山东省泰安市2018年中考数学全真模拟试题四
- 格式:doc
- 大小:459.50 KB
- 文档页数:12
2018年泰山区中考数学模拟试题(四)一、选择题(本大题共有12小题,在每小题所给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分) 1.38-的相反数是( )A.-2B.2C.-4D.42.下列图形是几家电信公司的标志,其中既是轴对称图形又是中心对称图形的 是( )A. B.C. D.3.从权威部门获悉,中国海洋面积是299.7万平方公里,约为陆地面积的三分 之一, 299.7万平方公里用科学计数法表示为( )平方公里(保留 两位有效数字) A .6103⨯B .7103.0⨯C .6100.3⨯D .61099.2⨯4.下列运算正确的是( ) A .632)(a a -=- B .222)(b a b a -=-C .422x x x =+D .622623a a a =⋅5. 如图,在8×4的矩形网格中,每个小正方形的边长都是1,若△ABC 的三个顶点在图中相应的格点上,则tan A 的值为( ) A .31 B .21C .22D .36关于x 的不等式组只有五个整数解,则实数a 的取值范围是( ) A .﹣4<a <﹣3B .﹣4≤a ≤﹣3C .﹣4≤a <﹣3D .﹣4<a ≤﹣37.有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中,平 均一个人传染的人数为( )A .8人B .9人C .10人D .11人8.如图,在△ABC 中,以BC 为直径的圆分别交边AC 、AB 于D 、E 两点, 连接BD 、DE .若BD 平分∠ABC ,则下列结论不一定成立的是( )A .BD ⊥ACB .AC 2=2AB•AEC .△ADE 是等腰三角形D .BC=2AD9.如图,矩形ABOC 的顶点A 的坐标为(-4,5),D 是OB 的中点,E 是 OC 上的一点,当△ADE 的周长最小时,点E 的坐标是( ))34,0.(A )35,0.(B)2,0.(C )310,0.(D10.如图,▱ABCD 的对角线AC 、BD 交于点O ,AE 平分∠BAD 交 BC 于点E ,且∠ADC=60°,AB=BC ,连接OE .下列结论:①∠CAD=30°;②S ▱ABCD =AB•AC;③OB=AB ;④OE=BC , 成立的个数有( )A .1个B .2个C .3个D .4个11.如图,正方形ABCD 中,AB=8cm ,对角线AC ,BD 相交于点O , 点E ,F 分别从B ,C 两点同时出发,以1cm/s 的速度沿BC ,CD 运动,到点C ,D 时停止运动,设运动时间为t (s ),△OEF 的面 积为s (cm 2),则s (cm 2)与t (s )的函数关系可用图象表示为 ( ).A B C D 12.如图是抛物线y=ax 2+bx+c (a ≠0),其顶点坐标为(1,n ), 且与x 轴的一个交点在点(3,0)和(4,0)之间,下列结 论:①(a+c )2<b 2; ②c ﹣a=n ③当x <0时,ax 2+(b+2)x <0;④一元二次方程ax 2+(b ﹣)x+c=0有两个不相等的实数根. 其中正确结论的个数是( )A .1B .2C .3D .4二、填空题(本大题共6小题,满分18分。
2018年山东省泰安市中考数学试题(word版解析版)第一篇:2018年山东省泰安市中考数学试题(word版解析版) 泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1.计算:的结果是()A.-3B.0C.-1D.3 【答案】D 【解析】分析:根据相反数的概念、零指数幂的运算法则计算即可.详解:原式=2+1=3.故选D.点睛:本题考查的是零指数幂的运算,掌握任何非零数的零次幂等于1是解题的关键.2.下列运算正确的是()A.【答案】D 【解析】分析:根据合并同类项法则、同底数幂的乘、除法法则、积的乘方法则计算,判断即可.333详解:2y+y=3y,故A错误;B.C.D.y2•y3=y5,故B错误;(3y2)3=27y6,故C错误;y3÷y﹣2=y3﹣(﹣2)=y5.故D正确.故选D.点睛:本题考查的是合并同类项、同底数幂的乘法、积的乘方、同底数幂的除法,掌握它们的运算法则是解题的关键.3.