初中数学《圆》知识归纳
- 格式:doc
- 大小:20.50 KB
- 文档页数:1
《圆》整章知识点复习《圆》章节知识点复习名词解释:1.弦——连接圆上任意两点的线段叫做弦。
2.弧——圆上任意两点间的部分叫做圆弧,简称弧。
3.半圆——圆的任意一条直径的两个端点把圆分成两条弧,第一条弧都叫做半圆。
4.等圆——能够重合的两个圆叫做等圆。
5.等弧——在同圆或等圆中,能够互相重合的弧叫做等弧。
6.圆心角——顶点在圆心的角叫做圆心角。
7.圆周角——顶点在圆上,且两边都与圆相交的角叫做圆周角。
8.圆内接多边形——如果一个多边形的所有顶点都在同一个圆上,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。
9.外心——外接圆的圆心是三角形三条边垂直平分线的交点,叫做这个三角形外心。
10.内心——三角形三条角平分线的交点,叫做三角形的内心。
11.内切圆——与三角形各边相切的圆叫做三角形的内切圆。
12.割线——直线和圆有两个公共点(直线和圆相交),这条直线叫做圆的割线。
13.切线——直线和圆只有一个公共点(直线和圆相切),这条直线叫做圆的切线,这个点叫做切点。
14.切线长——经边圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长。
15.圆心距——两个圆圆心的距离叫做圆心距。
16.中心——正多边形的外接圆的圆心叫做这个正多边形的中心。
17.中心角——正多边形每一边所对的圆心角叫做正多边形的中心角。
18.边心距——中心到正多边形的一边的距离叫做正多边形的边心距。
19.扇形——由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
20.母线——连接圆锥顶点和底面圆周上任意一点的线段叫做圆锥的母线。
一、圆的概念集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);(补充)3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。
初中数学圆的知识点总结归纳圆是数学中一个重要的几何概念,它在初中数学中占据着重要的地位。
以下是关于圆的知识点的总结归纳:一、圆的基本概念和性质:1.定义:圆是平面上一点固定到另一点的所有点的轨迹,其中固定点称为圆心,轨迹上的所有点到圆心的距离称为半径。
2.重要性质:-圆的直径是任意两点间的最大距离,它等于半径的两倍。
-圆的弦是圆上任意两点的连线段,弦的长度小于或等于直径的长度。
-圆的弧是圆上任意两点间的部分。
-圆心角是以圆心为顶点的角,它的角度等于所对应的弧的角度。
-弧长是弧上的一段连续的部分,它是整个圆周长的一部分。
-弦长是弦上的一段连线段的长度。
二、圆的相关计算:1.圆的周长:圆的周长等于圆周上一个完整的弧的长度,即C=2πr,其中C表示周长,r表示半径,π是一个无理数,约等于3.142.圆的面积:圆的面积是圆内所有点的集合,圆的面积等于πr²,其中π是一个无理数,约等于3.143.弧长公式:给定圆的半径r和圆心角的度数θ,弧长等于2πr乘以圆心角度数的比值,即L=2πr×(θ/360°)。
三、圆与其他图形的关系:1.圆与正方形:正方形的对角线是圆的直径,正方形的边长是圆的半径。
2.圆与矩形:矩形的长和宽是圆的直径,矩形的边长是圆的半径。
3.圆与三角形:圆的外接圆与三角形的三条边相切,圆的内切圆与三角形的三边的中点相切。
4.圆与多边形:如果一个多边形的所有顶点都在同一个圆上,则称这个圆为该多边形的外接圆;如果一个多边形的每条边都与同一个圆相切,则称这个圆为该多边形的内切圆。
四、圆的位置关系:1.同心圆:共用一个圆心的两个或多个圆称为同心圆,它们的半径相等,但圆周和面积不同。
2.内切圆和外切圆:如果两个圆恰好相切于一个点,则这两个圆是内切圆和外切圆,内切圆的半径小于外切圆的半径。
3.相交圆:两个圆在不止一个点上相交,这种情况有两种:交于两个点的情况和交于一个点的情况。
初二数学圆的知识点归纳总结在初中数学中,圆是一个重要的几何概念,它是指平面上所有到定点的距离都相等的点的集合。
在学习圆的知识时,我们需要掌握圆的基本性质、公式和相关定理。
本文将对初二数学圆的知识点进行归纳总结,帮助大家更好地理解和掌握这一内容。
