原式=2a b a a b a b +--- =2a b a a b +-- =b a a b-- a b a b -=--=1-;(2)原式=211(1)(1)1x x x x x+-+-⋅+ =1x x-. 【点睛】本题考查了分式的混合运算,在运算过程中,分子、分母能进行因式分解的先因式分解,熟练掌握分式的加减乘除运算是解题的关键.四、压轴题26.(1)CP=3t ,BQ=8-t ;(2)见解析;(3)S=16-2t .【解析】【分析】(1)直接根据距离=速度⨯时间即可;(2)通过证明PCQ BQC ≅,得到∠PQC=∠BCQ,即可求证; (3)过点C 作CM⊥AB,垂足为M ,根据等腰直角三角形的性质得到CM=AM=4,即可求解.【详解】解:(1)CP=3t ,BQ=8-t ;(2)当t=2时,CP=3t=6,BQ=8-t=6∴CP=BQ∵CD ∥AB∴∠PCQ=∠BQC又∵CQ=QC∴PCQ BQC ≅∴∠PQC=∠BCQ∴PQ∥BC(3)过点C 作CM⊥AB,垂足为M∵AC=BC,CM⊥AB∴AM=118422AB=⨯=(cm)∵AC=BC,∠ACB=90︒∴∠A=∠B=45︒∵CM⊥AB∴∠AMC=90︒∴∠ACM=45︒∴∠A=∠ACM∴CM=AM=4(cm)∴118t4162 22BCQS BQ CM t ==⨯-⨯=-因此,S与t之间的关系式为S=16-2t.【点睛】此题主要考查列代数式、全等三角形的判定与性质、平行线的判定、等腰三角形的性质,熟练掌握逻辑推理是解题关键.27.(1)①E(3,﹣2)②见解析;③12OMBD=,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD =∠AHE =∠DAE =90°,∴∠DAO+∠EAH =90°,∠EAH+∠AEH =90°,∴∠DAO =∠AEH ,∵AD=AE∴△DOA ≌△AHE (AAS ),∴EH=AO=3=OB ,OD=AH∴∠EHO =∠BOH =90°,∵∠BMO =∠EMH ,OB =EH =3,∴△BOM ≌△EHM (AAS ),∴OM =MH∴OA +OD= OA +AH=OH=OM +MH=2MH=2(AM +AH )=2(AM +OD )整理可得OA ﹣OD =2AM .综上:OA+OD =2AM 或OA ﹣OD =2AM .【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.28.(1)①详见解析;②12α;(2)详见解析;(3)当B 、O 、F 三点共线时BF 最长,102)a【解析】【分析】(1)①由线段垂直平分线的性质可得AD=AC=AB ,即可证点B ,C ,D 在以点A 为圆心,AB 为半径的圆上;②由等腰三角形的性质可得∠BAC=2∠BDC ,可求∠BDC 的度数;(2)连接CE ,由题意可证△ABC ,△DCE 是等边三角形,可得AC=BC ,∠DCE=60°=∠ACB ,CD=CE ,根据“SAS”可证△BCD ≌△ACE ,可得AE=BD ;(3)取AC 的中点O ,连接OB ,OF ,BF ,由三角形的三边关系可得,当点O ,点B ,点F 三点共线时,BF 最长,根据等腰直角三角形的性质和勾股定理可求10BO a ,2OF OC a==,即可求得BF【详解】(1)①连接AD,如图1.∵点C与点D关于直线l对称,∴AC = AD.∵AB= AC,∴AB= AC = AD.∴点B,C,D在以A为圆心,AB为半径的圆上.②∵AD=AB=AC,∴∠ADB=∠ABD,∠ADC=∠ACD,∵∠BAM=∠ADB+∠ABD,∠MAC=∠ADC+∠ACD,∴∠BAM=2∠ADB,∠MAC=2∠ADC,∴∠BAC=∠BAM+∠MAC=2∠ADB+2∠ADC=2∠BDC=α∴∠BDC=12α故答案为:12α.(2连接CE,如图2.∵∠BAC=60°,AB=AC,∴△ABC是等边三角形,∴BC=AC,∠ACB=60°,∵∠BDC=12α,∴∠BDC=30°,∵BD⊥DE,∴∠CDE=60°,∵点C关于直线l的对称点为点D,∴DE=CE,且∠CDE=60°∴△CDE是等边三角形,∴CD=CE=DE ,∠DCE=60°=∠ACB ,∴∠BCD=∠ACE ,且AC=BC ,CD=CE ,∴△BCD ≌△ACE (SAS )∴BD=AE ,(3)如图3,取AC 的中点O ,连接OB ,OF ,BF ,,F 是以AC 为直径的圆上一点,设AC 中点为O ,∵在△BOF 中,BO+OF≥BF ,当B 、O 、F 三点共线时BF 最长;如图,过点O 作OH ⊥BC ,∵∠BAC=90°,2a , ∴24BC AC a ==,∠ACB=45°,且OH ⊥BC ,∴∠COH=∠HCO=45°,∴OH=HC , ∴2OC HC =, ∵点O 是AC 中点,AC 2a ,∴2OC a =, ∴OH HC a ==,∴BH=3a , ∴10BO a =,∵点C 关于直线l 的对称点为点D ,∴∠AFC=90°,∵点O 是AC 中点, ∴2OF OC a ==,∴102BF a =, ∴当B 、O 、F 三点共线时BF 最长;最大值为102)a .【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理,三角形的三边关系,灵活运用相关的性质定理、综合运用知识是解题的关键.29.(1)①点P ;②见解析;(2)①点C 的横坐标C x 的值为-3;②334k -≤<-【解析】【分析】 (1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ;②利用新定义得点S 是点P 关于点M 的“正矩点”(答案不唯一);(2)①利用新定义结合题意画出符合题意的图形,利用新定义的性质证明△BCF ≌△AOB ,则FC=OB 求得点C 的横坐标;②用含k 的代数式表示点C 纵坐标,代入不等式求解即可.【详解】解:(1)①在点P ,点Q 中,点OS 绕点O 顺时针旋转90°能得到线段OP ,故S 关于点O 的“正矩点”为点P ,故答案为点P ;②因为MP 绕M 点顺时针旋转90︒得MS ,所以点S 是点P 关于点M 的“正矩点”,同理还可以得点Q 是点P 关于点S 的“正矩点”.(任写一种情况就可以)(2)①符合题意的图形如图1所示,作CE ⊥x 轴于点E ,CF ⊥y 轴于点F ,可得 ∠BFC=∠AOB=90°.