如图是下列哪个几何体的主视图与俯视图()点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35则这组数据的中位数、平均数分别是()A.42、42B.43、42C.43、43D.44、43 【答案】B 【解析】分析:根据中位线的概念求出中位数,利用算术平均数的计算公式求出平均数.详解:把这组数据排列顺序得:35 38 40 42 44 45 45 47,则这组数据的中位数为:(35+38+42+44+40+47+45+45)=42.故选B.点睛:本题考查的是中位数的确定、算术平均数的计算,掌握中位数的概念、算术平均数的计算公式是解题的关键.6.夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A.C.【答案】C 【解析】分析:直接利用两周内共销售30台,销售收入5300元,分别得出等式进而得出答案.B型风扇销售了y台,详解:设A型风扇销售了x台,则根据题意列出方程组为:故选C.点睛:本题主要考查了由实际问题抽象出二元一次方程组,正确得出等量关系是解题的关键.. B.D.=43,= 7.二次函数图象是()的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致A.B.C.D.【答案】C 【解析】分析:首先利用二次函数图象得出a,b的取值范围,进而结合反比例函数以及一次函数的性质得出答案.详解:由二次函数开口向上可得:a>0,对称轴在y轴左侧,故a,b同号,则b>0,故反比例函数y=图象分布在(1)若点坐标为(2)若【答案】(1),求的值及图象经过、两点的一次函数的表达式;,求反比例函数的表达式.,;(2).【解析】分析:(1)由已知求出A、E的坐标,即可得出m的值和一次函数函数的解析式;(2)由标为详解:(1)∵∴.,得到,由,得到.设点坐标为,则点坐,代入反比例函数解析式即可得到结论.为的中点,∵反比例函数图象过点∴.设图象经过、两点的一次函数表达式为:∴,解得,∴(2)∵∴ ∵∴∴.,.,.,则点坐标为.设点坐标为∵∴解得:∴∴∴两点在,,.图象上,点睛:本题考查了矩形的性质以及反比例函数一次函数的解析式.解题的关键是求出点A、E、F的坐标.22.如图,中,是平分上一点,.于点,是的中点,于点,与交于点,若,连接(1)求证:;.请你帮助小亮同学证明这一结论.是否为菱形,并说明理由.是菱形,理由见解析.(2)小亮同学经过探究发现:(3)若,判定四边形【答案】(1)证明见解析;(2)证明见解析;(3)四边形【解析】分析:(1)由条件得出∠C=∠DHG=90°,∠CGE=∠GED,由F是AD的中点,FG∥AE,即可得到FG是线段ED的垂直平分线,进而得到GE=GD,∠CGE=∠GDE,利用AAS即可判定△ECG≌△GHD;(2)过点G作GP⊥AB于P,判定△CAG≌△PAG,可得AC=AP,由(1)可得EG=DG,即可得到Rt△ECG≌Rt△GPD,依据EC=PD,即可得出AD=AP+PD=AC+EC;(3)由∠B=30°,可得∠ADE=30°,进而得到AE=AD,故AE=AF=FG,再根据四边形AECF是平行四边形,即可得到四边形AEGF是菱形.详解:(1)∵AF=FG,∴∠FAG=∠FGA.∵AG平分∠CAB,∴∠CAG=∠FGA,∴∠CAG=∠FGA,∴AC∥FG.∵DE⊥AC,∴FG⊥DE.∵FG⊥BC,∴DE∥BC,∴AC⊥BC,∴∠C=∠DHG=90°,∠CGE=∠GED.∵F是AD的中点,FG∥AE,∴H是ED的中点,∴FG是线段ED 的垂直平分线,∴GE=GD,∠GDE=∠GED,∴∠CGE=∠GDE,∴△ECG≌△GHD;(2)过点G作GP⊥AB于P,∴GC=GP,而AG=AG,∴△CAG≌△PAG,∴AC=AP,由(1)可得EG=DG,∴Rt△ECG≌Rt△GPD,∴EC=PD,∴AD=AP+PD=AC+EC;(3)四边形AEGF是菱形.证明如下:∵∠B=30°,∴∠ADE=30°,∴AE=AD,∴AE=AF=FG,由(1)得AE∥FG,∴四边形AECF是平行四边形,∴四边形AEGF是菱形.点睛:本题属于四边形综合题,主要考查了菱形的判定、全等三角形的判定和性质,线段垂直平分线的判定与性质以及含30°角的直角三角形的性质的综合运用,利用全等三角形的对应边相等,对应角相等是解决问题的关键. 23.