பைடு நூலகம் 4.直线方程的五种形式
名 称 已知条件
点斜式 斜截式
斜率k与点 (x1,y1) 斜率k与直 线在y轴上 的截距b
方程
适用范围
_y_-_y_1_=_k_(_x_-_x_1)_ 不含直线x=x1
_______ y=kx+b
不含垂直于x 轴的直线
名 称 已知条件
方程
适用范围
两点式 截距式
两点(x1,y1), (x2,y2)
答案:
∪[5,(+∞ ), 1 ] 2
( , 1 ] 2
【一题多解】解答本题,还有如下解法: 设直线l的斜率为k, 则直线l的方程为y-2=k(x+1), 即kx-y+k+2=0.
因为A,B两点在直线的两侧或其中一点在直线l上,
所以(-2k+3+k+2)(3k-0+k+2)≤0,
即(k-5)(4k+2)≥0,所以k≥5或k≤
2.若将本例题(2)中点P的坐标改为P(-3,2),则直线l的 斜率的取值范围是什么?
【解析】因为P(-3,2),A(-2,-3),B(3,0),则
k PA
3 2
2 3
5,
k PB
3
0
2
3
1 3
,
借助图形可知,直线l的斜率的取值范围为 [5, 1]. 3
【变式训练】已知△ABC的三个顶点为A(-3,0), B(2,1),C(-2,3),求: (1)BC所在直线的方程. (2)BC边的垂直平分线DE的方程. (3)过点A与BC平行的直线的方程.
【解析】(1)因为直线BC经过B(2,1)和C(-2,3)两点,