∵直线3(0)y kx k =+<与x 轴交于点A ,与y 轴交于点B ,∴点B 的坐标为3(0,3),(,0)B A k-在x 轴的正半轴上, ∵点A 关于点B 的“正矩点”为点(,)C C C x y ,∴∠ABC=90°,BC=BA ,∴∠1+∠2=90°,∵∠AOB=90°,∴∠2+∠3=90°,∴∠1=∠3.∴△BFC ≌△AOB ,∴3FC OB ==,可得OE =3.∵点A 在x 轴的正半轴上且3OA <,0C x ∴<,∴点C 的横坐标C x 的值为-3.②因为△BFC ≌△AOB ,3(,0)A k-,A 在x 轴正半轴上, 所以BF =OA ,所以OF =OB-OF =33k +点3(3,3)C k -+,如图2, -1<C y ≤2,即:-1<33k+ ≤2, 则334k -≤<-. 【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、解不等式,新定义等,此类新定义题目,通常按照题设的顺序,逐次求解.30.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADC AFH CADAF AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ()AFH CAD AAS ∴∆≅∆,(2)由(1)得AFH CAD ∆≅∆,FH AD ∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.。
2016~2017学年度八年级上学期期末数学试卷一、填空题:(本大题共14题,每题2分,满分28分)1.=.2.化简:(x>0)=.3.2﹣的绝对值是.4.计算:(2+)2﹣(2﹣)2=.5.函数y=的定义域为.6.已知函数f(x)=2x﹣,那么f(﹣)=.7.直线y=3x﹣1在y轴上的截距是.8.函数y=3x m+1,当m=时是反比例函数.9.已知点P(﹣3,4)、Q (3,﹣4),则线段PQ的长为.10.边长为2cm的等边三角形的高为cm.11.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是cm2.12.到定点A的距离为9cm的点的轨迹是.13.已知等腰三角形的周长等于20,底边为x,那么它的腰长y与x的函数关系式是,x的取值范围是.14.如图,点P在函数y=﹣x的图象上运动,点A的坐标为(1,0),当线段AP最短时,点P的坐标为.二、选择题:(本大题共4题,每题3分,满分12分)15.下列方程中,有一个根为﹣1的方程是()A.x2﹣x=0 B.x2﹣7x+6=0 C.2x2﹣3x﹣5=0 D.3x2+2x﹣5=016.下列各式中是一次函数的是()A.y=2(x﹣6)2 B.y=2(x﹣6)C.y=D.2(x﹣6)=017.下列各组数中不能作为直角三角形三边长的是()A .6、8、10 B.1、1、 C.2、6、 D.7、24、2518.如图,在△ABC中,AB=AC,点D在边AB上,点E在线段CD上,且∠BEC=∠ACB,BE 的延长线与边AC相交于点F,则与∠BDC相等的角是()A.∠DBE B.∠CBE C.∠BCE D.∠A三、简答题:19.计算:(1)﹣2a2(2).20.解方程:x2+4x﹣1=0.21.如图,点P是一个反比例函数与正比例函数y=﹣2x的图象的交点,PQ垂直于x轴,垂足Q的坐标为(2,0).(1)求这个反比例函数的解析式.(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.22.如图,△ABC中,∠B=22.5°,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=,AE⊥BC于E,求EC的长.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.(1)∠ECD和∠EDC相等吗?(2)OC和OD相等吗?(3)OE是线段CD的垂直平分线吗?24.已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.四、解答题:25.已知BD、CE分别是△ABC的AC边、AB边上的高,M是BC边的中点,分别联结MD、ME、DE.(1)当∠BAC<90°时,垂足D、E分别落在边AC、AB上,如图1,求证:DM=EM.(2)若∠BAC=135°,试判断△DEM的形状,简写解答过程.(3)当∠BAC>90°时,设∠BAC的度数为x,∠DME的度数为y,求y与x之间的函数关系式.2016~2017学年度八年级上学期期末数学试卷参考答案与试题解析一、填空题:(本大题共14题,每题2分,满分28分)1.=.【考点】二次根式的性质与化简.【专题】计算题.【分析】由于=3,根据二次根式的性质进行解答,便可得所求结果.【解答】解:∵=3,∴===,故答案为.【点评】解答此题,要弄清以下问题:①定义:一般地,形如(a≥0)的代数式叫做二次根式.当a >0时,表示a的算术平方根;当a=0时,=0;当a<0时,非二次根式(在一元二次方程中,若根号下为负数,则无实数根),②性质:=|a|.2.化简:(x>0)=3x.【考点】二次根式的性质与化简.【分析】直接根据二次根式的性质即可得出结论.【解答】解:∵x>0,∴原式=3x.故答案为:3x.【点评】本题考查的是二次根式的性质与化简,熟知二次根式的化简法则是解答此题的关键.3.2﹣的绝对值是.【考点】实数的性质.【专题】计算题.【分析】先判断2﹣的正负值,再根据“正数的绝对值是它本身,负数的绝对值是其相反数”即可求解.【解答】解:2﹣的绝对值是|2﹣|=﹣2.故本题的答案﹣2.【点评】此题考查了绝对值的性质,要求掌握绝对值的性质及其定义,并能熟练运用到实际当中.4.计算:(2+)2﹣(2﹣)2=8.【考点】二次根式的混合运算.【分析】直接利用完全平方公式化简求出答案.【解答】解:(2+)2﹣(2﹣)2=(4+3+4)﹣(4+3﹣4)=8.故答案为:8.【点评】此题主要考查了二次根式的混合运算,正确应用完全平方公式是解题关键.5.函数y=的定义域为x≤.【考点】函数自变量的取值范围.【分析】根据被开方数大于或等于0,可得答案.【解答】解:由y=,得1﹣3x≥0,解得x≤,故答案为:x≤.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.6.已知函数f(x)=2x﹣,那么f(﹣)=﹣.【考点】函数值.【分析】把自变量x的值代入函数关系式进行计算即可得解.【解答】解:f(﹣)=2×(﹣)﹣,=﹣2+,=﹣.