如图,在平面直角坐标系中,二次函数轴上有一点,连接.交轴于点、,交轴于点,在(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求(3)抛物线对称轴上是否存在点,使在请说明理由.【答案】(1)二次函数的解析式为点的坐标为,.;(2)当时,的面积取得最大值;(3)面积的最大值;为等腰三角形,若存在,请直接写出所有点的坐标,若不存【解析】分析:(1)把已知点坐标代入函数解析式,得出方程组求解即可;(2)根据函数解析式设出点D坐标,过点D作DG⊥x轴,交AE 于点F,表示△ADE的面积,运用二次函数分析最值即可;(3)设出点P坐标,分PA=PE,PA=AE,PE=AE三种情况讨论分析即可.详解:(1)∵二次函数y=ax+bx+c经过点A(﹣4,0)、B(2,0),C(0,6),∴,2解得:,所以二次函数的解析式为:y=;,(2)由A(﹣4,0),E(0,﹣2),可求AE所在直线解析式为y=过点D作DN⊥x轴,交AE于点F,交x轴于点G,过点E作EH⊥DF,垂足为H,如图,设D(m,∴DF=﹣(),则点F(m,)=,),∴S△ADE=S△ADF+S△EDF=×DF×AG+DF×EH=×DF×AG+×DF×EH=×4×DF=2×(=∴当m=(3)y=PE=当PA=PE时,当PA=AE时,当PE=AE时,AE== ==),时,△ADE的面积取得最大值为.n)A0)的对称轴为x=﹣1,设P(﹣1,又E(0,﹣2),(﹣4,可求PA=,分三种情况讨论:,解得:n=1,此时P(﹣1,1);,解得:n=,此时点P坐标为(﹣1,);).,n=﹣2,解得:,此时点P坐标为:(﹣1,﹣2).综上所述:P点的坐标为:(﹣1,1),(﹣1,),(﹣1,﹣2点睛:本题主要考查二次函数的综合问题,会求抛物线解析式,会运用二次函数分析三角形面积的最大值,会分类讨论解决等腰三角形的顶点的存在问题时解决此题的关键.24.如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA 的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;2(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM=MF⋅MH.【答案】(1),理由见解析;(2),证明见解析;(3)证明见解析.【解析】分析:(1)先判断出∠DEF=∠EBA,∠AEF=∠EAB,即可得出结论;(2)先判断出∠GAB=∠ABE+∠ADB=2∠ABE,进而得出∠GAB=∠AEO,即可得出结论;(3)先判断出BM=DM,∠ADM=∠ABM,进而得出∠ADM=∠H,判断出△MFD∽△MDH,即可得出结论.详解:(1)∠DEF=∠AEF,理由如下:∵EF∥AB,∴∠DEF=∠EBA,∠AEF=∠EAB.∵∠EAB=∠EBA,∴∠DEF=∠AEF;(2)△EOA∽△AGB,理由如下:∵四边形ABCD是菱形,∴AB=AD,AC⊥BD,∴∠GAB=∠ABE+∠ADB=2∠ABE.∵∠AEO=∠ABE+∠BAE=2∠ABE.∵∠GAB=∠AEO,∠GAB=∠AOE=90°,∴△EOA∽△AGB;(3)如图,连接DM.∵四边形ABCD是菱形,由对称性可知,BM=DM,∠ADM=∠ABM.∵AB∥CH,∴∠ABM=∠H,∴∠ADM=∠H.∵∠DMH=∠FMD,∴△MFD∽△MDH,∴2∴BM=MF•MH.2,∴DM=MF•MH,点睛:本题是相似形综合题,主要考查了菱形的性质,对称性,相似三角形的判定和性质,判断出△EOA∽△AG B 是解答本题的关键.第二篇:2018中考数学试题及解析2018中考数学试题及解析科学安排、合理利用,在这有限的时间内中等以上的学生成绩就会有明显的提高,为了复习工作能够科学有效,为了做好中考复习工作全面迎接中考,下文为各位考生准备了中考数学试题及解析。
