大学考研高数复习资料-D1_6极限存在准则
- 格式:pdf
- 大小:833.63 KB
- 文档页数:16
2023考研数学高等数学每章知识点汇总精品高等数学基础知识篇一1、函数、极限与连续重点考查极限的计算、已知极限确定原式中的未知参数、函数连续性的讨论、间断点类型的判断、无穷小阶的比较、讨论连续函数在给定区间上零点的个数、确定方程在给定区间上有无实根。
2、一元函数积分学重点考查不定积分的计算、定积分的计算、广义积分的计算及判敛、变上限函数的求导和极限、利用积分中值定理和积分性质的证明、定积分的几何应用和物理应用。
3、一元函数微分学重点考查导数与微分的定义、函数导数与微分的计算(包括隐函数求导)、利用洛比达法则求不定式极限、函数极值与最值、方程根的个数、函数不等式的证明、与中值定理相关的证明、在物理和经济等方面的实际应用、曲线渐近线的求法。
4、向量代数与空间解析几何(数一)主要考查向量的运算、平面方程和直线方程及其求法、平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题等,该部分一般不单独考查,主要作为曲线积分和曲面积分的基础。
5、多元函数微分学重点考查多元函数极限存在、连续性、偏导数存在、可微分及偏导连续等问题、多元函数和隐函数的一阶、二阶偏导数求法、有条件极值和无条件极值。
另外,数一还要求掌握方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
6、多元函数积分学重点考查二重积分在直角坐标和极坐标下的计算、累次积分、积分换序。
此外,数一还要求掌握三重积分的计算、两类曲线积分和两种曲面积分的计算、格林公式、高斯公式及斯托克斯公式。
7、无穷级数(数一、数三)重点考查正项级数的基本性质和敛散性判别、一般项级数绝对收敛和条件收敛的判别、幂级数收敛半径、收敛域及和函数的求法以及幂级数在特定点的展开问题。
8、常微分方程及差分方程重点考查一阶微分方程的通解或特解、二阶线性常系数齐次和非齐次方程的特解或通解、微分方程的建立与求解。
此外,数三考查差分方程的基本概念与一介常系数线形方程求解方法。
2020考研数学:高数这些定理需牢记(一)对于考研数学来说,高数部分很重要,要想拿分,必须把一些定理记牢。
为此,整理了“2020考研数学:高数这些定理需牢记(一)”的文章,希望对大家有所帮助。
2020考研数学:高数这些定理需牢记(一)以下是2020考研数学:高数这些定理需牢记(一)的具体内容:一、函数与极限一、函数的有界性在定义域内有f(x)≥K1则函数f(x)在定义域上有下界,K1为下界;如果有f(x)≤K2,则有上界,K2称为上界。
函数f(x)在定义域内有界的充分必要条件是在定义域内既有上界又有下界。
二、数列的极限定理(极限的唯一性)数列{xn}不能同时收敛于两个不同的极限。
定理(收敛数列的有界性)如果数列{xn}收敛,那么数列{xn}一定有界。
如果数列{xn}无界,那么数列{xn}一定发散;但如果数列{xn}有界,却不能断定数列{xn}一定收敛,例如数列1,-1,1,-1,(-1)n+1…该数列有界但是发散,所以数列有界是数列收敛的必要条件而不是充分条件。
定理(收敛数列与其子数列的关系)如果数列{xn}收敛于a,那么它的任一子数列也收敛于a.如果数列{xn}有两个子数列收敛于不同的极限,那么数列{xn}是发散的,如数列1,-1,1,-1,(-1)n+1…中子数列{x2k-1}收敛于1,{xnk}收敛于-1,{xn}却是发散的;同时一个发散的数列的子数列也有可能是收敛的。
三、函数的极限函数极限的定义定理(极限的局部保号性)如果lim(x→x0)时f(x)=A,而且A>0(或A0(或f(x)>0),反之也成立。
函数f(x)当x→x0时极限存在的充分必要条件是左极限右极限各自存在并且相等,即f(x0-0)=f(x0+0),若不相等则limf(x)不存在。
一般的说,如果lim(x→∞)f(x)=c,则直线y=c是函数y=f (x)的图形水平渐近线。
如果lim(x→x0)f(x)=∞,则直线x=x0是函数y=f(x)图形的铅直渐近线。
(完整版)1极限存在准则-两个重要极限第一章第六节极限存在准则两个重要极限【教学目的】1、了解函数和数列的极限存在准则;2、掌握两个常用的不等式;3、会用两个重要极限求极限。
【教学内容】1、夹逼准则;2、单调有界准则;3、两个重要极限。
【重点难点】重点是应用两个重要极限求极限。
难点是应用函数和数列的极限存在准则证明极限存在,并求极限。
【教学设计】从有限到无穷,从已知到未知,引入新知识(3分钟)。
首先给出极限存在准则(10分钟),并举例说明如何应用准则求极限(5分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(10分钟);课堂练习(5分钟)。
【授课内容】引入:考虑下面几个数列的极限1、∑=∞→+1000121limi n i n 1000个0相加,极限等于0。
2、∑=∞→+ni n in 121lim无穷多个“0”相加,极限不能确定。
3、n n x ∞→lim,其中n x =1x =对于2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则:一、极限存在准则1. 夹逼准则准则Ⅰ 如果数列n n y x ,及n z 满足下列条件:,lim ,lim )2()3,2,1()1(a z a y n z x y n n n n nn n ===≤≤∞→∞→Λ那么数列n x 的极限存在, 且a x n n =∞→lim .证:,,a z a y n n →→Θ使得,0,0,021>>?>?N N ε,1ε<->a y N n n 时恒有当,2ε<->a z N n n 时恒有当取12max{,},N N N =上两式同时成立,,εε+<<-a y a n 即,εε+<<-a z a n 当n N >时,恒有,εε+<≤≤<-a z x y a n n n ,成立即ε<-a x n .lim a x n n =∴∞→上述数列极限存在的准则可以推广到函数的极限准则Ⅰ′ 如果当),(0δx U x o∈ (或M x >)时,有,)(lim ,)(lim )2(),()()()1()()(00A x h A x g x h x f x g x x x x x x ==≤≤∞→→∞→→那么)(lim )(0x f x x x ∞→→存在, 且等于A .准则 I 和准则 I ' 称为夹逼准则。