一、圆的基本性质1. 圆的定义:圆是指平面上到定点O的距离等于r的点的集合,O 为圆心,r为半径。
2. 圆的元素:圆心、半径、直径、弦、弧、切线等。
3. 圆的稳定性:圆心和半径确定一个圆,改变圆心或半径会得到不同的圆。
二、圆的公式1. 圆的周长公式:圆的周长C等于2πr,其中r为半径。
2. 圆的面积公式:圆的面积A等于πr²,其中r为半径。
3. 圆心角的弧度制:圆心角的弧度等于弧长与半径的比值。
三、圆的相关定理1. 同一个圆或等圆的弧长的度数是相等的。
2. 在同一个圆或等圆中,以圆心为顶点的角都是直角,其对应的弧都是半圆。
3. 圆内接四边形的两个对角和为180°。
4. 在一个圆中,半径垂直于弦,且七分弦等分圆的弧。
四、圆的常见问题类型1. 求圆的面积和周长:根据给定的半径或直径,应用相应的公式计算出圆的面积和周长。
2. 求圆的弧长:根据给定的半径或角度,利用弧长公式计算出圆的弧长。
3. 利用圆的性质解决几何问题:如证明两个三角形相似或全等、证明线段平行或垂直等等。
五、例题解析1. 已知圆的直径长为10cm,求其周长和面积。
解答:半径r = 直径/2 = 10/2 = 5cm,根据周长公式C = 2πr,将r = 5代入得到C = 2π * 5 = 10π cm,所以周长为10π cm。
根据面积公式A = πr²,将r = 5代入得到A = π * 5² = 25π cm²,所以面积为25π cm²。
2. 圆O的半径r = 8cm,弧AB所对的圆心角θ为60°,求弧AB的弧长。
解答:由弧长公式L = θ/360° * 2πr,将θ = 60°,r = 8代入,得到L = 60/360° * 2π * 8 = 4π cm,所以弧AB的弧长为4π cm。
初中数学知识点归纳圆初中数学中与圆相关的知识点有很多,包括圆的定义、圆的性质、弦、切线、弧长、扇形、面积等。
下面将详细介绍这些知识点。
一、圆的定义和性质1.圆的定义:圆是平面上距离其中一定点(圆心)距离相等的所有点的集合。
2.圆的性质:(1)圆心到圆上任意一点的距离都相等。
(2)具有相同半径的两个圆互为同心圆。
(3)同心圆的内圆的半径小于外圆的半径。
二、弦和切线1.弦:弦是圆上的两个点之间的线段。
弦的长度可以通过通过勾股定理计算。
2.弦的性质:(1)圆心角相等的弦相等。
(2)等长的弦对应的圆心角相等。
(3)等长的弦与半径相等的圆心角相等。
3.切线:切线是圆与圆心的一条直线,它只与圆相交于一个点,这个点称为切点。
4.切线的性质:(1)切线与半径的夹角是直角(垂直)。
(2)切点到圆心的距离与切线的长度相等。
三、弧、弧长和扇形1.弧:弧是圆上两个点之间的一段弧线。
2.弧的性质:(1)相等弧所对的圆心角相等。
(2)圆的一条弧上的任意两个点与圆心和其他点构成的圆心角相等。
3.弧长:弧长是弧上的一段弧线的长度,可以通过圆的周长与圆心角的比例来计算。
4.扇形:扇形是由圆心、圆上两个点和相应的弧所构成的图形。
5.扇形的性质:扇形的面积可以通过扇形的圆心角与整个圆所对应的圆心角的比例来计算。
四、圆的面积1.圆的面积公式:圆的面积可以通过半径或直径来计算,公式如下:圆的面积=π*半径²=π*(直径/2)²2.π的近似值:π是一个无理数,通常取近似值3.14或22/7以上就是初中数学中与圆相关的知识点的归纳,涵盖了圆的定义和性质、弦和切线、弧、弧长和扇形、圆的面积等内容。
通过学习和掌握这些知识点,可以更好地理解和解决与圆相关的数学问题。
了解这些知识,不仅有助于学生提高数学水平,还能够培养学生的逻辑思维能力和解决问题的能力。
初中数学圆知识点1.圆的定义(1)在一个平面内,线段OA绕它的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆。
固定的端点O 叫做圆心,线段OA叫做半径,如右图所示。
(2)圆可以看作是平面内到定点的距离等于定长的点的集合,定点为圆心,定长为圆的半径。
说明:圆的位置由圆心确定,圆的大小由半径确定,半径相等的两个圆为等圆。
2.圆的有关概念(1)弦:连结圆上任意两点的线段。
(如右图中的CD)。
(2)直径:经过圆心的弦(如右图中的AB)。
直径等于半径的2倍。
(3)弧:圆上任意两点间的部分叫做圆弧。
(如右图中的CD、CAD)其中大于半圆的弧叫做优弧,如CAD,小于半圆的弧叫做劣弧。
(4)圆心角:如右图中∠COD就是圆心角。
3.圆心角、弧、弦、弦心距之间的关系。