故答案为:﹣.【点评】本题考查了函数值,是基础题,熟记函数值的定义以及求解方法是解题的关键.7.直线y=3x﹣1在y轴上的截距是﹣1.【考点】一次函数图象上点的坐标特征.【分析】直线与y轴的交点坐标的横坐标为0.【解答】解:∵y=3x﹣1,∴当x=0时,y=﹣1,∴直线y=3x﹣1在y轴上的截距是﹣1.故答案是:﹣1.【点评】本题考查了一次函数图象上点的坐标特征.一次次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线.它与x轴的交点坐标是(﹣,0);与y轴的交点坐标是(0,b).直线上任意一点的坐标都满足函数关系式y=kx+b.8.函数y=3x m+1,当m=﹣2时是反比例函数.【考点】反比例函数的定义.【分析】根据反比例函数的定义可得m+1=﹣1,再解方程即可求解.【解答】解:∵y=3x m+1是反比例函数,∴m+1=﹣1,解得m=﹣2.故答案为:﹣2.【点评】此题主要考查了反比例函数的定义,关键是掌握反比例函数的三种形式y=,k=xy,y=kx ﹣1(k为常数,k≠0).9.已知点P(﹣3,4)、Q (3,﹣4),则线段PQ的长为10.【考点】坐标与图形性质.【专题】计算题.【分析】直接利用两点间的距离公式计算即可.【解答】解:线段PQ的长==10.故答案为10.【点评】本题考查了坐标与图形性质:利用点的坐标计算相应线段的长和判断线段与坐标轴的位置关系.解决本题的关键是记住两点间的距离公式.10.边长为2cm的等边三角形的高为cm.【考点】等边三角形的性质.【分析】根据等边三角形的性质:三线合一,即可求得BD的长,又由勾股定理即可求的高.【解答】解:如图:过点A作AD⊥BC于D,∵等边三角形△ABC的边长为2cm,∴DC=DB=1cm,∵AB=2cm,∴AD==cm.故答案为.【点评】本题主要考查等边三角形的性质与勾股定理.此题比较简单,注意熟练掌握等边三角形的性质是解此题的关键.11.测得一个三角形花坛的三边长分别为5cm,12cm,13cm,则这个花坛的面积是30cm2.【考点】勾股定理的应用.【专题】应用题.【分析】根据三角形花坛的三边长可知符合勾股定理的逆定理的表达式,根据勾股定理的逆定理,可知此三角形为直角三角形,再代入直角三角形的面积公式即可求解.【解答】解:∵52+122=132,∴此三角形为直角三角形,两直角边分别为5cm和12cm,∴花坛面积=×5×12=30(cm2).【点评】本题主要是根据勾股定理的逆定理推出此三角形为直角三角形,再根据直角三角形的面积解答.12.到定点A的距离为9cm的点的轨迹是以A为圆心,以9cm为半径的圆.【考点】轨迹.【分析】根据到定点的距离等于定长的点的轨迹是以定点为圆心,定长为半径的圆,据此即可解答.【解答】解:到定点A的距离为9cm的点的轨迹是:以A为圆心,以9cm为半径的圆.故答案是:以A为圆心,以9cm为半径的圆.【点评】本题考查了点的轨迹,正确理解圆的定义是关键.13.已知等腰三角形的周长等于20,底边为x,那么它的腰长y与x的函数关系式是y=﹣x+10,x的取值范围是0<x<10.【考点】函数关系式;函数自变量的取值范围.【分析】等腰三角形的腰长=(周长﹣底边长)÷2,根据腰长大于0可得x的取值范围.【解答】解:腰长y与x的函数关系式是y==﹣x+10,由题意得:,解得:x<10则x的取值范围是0<x<10.故答案为:y=﹣x+10,0<x<10.【点评】考查了一次函数关系式;根据腰长的代数式得到底边长的取值范围是解决本题的难点.14.如图,点P在函数y=﹣x的图象上运动,点A的坐标为(1,0),当线段AP最短时,点P的坐标为().【考点】一次函数图象上点的坐标特征;垂线段最短.【专题】探究型.【分析】根据点到直线的所有线段中吹线段最短,可以找到线段AP最短时点P所在的位置,由点A 的坐标为(1,0),可以求得点P的坐标,从而本题得以解决.【解答】解:∵点P在函数y=﹣x的图象上运动,点A的坐标为(1,0),∴当线段AP最短时,AP⊥PO于点P,∠AOP=45°,作PB⊥x轴于点B,如下图所示:∵AP⊥PO于点P,∠AOP=45°,∴BP=OB=,∵点A的坐标为(1,0),∴BP=OB=,又∵点P在第四象限,∴点P的坐标是(),故答案为:().【点评】本题考查一次函数图象上点的坐标特征和垂线段最短,解题的关键是明确直线外一点到直线的所有线段中垂线段最短,利用数形结合的思想明确点P所在的象限,可以判断出点P横纵坐标的正负.二、选择题:(本大题共4题,每题3分,满分12分)15.下列方程中,有一个根为﹣1的方程是()A.x2﹣x=0 B.x2﹣7x+6=0 C.2x2﹣3x﹣5=0 D.3x2+2x﹣5=0【考点】一元二次方程的解.【分析】分别利用因式分解法解方程,进而判断得出答案.【解答】解:A、x2﹣x=0x(x﹣1)=0,解得:x1=0,x2=1,故此选项错误;B、x2﹣7x+6=0(x﹣6)(x﹣1)=0,解得:x1=6,x2=1,故此选项错误;C、2x2﹣3x﹣5=0(2x﹣5)(x+1)=0,解得:x1=﹣1,x2=2.5,故此选项正确;D、3x2+2x﹣5=0(3x+5)(x﹣1)=0,解得:x1=﹣,x2=1,故此选项错误.故选:C.【点评】此题主要考查了一元二次方程的解法,正确掌握因式分解法解方程是解题关键.16.下列各式中是一次函数的是()A.y=2(x﹣6)2 B.y=2(x﹣6)C.y=D.2(x﹣6)=0【考点】一次函数的定义.【分析】根据一次函数的定义解答即可.【解答】解:A、y=2(x﹣6)2,是二次函数,故此选项错误;B、y=2(x﹣6),是一次函数,故此选项正确;C、y=,不符合一次函数形式,故此选项错误;D、2(x﹣6)=0,是一元一次方程,故此选项错误.故选:B.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.17.下列各组数中不能作为直角三角形三边长的是()A .6、8、10 B.1、1、 C.2、6、 D.7、24、25【考点】勾股定理的逆定理.【分析】分别把选项中的三边平方后,根据勾股定理逆定理即可判断能否构成直角三角形.【解答】解:A、∵62+82=102,∴能构成直角三角形,故此选项错误.B 、∵12+12=()2,∴能构成直角三角形,故此选项错误;C 、∵()2+22≠62,∴不能构成直角三角形,故此选项正确;D、∵72+242=252,∴能构成直角三角形,故此选项错误.故选C.【点评】主要考查了利用勾股定理逆定理判定直角三角形的方法.