TD-LTE基本原理及关键技术
- 格式:ppt
- 大小:5.12 MB
- 文档页数:79
后面两页只介绍下“扁平网络”,其他三个技术(频分多址、MIMO、ICIC)在第二章有详从上表中可以看到,宽带无线接入和宽带移动通信系统的基本传输和多址技术趋于一致,均基于OFDM技术。
LTE在上行采用了SC-FDMA以降低信号峰平比(PAPR),但其主要实现方式为离散傅立叶变换扩展OFDM(DFT-S-OFDM)技术。
IEEE802.20采用基于调度或跳频的OFDMA,同时在上行采用半正交OFDMA以提高系统容量。
在参数设计方面,IEEE802.20采用了最小的子载波间隔9.6kHz,有利于得到较高的频谱效率。
LTE出于对高移动性的考虑,采用了最大的子载波间隔(15kHz)。
IEEE802.16e子载波间隔居中(11.16kHz)。
为了实现很小的传输延迟,LTE和MBFDD/MBTDD都采用了很小的子帧长度(0.911~1ms),相对而言,802.16e子帧长度较大。
LTE和IEEE802.20都采用长、短两种CP,其中短CP用于正常小区大小的单播业务,长CP用于MBSFN或超大小区。
IEEE802.16e采用4中可选的CP长度。
从资源分配的角度上说,LTE和IEEE802.16e支持集中式(Localized)和分布式(Distributed)子载波分配方式。
IEEE802.20支持频域调度和跳频方式。
在调制技术方面,3种技术均采用QPSK、16QAM和64QAM,IEEE802.16e还支持BPSK调制,IEEE802.20还在上行考虑了可以获得低PAPR的8PSK调制。
在多天线技术方面,3个标准均采用了基于预编码的空间复用、SDMA(空分多址)及开环发射分集技术。
所不同的是,LTE只在下行支持单用户的多流空间复用,上行仅采用多用户MIMO。
另外,LTE还采用了下行波束赋形技术,IEEE802.16e 则采用了类似的自适应天线系统。
在链路自适应技术方面,3种技术均采用了频域调度、自适应调制编码(AMC)、HARQ和功率控制。
TD—LTE网络优化经验总结【摘要】在现代这个信息化的时代,信息技术的发展迅速,而无线网络的快速发展彻底改变了人与人之间的沟通方式,还有无线网络通过计算机进行操作,使人们的工作更加便捷、快速、高效,进而加快了社会现代化的进程。
然而传统的无线网络技术已经不能够满足现代工作高效、高安全的保障需求,因此对于无线网络通信技术的变革是必然的事情,目前社会科学领域中也对TD-LTE网络进行了优化,并在实际生活工作当中得到很好的应用。
本文将对TD-LTE网络的优化进行进行阐述。
【关键词】TD-LTE网络;优化;方法在现代经济的快速发展中,网络通信技术得到了飞速发展。
而TD-LTE技术由于具有较强的频谱利用效率、网络结构简洁开放、宽带传输灵活以及承载能力强等特点受到人们的青睐。
但是无线网络的发展中各种各样的网络被应用,这些网络在应用的同时也产生了一定的问题,同时也对无线网络的承载力提出了新的要求,因此需要对TD-LTE网络进行优化方能满足现代网络的使用要求。
本文具体阐述了TD-LTE的基本原理,并对目前TD-LTE网络中存在的问题给出了优化方案。
一、TD-LTE网络技术的基本原理TD-SCDMA系统经过长期的改进便产生了TD-LTE(Time Division-Long Term Evolution)网络系统,TD-LTE网络中运用的技术是OFDMA空中接口技术,在TD-LTE网络中通过此技术的运用使无线通信系统的上下行数据传输速率和频谱利用率得到显著的提高,同时还降低了系统的传输时延。
另外运用了OFDMA空中接口技术的TD-LTE网络系统还具有语音、视频点播以等多项功能。
目前,TD-LTE因为其独特的优势在设备制造和电信通信中得到了广泛的应用。
图1 TD-LTE网络系统的基本工作原理图TD-LTE网络系统的基本工作原理如图1所示。
在TD-LTE网络系统中采用的结构是较完全的基站e-Node B结构,此结构具有全新的功能,并且在TD-LTE 网络系统中是连接各节点之间传输的媒介,各节点在系统逻辑层面上的连接接口是X2接口,在系统中通过这样的连接方式使系统内部形成Mesh型网络结构,这种网络结构在系统中的功能是支持UE在整个系统中移动性,通过这样的传输方式和结构类型才保证了用户们在使用移动网络时进行平滑无缝的网络切换。
第三章 TD-LTE系统关键技术TD-LTE是TDD版本的LTE技术,相比3GPP之前制定的技术标准,其在物理层传输技术方面有较大的改进。
为了便于理解TD-LTE系统的核心所在,本章将重点介绍TD-LTE 系统中使用的关键技术,如多址接入技术、多天线技术、混合自动重传、链路自适应、干扰协调等。
希望读者通过本章的阅读,对TD-LTE的物理层技术有一个全面的了解。
3.1 TDD双工方式TDD(Time Division Duplexing)时分双工技术是一种通信系统的双工方式,与FDD相对应。
在TDD模式下,移动通信系统中的发送和接收位于同一载波下的不同时隙,通过将信号调度到不同时间段传输进行区分。
TDD模式可灵活配置于不对称业务中,以充分利用有限的频谱资源。
在原有的模拟和数字蜂窝系统中,均采用了FDD双工/半双工方式。
在3G的三大国际标准中,WCDMA和CDMA2000系统也采用了FDD双工方式,而TD-SCDMA系统采用的是TDD双工方式。
FDD双工采用成对频谱(Paired Spectrum)资源配置,上下行传输信号分布在不同频带内,并设置一定的频率保护间隔,以免产生相互间干扰。
由于TDD双工方式采用非成对频谱(Unpaired Spectrum)资源配置,具有更高的频谱效率,在未来的第四代移动通信系统IMT-Advanced中,将得到更广泛的应用,满足更高系统带宽的要求。
基于TDD技术的TD-LTE系统,与FDD方式相比,具有以下优势:(1)频谱效率高,配置灵活。
由于TDD方式采用非对称频谱,不需要成对的频率,能有效利用各种频率资源,满足LTE系统多种带宽灵活部署的需求。
(2)灵活地设置上下行转换时刻,实现不对称的上下行业务带宽。
TDD系统可以根据不同类型业务的特点,调整上下行时隙比例,更加灵活地配置信道资源,特别适用于非对称的IP型数据业务。
但是,这种转换时刻的设置必须与相邻基站协同进行。