(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦的弦心距相等。
(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。
4.过三点的圆。
(1)定理:不在同一条直线上的三点确定一个圆。
(2)三角形的外接圆圆心(外心)是三边垂直平分线的交点。
5.垂径定理。
垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推论:(1)①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;②弦的垂直平分线经过圆心,并且平分弦所对的两条弧;③平分弦所对的一条弦的直径,垂直平分弦,并且平分弦所对的另一条弧。
(2)圆的两条平行弦所夹的弧相等。
6.与圆相关的角(1)与圆相关的角的定义①圆心角:顶点在圆心的角叫做圆心角②圆周角:顶点在圆上且两边都和圆相交的角叫做圆周角。
③弦切角:顶点在圆上,一边和圆相交,另一连轴和圆相切的角叫做弦切角。
(2)与圆相关的角的性质AB①圆心角的度数等于它所对的弦的度数;②一条弧所对的圆周角等于它所对的圆心角的一半; ③同弧或等弧所对的圆周角相等; ④半圆(或直径)所对的圆周角相等; ⑤弦切角等于它所夹的弧所对的圆周角;⑥两个弦切角所夹的弧相等,那么这两个弦切角也相等;⑦圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。
初中数学圆知识点总结一、圆的基本概念1. 圆的定义圆是平面上到一个定点距离等于定长的所有点的集合。
这个定点称为圆心,定长称为半径。
2. 圆的元素一个圆包括以下几个元素:- 圆心:圆的中心点,用O表示;- 半径:以圆心为端点的线段,用r表示;- 直径:穿过圆心的线段,用d表示;- 弦:圆上的两点间的线段,用AB表示;- 弦长:弦所对应的圆心角的对边,用l表示;- 弧:圆上的弦所对应的曲线部分。
3. 圆的相关术语(1)圆周:圆的边界。
(2)圆内:圆的内部。
(3)圆外:圆的外部。
4. 圆的定理定理1:圆的半径相等。
定理2:圆的直径是圆内任意两点之间的最长的线段。
二、圆的性质1. 圆心角圆心角是以圆心作为顶点的角,它所对应的弧的长度就是这个圆心角的度数。
圆心角的度数是以弧所对应的圆周角分之方式来确定的。
圆心角的度数等于这个弧长所对应的圆周角的度数。
2. 圆周角圆周角是以圆的周长作为顶点的角。
它的度数是圆心角的度数的两倍。
3. 切线切线是与圆相切的直线。
与圆相切的直线都有与圆心的连线垂直。
4. 弦长定理两条相同弦所对应的圆心角相等。
两条不同弦所对应的圆心角不等。
5. 弧长定理圆周角相等的弧相等。
圆周角不相等的弧不等。
6. 直角三角形中的圆如果一个直角三角形的两条直角边刚好是一个直径和一个切线,那么这个三角形是直径的垂直三角形。
7. 圆的垂直平分弦定理如果一个直径所对应的两个弦长度相等,那么这个直径垂直平分这个弦。
8. 点到圆的距离点到圆的距离是指点到圆的圆周上的任意一点的距离。
圆内的点到圆的距离为正。
圆外的点到圆的距离为负。
9. 切线定理当直线与圆相切时,切线与半径的夹角是90度。
三、圆的周长和面积1. 圆的周长圆的周长就是圆的边界的长度,也就是圆的长度。
圆的周长可以用公式2πr来表示,其中r是圆的半径。
2. 圆的面积圆的面积就是圆的内部的面积。
圆的面积可以用公式πr²来表示,其中r是圆的半径。
初中数学知识归纳圆的性质与运算圆是初中数学中常见的几何图形,具有独特的性质和运算规则。
了解圆的性质与运算对于学习数学和解决相关问题非常重要。
本文将对初中数学中与圆相关的知识进行归纳总结。
一、圆的性质1. 定义:圆是平面上所有到圆心距离相等的点组成的图形。
2. 圆的要素:(1) 圆心:圆的中心点,通常用大写字母O表示。
(2) 半径:以圆心为中心,连接圆心和圆上任意一点的线段,称为半径,通常用小写字母r表示。
圆的半径相等。
(3) 直径:通过圆心的两个点,称为直径,通常用大写字母D表示。
直径等于半径的两倍。
3. 圆的常见关系:(1) 切线与半径的关系:切线与半径的交点处的切线垂直于该半径。
(2) 弦:连接圆上任意两点的线段称为弦。
半径是弦的中垂线。
(3) 弧:圆上两点间的弧。
圆上所有弧的长度都是360度。
(4) 圆周角:以圆心为顶点的角,所对的弧的弧度数称为圆周角。