在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.18.如图,在△ABC中,AB=AC,点D在边AB上,点E在线段CD上,且∠BEC=∠ACB,BE 的延长线与边AC相交于点F,则与∠BDC相等的角是()A.∠DBE B.∠CBE C.∠BCE D.∠A【考点】等腰三角形的性质.【分析】根据等腰三角形的性质得到∠ABC=∠ACB,等量代换得到∠BEC=∠ABC.根据三角形的内角和即可得到结论.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∵∠BEC=∠ACB,∴∠BEC=∠ABC.又∵∠BCE=∠DCB,∴∠BDC=180°﹣∠ABC﹣∠DCB,∠EBC=180°﹣∠BEC﹣∠ECB,∴∠BDC=∠EBC,故选B.【点评】本题考查了等腰三角形的性质,三角形的内角和,熟练掌握等腰三角形的性质是解题的关键.三、简答题:19.计算:(1)﹣2a2(2).【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用完全平方公式计算和分母有理化,然后合并即可.【解答】解:(1)原式=﹣2a+=﹣a;(2)原式=﹣+3﹣2+1+2(﹣1)=﹣+3﹣2+1+2﹣2=﹣+2.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.20.解方程:x2+4x﹣1=0.【考点】解一元二次方程-配方法.【分析】首先进行移项,得到x2+4x=1,方程左右两边同时加上4,则方程左边就是完全平方式,右边是常数的形式,再利用直接开平方法即可求解.【解答】解:∵x2+4x﹣1=0∴x2+4x=1∴x2+4x+4=1+4∴(x+2)2=5∴x=﹣2±∴x1=﹣2+,x2=﹣2﹣.【点评】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.21.如图,点P是一个反比例函数与正比例函数y=﹣2x的图象的交点,PQ垂直于x轴,垂足Q的坐标为(2,0).(1)求这个反比例函数的解析式.(2)如果点M在这个反比例函数的图象上,且△MPQ的面积为6,求点M的坐标.【考点】反比例函数与一次函数的交点问题.【分析】(1)因为PQ垂直于x轴,垂足Q的坐标为(2,0),所以点P的横坐标为2,把其代入正比例函数y=﹣2x求出其纵坐标,再用设反比例函数的解析式为,求出k的值即可;(2)设△MPQ的高为h,因为△MPQ的面积为6,所以可求出h的值,再分:当点M在直线PQ 右侧时和当点M在直线PQ左侧时求出点M的坐标即可.【解答】解:(1)当x=2时,y=﹣2×2=﹣4,∴P(2,﹣4),设反比例函数的解析式为,则,k=﹣8,∴反比例函数的解析式为;(2)设△MPQ的高为h.∵,∴,h=3,当点M在直线PQ右侧时,M(5,);当点M在直线PQ左侧时,M(﹣1,8).【点评】此题考查的是正比例函数和反比例函数的交点问题以及用待定系数法求反比例函数的解析式,比较简单.22.如图,△ABC中,∠B=22.5°,∠C=60°,AB的垂直平分线交BC于点D,DE=6,BD=,AE⊥BC于E,求EC的长.【考点】线段垂直平分线的性质.【分析】首先作出辅助线连接AD,再利用线段垂直平分线的性质计算.【解答】解:连接AD,已知DF垂直且平分AB⇒BD=AD,∠B=22.5°,∠C=60°⇒∠BAC=97.5°,根据三角形外角与外角性质可得,∠ADE=∠B+∠DAB=45°,AE⊥BC,故∠DAE=45°⇒△AED为等腰三角形,根据等腰三角形的性质可得DE=AE=6,∵∠C=60°,∴∠CAE=90°﹣60°=30°,∴AC=2CE,在Rt△ACE中,AC2=AE2+CE2,即4CE2=62+CE2,∴CE2=12,解得EC=2.【点评】本题关键是作出辅助线提示:连接AD.考查的是线段垂直平分线的性质(垂直平分线上任意一点,和线段两端点的距离相等)有关知识.23.如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C,D.(1)∠ECD和∠EDC相等吗?(2)OC和OD相等吗?(3)OE是线段CD的垂直平分线吗?【考点】角平分线的性质;线段垂直平分线的性质.【分析】根据角平分线的性质和线段垂直平分线的性质结合全等三角形的性质解答.【解答】解:(1)∠EDC与∠ECD相等∵OE是∠AOB的平分线,EC⊥OA,ED⊥OB,∴EC=ED,∴△CED是等腰三角形,∴∠EDC=∠ECD;(2)OC与OD相等∵EC⊥OA,ED⊥OB,∴∠ODE=∠OCE=90°在Rt△ODE和Rt△OCE中,OE=OE(公共边),DE=CE∴Rt△ODE≌Rt△OCE(HL)∴OD=OC(3)OE是线段CD的垂直平分线∵EC=ED,∴E点在线段CD的垂直平分线上∵OC=OD,∴O点在线段CD的垂直平分线上,∴OE是线段CD的垂直平分线.【点评】解答此题,要从已知条件和图形中找出相关信息,利用垂直、全等等性质解答.24.已知一次函数y=kx+b的图象经过点A(﹣2,5),并且与y轴相交于点P,直线y=﹣x+3与x轴相交于点B,与y轴相交于点Q,点Q恰与点P关于x轴对称.(1)求这个一次函数的表达式;(2)求△ABP的面积.【考点】一次函数的性质.【专题】计算题.【分析】(1)先利用y轴上点的坐标特征求出Q点坐标,再利用关于x轴对称的点的坐标特征确定P点坐标,然后利用待定系数法求直线AP的解析式;(2)先利用y=﹣x+3求出B点坐标,再求出直线y=﹣4x﹣3与x轴的交点坐标,则可把△ABP分成两个三角形,然后利用三角形面积公式计算即可.【解答】解:(1)当x=0时,y=﹣x+3=3,则Q(0,3),∵点Q恰与点P关于x轴对称,∴P(0,﹣3),把P(0,﹣3),A(﹣2,5)代入y=kx+b得,解得,所以这个一次函数解析式为y=﹣4x﹣3;(2)当y=0时,﹣x+3=0,解得x=6,则B(6,0),当y=0时,﹣4x﹣3=0,解得x=﹣,则直线y=﹣4x﹣3与x轴的交点坐标为(﹣,0),所以△ABP的面积=×(6+)×5+×(6+)×3=27.【点评】本题考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.也考查了待定系数法求一次函数解析式.四、解答题:25.已知BD、CE分别是△ABC的AC边、AB边上的高,M是BC边的中点,分别联结MD、ME、DE.(1)当∠BAC<90°时,垂足D、E分别落在边AC、AB上,如图1,求证:DM=EM.