第六节 极限存在准则 两个重要极限
- 格式:ppt
- 大小:1.05 MB
- 文档页数:26
极限存在准则与两个重要极限首先,我们来定义极限存在准则。
设函数f(x)在x=a的其中一去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当0<,x-a,<δ时,有,f(x)-L,<ε。
左极限:设函数f(x)在x=a的其中一左去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a-δ<x<a时,有,f(x)-L,<ε。
右极限:设函数f(x)在x=a的其中一右去心邻域内有定义,且有极限L,那么对于任意给定的正数ε,存在正数δ,使得当a<x<a+δ时,有,f(x)-L,<ε。
接下来,我们来介绍两个重要的极限存在准则。
1.夹逼准则(或夹挤准则):设函数f(x)在x=a的其中一去心邻域内有定义,且在这个去心邻域中,存在两个函数g(x)和h(x),满足g(x)≤f(x)≤h(x)。
若当x→a时,g(x)和h(x)的极限都是L,则函数f(x)在x=a处的极限也是L。
夹逼准则的直观意义是,如果一个函数在一些点附近被两个函数“夹住”,而这两个函数的极限是相等的,则原函数在该点也存在极限,并且极限等于夹逼的值。
2.单调有界准则:如果函数f(x)在x=a的其中一去心邻域内有定义,并且在这个去心邻域中是递增或递减的(即f’(x)≥0或f’(x)≤0),那么如果存在一个实数M,使得对于任意的x,都有f(x)≤M(或f(x)≥M),那么函数f(x)在x=a处存在极限。
单调有界准则的直观意义是,如果一个函数在一些点附近是单调递增或递减的,并且在该区间内被一个实数所界定,那么函数在该点存在极限。
这两个极限存在准则在微积分中具有重要的意义和应用。
在求解极限问题时,可以利用夹逼准则来确定极限的存在性。
而在证明一些极限存在的定理时,可以利用单调有界准则来进行证明。
总结起来,极限存在准则是用于确定函数在一些点是否存在极限的基本规则。
夹逼准则和单调有界准则是两个重要的应用极限存在准则,它们在微积分中有着广泛的应用。
第六节 极限存在准则 两个重要极限 ㈠本课的基本要求了解极限存在的两个准则(夹逼准则和单调有界准则),会用两个重要极限求极限。
㈡本课的重点、难点重点是两个重要极限,难点是用两个重要极限求极限 ㈢教学内容本节介绍判定极限存在的两个准则,并利用它们求出微积分中两个重要极限:1sin lim=→xxx 及 e x xx =⎪⎭⎫⎝⎛+∞→11lim一.夹逼准则准则Ⅰ 如果数列}{},{n n y x 及}{n z 满足下列条件:⑴),3,2,1( =≤≤n z x y n n n ,⑵a z a yn n nn ==∞→∞→lim lim ,,那么数列}{n x 极限存在,且a x n n =∞→lim 。
证 因a z a y n n →→,,所以根据数列极限的定义,∃>∀,0ε正整数1N ,当1N n >时,有ε<-a y n ;又∃正整数2N ,当2N n >时,有ε<-a z n 。
现在取},max{21N N N =,则当N n >时,有ε<-a y n ,ε<-a z n 同时成立,即εε+<<-a y a n ,εε+<<-a z a n 同时成立。
又因n x 介于n y 和n z 之间,所以当N n >时,有εε+<≤≤<-a z x y a n n n ,即ε<-a x n 成立,这就证明了a x n n =∞→lim 。
上述数列极限存在准则可以推广到函数的极限: 准则Ⅰ’ 如果⑴当),(0r x U x∈(或M x >)时,)()()(x h x f x g ≤≤ ⑵A x h A x g x x x x x x ==∞→→∞→→)(,)(lim lim )()(00,那么)(lim)(0x f x x x ∞→→存在,且等于A 。
准则Ⅰ及准则Ⅰ’称为夹逼准则。
准则不仅告诉我们怎样判定一个函数(数列)极限是否存在,同时也给了我们一种新的求极限的方法:即为了求得某一函数的极限,不直接求(比较困难)它的极限,而是把它夹在两个已知(易求的)有同一极限的函数之间,那么这个函数的极限必存在,且等于这个公共的极限。