(5) 正切线:与切点处的切线相交,且不在圆内的直线。
二、圆的运算1. 圆的周长:圆的周长等于圆周上的弧长。
圆的周长公式为C=2πr,其中π≈3.14,r为半径。
2. 圆的面积:圆的面积是圆内所有点到圆心的距离之和。
圆的面积公式为A=πr²。
3. 圆的扇形面积:扇形是以圆心为基准的一部分圆,扇形的面积可以通过圆的面积公式和圆周角计算得出。
扇形面积公式为S=(θ/360)πr²,其中θ为圆心角的度数。
4. 圆柱体的体积:圆柱体是由圆形底面和侧面围成的立体图形。
圆柱体体积公式为V=πr²h,其中r为底面半径,h为高。
5. 图形的相似:如果两个图形具有相同的形状但大小不同,我们称它们为相似图形。
对于圆来说,它们的半径比例相等,面积比例是半径比例的平方。
三、圆的应用1. 圆的运动:圆在平面上可以进行旋转、平移等运动。
这些运动可以通过圆的几何性质进行分析和求解。
2. 圆的测量:利用圆的性质和运算规则,可以进行圆的周长、面积等测量问题的求解。
A图5圆的总结一 集合:圆:圆可以看作是到定点的距离等于定长的点的集合; 圆的外部:可以看作是到定点的距离大于定长的点的集合; 圆的内部:可以看作是到定点的距离小于定长的点的集合二 轨迹:1、到定点的距离等于定长的点的轨迹是:以定点为圆心,定长为半径的圆;2、到线段两端点距离相等的点的轨迹是:线段的中垂线;3、到角两边距离相等的点的轨迹是:角的平分线;4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线三 位置关系:1点与圆的位置关系:点在圆内 d<r 点C 在圆内 点在圆上 d=r 点B 在圆上 点在此圆外 d>r 点A 在圆外2 直线与圆的位置关系:直线与圆相离 d>r 无交点 直线与圆相切 d=r 有一个交点 直线与圆相交 d<r 3 圆与圆的位置关系:外离(图1) 无交点外切(图2) 相交(图3) 内切(图4) 内含(图5) 无交点DBB ABA四 垂径定理:垂径定理:垂直于弦的直径平分弦且平分弦所对的弧 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:①AB 是直径 ②AB ⊥CD ③CE=DE ④⑤ 推论2:圆的两条平行弦所夹的弧相等。
即:在⊙O 中,∵AB ∥CD五 圆心角定理六 圆周角定理圆周角定理:同一条弧所对的圆周角等于它所对的圆心的角的一半即:∵∠AOB 和∠ACB 是 所对的圆心角和圆周角 ∴∠AOB=2∠ACB圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧即:在⊙O 中,∵∠C 、∠D 都是所对的圆周角∴∠C=∠D推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径即:在⊙O 中,∵AB 是直径 或∵∠C=90° ∴∠C=90° ∴AB 是直径推论3:三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形»»BC BD =»»AC AD =P即:在△ABC 中,∵OC=OA=OB∴△ABC 是直角三角形或∠C=90° 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。
初中数学圆的知识点总结初中数学圆的知识点总结【一】一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O 叫圆心,线段OA叫半径。
由圆的意义可知:圆上各点到定点〔圆心O〕的间隔等于定长的点都在圆上。
就是说:圆是到定点的间隔等于定长的点的集合,圆的内部可以看作是到圆。
心的间隔小于半径的点的集合。
圆的外部可以看作是到圆心的间隔大于半径的点的集合。
连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。
圆上任意两点间的局部叫圆弧,简称弧。
圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。
由弦及其所对的弧组成的圆形叫弓形。
圆心一样,半径不相等的两个圆叫同心圆。
可以重合的两个圆叫等圆。
同圆或等圆的半径相等。
在同圆或等圆中,可以互相重合的弧叫等弧。