(2)若∠BAC=135°,试判断△DEM的形状,简写解答过程.(3)当∠BAC>90°时,设∠BAC的度数为x,∠DME的度数为y,求y与x之间的函数关系式.【考点】全等三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)根据已知条件知,MD是Rt△BCD斜边BC上的中线,ME是Rt△BCE斜边BC上的中线,所以根据直角三角形斜边上的中线的性质进行证明即可;(2)根据等腰三角形的性质得到∠DBM=∠BDM,∠MEC=∠MCE,由三角形的外角的性质得到∠BME=2∠BCE,∠CMD=2∠DBM,根据三角形的内角和得到∠DBC+∠ECM=45°,即可得到结论;(3)根据等腰三角形的性质得到∠DBM=∠BDM,∠MEC=∠MCE,由三角形的外角的性质得到∠BME=2∠BCE,∠CMD=2∠DBM,根据三角形的内角和得到∠DBC+∠ECM=180°﹣x,根据平角的定义即可得到结论.【解答】(1)证明:∵BD、CE是△ABC的两条高,M是BC的中点,∴在Rt△BDC中,MD是斜边BC上的中线,∴MD=BC;同理,得ME=BC,∴ME=MD;(2)∵BM=CM=DM=EM,∴∠DBM=∠BDM,∠MEC=∠MCE,∴∠BME=2∠BCE,∠CMD=2∠DBM,∵∠BAC=135°,∴∠DBC+∠ECM=45°,∴∠BME+∠CMD=90°,∴∠DME=90°,∴△DEM是等腰直角三角形;(3)∵BM=CM=DM=EM,∴∠DBM=∠BDM,∠MEC=∠MCE,∴∠BME=2∠BCE,∠CMD=2∠DBM,∵∠BAC=x,∴∠DBC+∠ECM=180°﹣x,∴∠BME+∠CMD=360°﹣2x,∴∠DME=180°﹣(∠BME+∠CMD)=2x﹣180°,即y=2x﹣180°.【点评】本题考查了直角三角形斜边上的中线等于斜边的一半,等腰直角三角形的判定,三角形的内角和,三角形外角的性质,熟记直角三角形斜边上的中线等于斜边的一半是解题的关键.。
八年级(上)期末数学试卷一、选一选,比比谁细心(本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列调查中,适合普查的是()A.中学生最喜欢的电视节目B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查D.中学生上网情况3.在,,﹣,1.732,这五个数中,无理数有()个.A.1 B.2 C.3 D.44.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°5.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a 与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对6.在元旦联欢会上,3名小朋友分别站在△ABC三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先做到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置时在△ABC的()A.三边中线的交点 B.三条角平分线的交点C.三边垂直平分线的交点D.三边上高的交点7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.8.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6) B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分)9.3的平方根是.10.取=1.4142135623731…的近似值,若要求精确到0.01,则=.11.据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用统计图表示收集到的数据.12.如图,AC⊥CB,AD⊥DB,要使△ABC≌△ABD,可补充的一个条件是.13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.14.如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为.15.一个三角形三边长的比为3:4:5,它的周长是24cm,这个三角形的面积为cm2.16.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:.17.小聪用刻度尺画已知角的平分线,如图,在∠MAN两边上分别量取AB=AC,AE=AF,连接FC,EB交于点D,作射线AD,则图中全等的三角形共有对.18.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y 轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标.三、解答题(本大题共有7小题,共64分.解答时应写出文字说明、推理过程或演算步骤)19.计算:(1)求x的值:(x﹣1)2=25;(2)计算:﹣+.20.为保证中小学生每天锻炼一小时,涟水县某中学开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)某班同学的总人数为人;(2)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(3)扇形统计图(2)中表示”篮球”项目扇形的圆心角度数为.21.如图是规格为8×8的正方形网格,每个小方格都是边长为1的正方形,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4);(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是;(3)画出△ABC关于y轴对称的△A′B′C′.22.如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.23.教学实验:画∠AOB的平分线OC.(1)将一块最够大的三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别于OA,OB交于E,F(如图①).度量PE、PF的长度,PE PF (填>,<,=);(2)将三角尺绕点P旋转(如图②):①PE与PF相等吗?