两个重要极限的证明两个重要极限的证明第六节极限存在准则、两个重要极限教学目的:1 使学生掌握极限存在的两个准则;并会利用它们求极限;2使学生掌握利用两个重要极限求极限的方法;教学重点:利用两个重要极限求极限教学过程:一、讲授新课:准则I:如果数列满足下列条件:(i)对;(ii) 那么,数列的极限存在,且。
证明:因为,所以对,当时,有,即,对,当时,有,即,又因为,所以当时,有,即有:,即,所以。
准则I′如果函数满足下列条件:(i)当时,有。
(ii)当时,有。
那么当时,的极限存在,且等于。
第一个重要极限:作为准则I′的应用,下面将证明第一个重要极限:。
证明:作单位圆,如下图:设为圆心角,并设见图不难发现:,即:,即,(因为,所以上不等式不改变方向)当改变符号时,及1的值均不变,故对满足的一切,有。
又因为,所以而,证毕。
【例1】。
【例2】。
【例3】。
【例4】。
准则Ⅱ:单调有界数列必有极限如果数列满足:,就称之为单调增加数列;若满足:,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。
如果,使得:,就称数列为有上界;若,使得:,就称有下界。
准则Ⅱ′:单调上升,且有上界的数列必有极限。
准则Ⅱ″: 单调下降,且有下界的数列必有极限。
注1:由前已知,有界数列未必有极限,若加单调性,就有极限。
2:准则Ⅱ,Ⅱ′,Ⅱ″可推广到函数情形中去,在此不一一陈述了。
第二个重要极限:作为准则Ⅱ的一个应用,下面来证明极限是不存在的。
先考虑取正整数时的情形:对于,有不等式:,即:,即:(i)现令,显然,因为将其代入,所以,所以为单调数列。
(ii)又令,所以,即对,又对所以{ }是有界的。
由准则Ⅱ或Ⅱ′知存在,并使用来表示,即注1:关于此极限存在性的证明,书上有不同的方法,希望同学自己看!2:我们可证明:,具体在此不证明了,书上也有,由证明过程知:。
3:指数函数及自然对数中的底就是这个常数。
【例1】【例2】【例3】【例4】二、课堂练习:三、布置作业:来源网络搜集整理,仅作为学习参考,请按实际情况需要自行编辑。
两个极限存在准则和两个重要的极限1.两个极限存在准则(1) 夹逼准则:设a, b, c为实数,如果函数f(x)在a的一些左邻域内对于一切x都有h(x)≤f(x)≤g(x),且lim[x→a]h(x)=lim[x→a]g(x)=L,则必有lim[x→a]f(x)=L。
夹逼准则的本质是通过构造两个函数作为边界来确定原函数的极限。
(2) 单调有界准则:设函数f(x)在(a, b)上单调递增(递减),且在(a, b)上有界,则必有lim[x→a]f(x)=sup{f(x)}(或lim[x→a]f(x)=inf{f(x)})。
单调有界准则的基本思想是通过函数的单调性和有界性来确定极限。
(1) 无穷小极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=0,如果对于任意正数ε,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有,f(x),<ε,那么称函数f(x)在x=a处的极限为0。
无穷小极限的重要性在于它在微积分中有广泛应用。
例如,微分定义中的导数可以看作是函数在其中一点的极限,这也符合函数在该点的变化趋势比较明显。
无穷小极限的概念使得我们能够更好地描述和理解函数在其中一点的变化情况。
(2) 无穷大极限:设函数f(x)在x=a处有极限lim[x→a]f(x)=∞,如果对于任意正数M,存在对应的正数δ,使得对于所有满足0<,x-a,< δ的x,有f(x) > M,那么称函数f(x)在x=a处的极限为无穷大。
无穷大极限的重要性在于它可以帮助我们研究函数在其中一点的增长速度和趋势。
例如,在极限定义中,我们可以通过无穷大极限来刻画函数在其中一点的无限增长或无限逼近的情况。
此外,无穷大极限也在微积分中的积分定义中有重要的应用,帮助我们理解函数的积分和面积的概念。
综上所述,极限的存在准则和重要的极限是微积分中的重要概念。
了解它们的定义和应用可以帮助我们更好地理解和分析函数在其中一点的变化情况,为进一步研究微积分和数学分析打下坚实的基础。