二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理不在同一直线上的三个点确定一个圆。
经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。
2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。
例如:求证三角形中最多只有一个角是钝角。
证明:设有两个以上是钝角那么两个钝角之和》180°与三角形内角和等于180°矛盾。
不可能有二个以上是钝角。
即最多只能有一个是钝角。
三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。
垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
推理1:平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对两条弧。
弦的垂直平分线经过圆心,并且平分弦所对的两条弧。
平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一个条弧。
推理2:圆两条平行弦所夹的弧相等。
四、圆心角、弧、弦、弦心距之间的关系圆是以圆心为对称中心的中心对称图形。
初中数学知识归纳圆的概念和性质圆是初中数学中的一个重要概念,它有许多独特的性质。
下面将对圆的概念和性质进行归纳。
一、圆的概念圆是由平面上所有到一个固定点的距离都相等的点的集合。
固定点叫做圆心,等距离叫做半径。
圆可以用圆心和半径表示,通常表示为∠O(r),其中O表示圆心,r表示半径。
二、圆的性质1. 圆上任意两点的距离都相等。
即圆上的任意两点A和B,都有AB = r,其中r为圆的半径。
2. 圆的直径是圆上任意两点间的最大距离。
直径d等于半径的两倍,即d = 2r。
3. 相交弧:圆上的两条弧如果有一个公共点,则称它们为相交弧。
4. 弧度:圆心角对应的弧长与圆的半径的比值叫做弧度。
常用弧度符号表示为θ。
5. 弧长:圆周上任意两点间的弧长等于该圆心角的弧度数乘以圆的半径。
即L = θr。
三、圆的相关公式1. 圆的面积公式:S = π * r²,其中S表示圆的面积,r表示半径。
π是一个常数,约等于3.14。
2. 圆的周长公式:C = 2π * r,其中C表示圆的周长,r表示半径。
3. 弓形的面积公式:A = 1/2 * θ * r²,其中A表示弓形的面积,θ表示圆心角的弧度数,r表示半径。
4. 弦与弦的关系公式:如果两条弦相交,且其中一条被另一条平分,则两条弦的乘积等于交叉部分之间的弦的乘积。
即AB * CD = BC * AD。
四、圆的常见问题类型1. 判断关系:判断两个图形是否为圆,判断是否为同心圆等。
2. 计算问题:根据已知条件计算圆的面积、周长等。
3. 推理问题:利用圆的性质进行推理,解决几何问题。
4. 证明问题:根据已知条件进行推导,证明一个几何命题。
5. 应用问题:将圆的概念和性质应用于生活实际,解决实际问题。
五、常见解题思路1. 利用定义:根据圆的定义进行判断或运用相关公式进行计算。
2. 运用性质:根据圆的性质推导出结论,解决几何问题。
3. 运用变换:将圆的问题转化为其他图形的问题,通过转换求解。
初中数学《圆》重点知识归纳
1、对称性:
a:圆的对称性,虽然其它一些图形也是有,但圆有无数条对称轴这个特性其它图形所没有的,垂径定理,切线长定理,及正n边形的计算都应用到了这个特性。
b:旋转不变性,圆心角、弧、弦、弦心距关系,遇到有关圆习题,要抓住这个特性充分利用,许多问题可以找到解题思路。
2、三个角:圆心角、圆周角,以及圆内接四边形的外角(对角)这是在有关圆的问题中,找角相等必不可少的方法。
3、三个垂直:垂径定理,直径所对的圆周角,切线的性质它可以有效的把许多问题转化到直角三角形中,使问题得以解决。
4、四大关系:点与圆的位置关系,直线与圆的位置关系,圆与圆的位置关系,圆与正多边形的关系,掌握切线的判定和性质以及有关计算是重点。
5、有关计算问题:有关线段的计算,正多边形的计算,有关扇形及阴影面积的计算,以及圆柱、圆锥侧面展开图的计算。
6、圆中添辅助线一般方法:添与垂径定理相关的辅助线,添与切线有关的辅助线(创造直角的辅助线),添与圆内接四边形相关的辅助线;两圆相交时作公共弦,两圆相切时作分切线,总之添辅助线时,要构造和完善基本图形,切忌破坏图形的完整性。