若相等请进行证明,若不相等请说明理由;②若OP=,请直接写出四边形OEPF的面积:.24.某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1、y2千米,y1、y2与x的函数关系图象如图所示.根据图象解答下列问题:(1)直接写出,y1、y2与x的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?25.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C (3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标;(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC =S△MAB,请求出M点坐标.参考答案与试题解析一、选一选,比比谁细心(本大题共8个小题,每小题2分,共16分.在每小题给出的四个选项中,只有一项是符合题目要求的,把这个正确的选项填在下面表格的相应位置)1.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【解答】解:A、是轴对称图形,不合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、不是轴对称图形,符合题意;故选:D.2.下列调查中,适合普查的是()A.中学生最喜欢的电视节目B.某张试卷上的印刷错误C.质检部门对各厂家生产的电池使用寿命的调查D.中学生上网情况【考点】全面调查与抽样调查.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、中学生最喜欢的电视节目,适于用抽样调查,故此选项不合题意;B、某张试卷上的印刷错误,适于用全面调查,故此选项符合题意;C、质检部门对各厂家生产的电池使用寿命的调查,适于用抽样调查,故此选项不合题意;D、中学生上网情况,适于用抽样调查,故此选项不合题意;3.在,,﹣,1.732,这五个数中,无理数有()个.A.1 B.2 C.3 D.4【考点】无理数.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:,共2个.故选B.4.已知等腰三角形的一个角是100°,则它的顶角是()A.40°B.60°C.80°D.100°【考点】等腰三角形的性质.【分析】等腰三角形一内角为100°,没说明是顶角还是底角,所以要分两种情况讨论求解.【解答】解:(1)当100°角为顶角时,其顶角为100°;(2)当100°为底角时,100°×2>180°,不能构成三角形.故它的顶角是100°.故选D.5.已知点M(1,a)和点N(2,b)是一次函数y=﹣2x+1图象上的两点,则a 与b的大小关系是()A.a>b B.a=b C.a<b D.以上都不对【考点】一次函数图象上点的坐标特征.【分析】根据一次函数的增减性,k<0,y随x的增大而减小解答.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,∵1<2,故选:A.6.在元旦联欢会上,3名小朋友分别站在△ABC三个顶点的位置上,他们在玩抢凳子游戏,要求在他们中间放一个木凳,谁先做到凳子上谁获胜,为使游戏公平,则凳子应放置的最适当的位置时在△ABC的()A.三边中线的交点 B.三条角平分线的交点C.三边垂直平分线的交点D.三边上高的交点【考点】线段垂直平分线的性质.【分析】根据线段的垂直平分线的性质:线段的垂直平分线上的点到线段的两个端点的距离相等解得即可.【解答】解:∵△ABC的垂直平分线的交点到△ABC三个顶点的距离相等,∴凳子应放置的最适当的位置时在△ABC的三边垂直平分线的交点,故选:C.7.正比例函数y=kx(k≠0)的图象在第二、四象限,则一次函数y=x+k的图象大致是()A.B.C.D.【考点】一次函数的图象;正比例函数的图象.【分析】根据正比例函数图象所经过的象限判定k<0,由此可以推知一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.【解答】解:∵正比例函数y=kx(k≠0)的图象在第二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴,且经过第一、三象限.观察选项,只有B选项正确.故选:B.8.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6) B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)【考点】点的坐标.【分析】由题意应先进行f方式的变换,再进行g方式的变换,注意运算顺序及坐标的符号变化.【解答】解:∵f(﹣6,7)=(7,﹣6),∴g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.二、填一填,看看谁仔细(本大题共10小题,每小题2分,共20分)9.3的平方根是.【考点】平方根.【分析】直接根据平方根的概念即可求解.【解答】解:∵()2=3,∴3的平方根是为.故答案为:±.10.取=1.4142135623731…的近似值,若要求精确到0.01,则= 1.41.【考点】实数;近似数和有效数字.【分析】利用精确值的确定方法四舍五入,进而化简求出答案.【解答】解:∵=1.4142135623731…的近似值,要求精确到0.01,∴=1.41.故答案为:1.41.11.据统计,近几年全世界森林面积以每年约1700万公顷的速度消失,为了预测未来20年世界森林面积的变化趋势,可选用折线统计图表示收集到的数据.【考点】统计图的选择.【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.【解答】解:为了预测未来20年世界森林面积的变化趋势,可选用折线统计图表示收集到的数据.故答案为:折线.12.如图,AC⊥CB,AD⊥DB,要使△ABC≌△ABD,可补充的一个条件是AC=AD (答案不唯一).【考点】全等三角形的判定.【分析】此题是一道开放型的题目,答案不唯一,如AD=AC,由HL得出Rt△ABC ≌Rt△ABD即可.【解答】解:添加条件:AC=AD;理由如下:∵AC⊥CB,AD⊥DB,∴∠C=∠D=90°,在Rt△ABC和Rt△ABD中,,∴Rt△ABC≌Rt△ABD(HL);故答案为:AC=AD(答案不唯一).13.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得,关于x,y的二元一次方程组的解是.【考点】一次函数与二元一次方程(组).【分析】由图可知:两个一次函数的交点坐标为(﹣4,﹣2);那么交点坐标同时满足两个函数的解析式,而所求的方程组正好是由两个函数的解析式所构成,因此两函数的交点坐标即为方程组的解.【解答】解:函数y=ax+b和y=kx的图象交于点P(﹣4,﹣2),即x=﹣4,y=﹣2同时满足两个一次函数的解析式.所以关于x,y的方程组的解是.故答案为:.14.如图,在△ABC中,AD⊥BC于D点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为7.5.【考点】轴对称的性质.【分析】根据题意,观察可得:△ABC关于AD轴对称,且图中阴影部分的面积为△ABC面积的一半,先求出△ABC的面积,阴影部分的面积就可以得到.【解答】解:根据题意,阴影部分的面积为三角形面积的一半,∵S=×BC•AD=×6×5=15,△ABC∴阴影部分面积=×15=7.5.15.一个三角形三边长的比为3:4:5,它的周长是24cm,这个三角形的面积为24cm2.【考点】勾股定理的逆定理.【分析】首先设三边长为3xcm,4xcm,5xcm,根据勾股定理逆定理可证出∠C=90°,根据周长为24cm可得3x+4x+5x=24,再解可得x的值,进而可得两直角边长,然后再计算出面积即可.【解答】解:设三边长为3xcm,4xcm,5xcm,∵(3x)2+(4x)2=(5x)2,∴AC2+BC2=AB2,∴∠C=90°,∵周长为24cm,∴3x+4x+5x=24,解得:x=2,∴3x=6,4x=8,∴它的面积为:×6×8=24(cm2),故答案为:24.16.下列事件:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球;②随意调查1位青年,他接受过九年制义务教育;③花2元买一张体育彩票,喜中500万大奖;④抛掷1个小石块,石块会下落.估计这些事件的可能性大小,并将它们的序号按从小到大排列:①③②④.【考点】可能性的大小.【分析】直接利用事件发生的概率大小分别判断得出答案.【解答】解:①从装有1个红球和2个黄球的袋子中摸出的1个球是白球,是不可能事件,发生的概率为0;②随意调查1位青年,他接受过九年制义务教育,发生的概率接近1;③花2元买一张体育彩票,喜中500万大奖,发生的概率接近0;④抛掷1个小石块,石块会下落,是必然事件,发生的概率接为1,根据这些事件的可能性大小,它们的序号按从小到大排列:①③②④.故答案为:①③②④.17.小聪用刻度尺画已知角的平分线,如图,在∠MAN两边上分别量取AB=AC,AE=AF,连接FC,EB交于点D,作射线AD,则图中全等的三角形共有4对.【考点】全等三角形的判定.【分析】先由SAS证得△ABE≌△ACF得∠ABD=∠ACF,再由ASA证得△BDF≌△CDE得BD=CD,最后由SSS证得△ABD≌△ACD,△AFD≌△AED得证.【解答】解:∵AB=AC,AE=AF,∠CAB为公共角,∴△ABE≌△ACF,得∠ABD=∠ACF,∠AFC=∠AEB,∴BF=CE,又∠BFD=∠CED,∴△BDF≌△CDE得DF=DE,∴△ABD≌△ACD,△AFD≌△AED(SSS),故图中全等的三角形共有4对;故答案为:418.如图,点M是直线y=2x+3上的动点,过点M作MN垂直于x轴于点N,y 轴上是否存在点P,使△MNP为等腰直角三角形,请写出符合条件的点P的坐标(0,0),(0,1),(0,),(0,﹣3).【考点】一次函数综合题.【分析】分四种情况考虑:当M运动到(﹣1,1)时,ON=1,MN=1,由MN ⊥x轴,以及ON=MN可知,(0,0)和(0,1)就是符合条件的两个P点;又当M运动到第三象限时,要MN=MP,且PM⊥MN,求出此时P的坐标;如若MN 为斜边时,则∠ONP=45°,所以ON=OP,求出此时P坐标;又当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,求出此时P坐标,综上,得到所有满足题意P的坐标.【解答】解:当M运动到(﹣1,1)时,ON=1,MN=1,∵MN⊥x轴,所以由ON=MN可知,(0,0)和(0,1)就是符合条件的两个P 点;又∵当M运动到第三象限时,要MN=MP,且PM⊥MN,设点M(x,2x+3),则有﹣x=﹣(2x+3),解得x=﹣3,所以点P坐标为(0,﹣3).如若MN为斜边时,则∠ONP=45°,所以ON=OP,设点M(x,2x+3),则有﹣x=﹣(2x+3),化简得﹣2x=﹣2x﹣3,这方程无解,所以这时不存在符合条件的P点;又∵当点M′在第二象限,M′N′为斜边时,这时N′P=M′P,∠M′N′P=45°,设点M′(x,2x+3),则OP=ON′,而OP=M′N′,∴有﹣x=(2x+3),解得x=﹣,这时点P的坐标为(0,).综上,符合条件的点P坐标是(0,0),(0,),(0,﹣3),(0,1).故答案为:(0,0),(0,1),(0,),(0,﹣3).三、解答题(本大题共有7小题,共64分.解答时应写出文字说明、推理过程或演算步骤)19.计算:(1)求x的值:(x﹣1)2=25;(2)计算:﹣+.【考点】实数的运算;平方根.【分析】(1)方程利用平方根定义开方即可求出x的值;(2)原式利用算术平方根,以及立方根定义计算即可得到结果.【解答】解:(1)开方得:x﹣1=5或x﹣1=﹣5,解得:x=﹣4或x=6;(2)原式=5﹣(﹣3)+=5+3+0.5=8.5.20.为保证中小学生每天锻炼一小时,涟水县某中学开展了形式多样的体育活动项目,小明对某班同学参加锻炼的情况进行了统计,并绘制了下面的统计图(1)和图(2).(1)某班同学的总人数为50人;(2)请根据所给信息在图(1)中将表示“乒乓球”项目的图形补充完整;(3)扇形统计图(2)中表示”篮球”项目扇形的圆心角度数为144°.【考点】条形统计图;扇形统计图.【分析】(1)由篮球的人数除以占的百分比求出学生总数即可;(2)根据学生总数求出乒乓球的人数,以及占的百分比,补全统计图即可;(3)根据360乘以篮球的百分比即可得到结果.【解答】解:(1)根据题意得:20÷40%=50(人);(2)乒乓球的人数为50﹣(20+10+15)=5(人),百分比为×100%=10%;补全统计图如下:(3)根据题意得:360°×40%=144°.故答案为:(1)50;(3)144°21.如图是规格为8×8的正方形网格,每个小方格都是边长为1的正方形,请在所给网格中按下列要求操作:(1)在网格中建立平面直角坐标系,使A点坐标为(﹣2,4);(2)在第二象限内的格点(网格线的交点)上画一点C,使点C与线段AB组成一个以AB为底的等腰三角形,且腰长是无理数,则C点坐标是(﹣1,1);(3)画出△ABC关于y轴对称的△A′B′C′.【考点】作图-轴对称变换;等腰三角形的判定.【分析】(1)根据A点坐标先确定原点位置,然后画出坐标系即可;(2)经过AB的中点,画垂直于AB的直线,再由腰长是无理数确定C点位置;(3)首先确定A、B、C三点关于y轴对称点的位置,然后再连接即可.【解答】解:(1)如图所示,建立平面直角坐标系;(2)点C的坐标为(﹣1,1),故答案为:(﹣1,1);(3)△A'B'C'如图所示.22.如图,△ABC中,AB=AC,AB的垂直平分线DE分别交AC、AB于点D、E.(1)若∠A=50°,求∠CBD的度数;(2)若AB=8,△CBD周长为13,求BC的长.【考点】线段垂直平分线的性质;等腰三角形的性质.【分析】(1)根据三角形内角和定理求出∠ABC=∠C=65°,根据线段垂直平分线的性质得到DA=DB,求出∠ABD的度数,计算即可;(2)根据线段垂直平分线的性质和三角形的周长公式计算即可.【解答】解:(1)∵AB=AC,∠A=50°,∴∠ABC=∠C=65°,又∵DE垂直平分AB,∴DA=DB,∴∠ABD=∠A=50°,∴∠DBC=15°;(2)∵DE垂直平分AB,∴DA=DB,∴DB+DC=DA+DC=AC,又∵AB=AC=8,△CBD周长为13,∴BC=5.23.教学实验:画∠AOB的平分线OC.(1)将一块最够大的三角尺的直角顶点落在OC的任意一点P上,使三角尺的两条直角边分别于OA,OB交于E,F(如图①).度量PE、PF的长度,PE=PF (填>,<,=);(2)将三角尺绕点P旋转(如图②):①PE与PF相等吗?若相等请进行证明,若不相等请说明理由;②若OP=,请直接写出四边形OEPF的面积:1.【考点】全等三角形的判定与性质.【分析】(1)由题意容易得出结果;(2)①把三角尺绕点P顺时针旋转,使三角尺的两条直角边分别与OA,OB垂直于M、N,证出四边形OMPN是正方形,由ASA证明△PEM≌△PFN,得出对应边相等即可.②由①得出四边形OMPN是正方形,△PEM≌△PFN,由正方形的性质得出OM=ON=OP=1,四边形OEPF的面积=正方形OMPN的面积=OM2=1即可.【解答】(1)解:PE=PF;故答案为:=;(2)解:①PE=PF;理由如下:把三角尺绕点P顺时针旋转,使三角尺的两条直角边分别与OA,OB垂直于M、N,如图所示:则∠PME=∠PNF=90°,四边形OMPN是矩形∵OP平分∠AOB,∴PM=PN,∴四边形OMPN是正方形,∵∠AOB=∠PME=∠PNF=90°,∴∠MPN=90°,∵∠EPF=90°,∴∠MPE=∠FPN,在△PEM和△PFN中∴△PEM≌△PFN(ASA),∴PE=PF.②由①得:四边形OMPN是正方形,△PEM≌△PFN,∴OM=ON=OP=1,四边形OEPF的面积=正方形OMPN的面积=OM2=1;故答案为:1.24.某中学九年级甲、乙两班商定举行一次远足活动,A、B两地相距10千米,甲班从A地出发匀速步行到B地,乙班从B地出发匀速步行到A地.两班同时出发,相向而行.设步行时间为x小时,甲、乙两班离A地的距离分别为y1、y2千米,y1、y2与x的函数关系图象如图所示.根据图象解答下列问题:(1)直接写出,y1、y2与x的函数关系式;(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离A地多少千米?(3)甲、乙两班首次相距4千米时所用时间是多少小时?【考点】一次函数的应用.【分析】(1)由图象直接写出函数关系式;(2)若相遇,甲乙走的总路程之和等于两地的距离;【解答】解:(1)根据图可以得到甲2.5小时,走10千米,则每小时走4千米,则函数关系是:y1=4x,乙班从B地出发匀速步行到A地,2小时走了10千米,则每小时走5千米,则函数关系式是:y2=﹣5x+10.(2)由图象可知甲班速度为4km/h,乙班速度为5km/h,设甲、乙两班学生出发后,x小时相遇,则4x+5x=10,解得x=.当x=时,y2=﹣5×+10=,∴相遇时乙班离A地为km.(3)甲、乙两班首次相距4千米,即两班走的路程之和为6km,故4x+5x=6,解得x=h.∴甲、乙两班首次相距4千米时所用时间是h.25.如图,在平面直角坐标系xOy中,已知点A(﹣1,0),点B(0,2),点C (3,0),直线a为过点D(0,﹣1)且平行于x轴的直线.(1)直接写出点B关于直线a对称的点E的坐标(0,﹣4);(2)若P为直线a上一动点,请求出△PBA周长的最小值和此时P点坐标;(3)若M为直线a上一动点,且S△ABC =S△MAB,请求出M点坐标.【考点】轴对称-最短路线问题;坐标与图形性质.【分析】(1)根据点关于已知直线对称的点的特点即可得到结论;(2)由B、E关于直线a对称,得到PB=PE,于是得到△PBA周长=AB+BP+PA=AB+PE+PA,根据两点之间线段最段,于是得到△PBA周长的最小值=AB+AE=,求得直线AE的解析式:y=﹣4x﹣4,即可得到结论;(3)设M(m,﹣1),由S△ABC =S△MAB,得到点M在过C且平行于AB的直线上,通过直线AB的解析式为:y=2x+2,设直线CM的解析式为:y=2x+n,即可得到结论.【解答】解:(1)∵B(0,2),D(0,﹣1),∴BD=3,∵直线a为过点D(0,﹣1)且平行于x轴的直线.∴BD⊥直线a,∴点B关于直线a对称的点E的坐标(0,﹣4);故答案为:(0,﹣4);(2)∵B、E关于直线a对称,∴PB=PE,∴△PBA周长=AB+BP+PA=AB+PE+PA∵两点之间线段最段,∴△PBA周长的最小值=AB+AE=,∴直线AE的解析式:y=﹣4x﹣4,当y=﹣1时,x=,∴P点坐标(,﹣1);(3)设M(m,﹣1),当M在第四象限,∵S△ABC =S△MAB,∴点M在过C且平行于AB的直线上,∵直线AB的解析式为:y=2x+2,设直线CM的解析式为:y=2x+n,∴0=2×3+n,∴n=﹣6,∴直线CM的解析式为:y=2x﹣6,∴m=,∴M(,﹣1),当M在第三象限,直线AB与直线a交于G(﹣,﹣1),∴×(﹣﹣m)×(2+1)﹣×(﹣﹣m)×1=×4×2,∴m=﹣5.5,∴M(﹣5.5,﹣1).。