2018年泰安学生学业水平测试模拟试题一、选择题(本大题共12个小题,满分36分) 1. | - 4|的相反数的倒数是( ) A. 4 B. - 4 C.丄 D.—丄44 2. 下列等式一定成立的是()A. (a+b ) 2=a 2+b 2B. a 2*a 3=a 6C. 3"2 = --D. 3恵-忑=2近9A. 1个B. 2个C. 3个D. 4个4. 一年之中地球与太阳之间的距离随时间而变化,1个天文单位是地球与太阳之间的平均距 离,即1.4960亿千米.用科学记数法表示1个天文单位应是( )下列图形中,既是轴对称图形,又是中心对称图形的是(摸到黑球的概率是( )o 11 12A. B. -7-C. -T -D. -z -o2337.如图,A 、B 、P 是半径为2的(DO 上的三点,ZAPB=45°, 为( )8. 如图,四边形ABCD, AD 〃BC, CA 是ZBCD 的平分线,且 AB 丄AC, AB=4, AD=6,则 tanB=()A. 1.4960xl07 千米B. 14.960xl07 千米C. 1.4960x10* 千米D. 0.14960xl08 千米 5. 6. B袋子中装有4个黑球2个白球,这些球除了颜色外都相同, 从袋子中随机摸出一个球,则 A. V2 B. 2 C. 2V2 D. 4B'CA. 2A /3B. 2^2x — 2/7 ■> 4述的解集为。
<2,那么“的值等于A. 1B. 0C. -1D. -210、如图,正方形/磁中,/伊8cm,对角线AC,BD 相交于点0,点EF 分别从B 、C 两点同时出发,以lcm/s 的速度沿氏、G?运动,到点G〃时停止运动,设运动时间为t® 'OEF 的面积为s (c 加2),则$(填空题(本大题共6小题,已知关于x 的方程x 2+mx+3=0的一个根是x = l,那么14. 如图在直角△ ABC 中,ZACB=90°, AC=8cm, BC=6cm,分别以 A 、B 为AR圆心,以丁的长为半径作圆,将直角△ ABC 截去两个扇形,则剩余(阴影)部 分的面积为9.关于x 的不等式组()o二、 ,另一个根是.)o 与仪s )的函数关系可用图像表示为(满分18分)()15.花鸟市场一家店铺正销售一批兰花,每盆进价100元,售价为140元,平均每天可售出20盆。
山东省泰安市2018年中考数学试卷一、选择题1.计算:的结果是()A . -3B . 0C . -1D . 32. 下列运算正确的是()A .B .C .D .3. 如图是下列哪个几何体的主视图与俯视图()A .B .C .D .4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A .B .C .D .5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A . 42、42B . 43、42C . 43、43D . 44、436. 夏季来临,某超市试销,两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问,两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A .B .C .D .7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A .B .C .D .8. 不等式组有3个整数解,则 的取值范围是( )A . B . C . D . 9. 如图, 与 相切于点 ,若 ,则 的度数为( )A .B .C .D . 10. 一元二次方程 根的情况是( )A . 无实数根B . 有一个正根,一个负根C . 有两个正根,且都小于3D . 有两个正根,且有一根大于311. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1, 经过平移后得到,若 上一点 平移后对应点为 ,点 绕原点顺时针旋转 ,对应点为 ,则点 的坐标为( )A .B .C .D .12. 如图, 的半径为2,圆心 的坐标为 ,点 是 上的任意一点,,且 , 与 轴分别交于 , 两点,若点 ,点 关于原点 对称,则 的最小值为( )A . 3B . 4C . 6D . 8二、填空题13. 一个铁原子的质量是,将这个数据用科学记数法表示为________ .14. 如图, 是 的外接圆, ,,则 的直径为________.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为________.16. 观察“田”字中各数的关系:则C的值为 ________。
2018山东泰安市中考数学试题[含答案解析版](总41页)-本页仅作为预览文档封面,使用时请删除本页-2018年山东泰安市中考数学试卷一、选择题(本大题共12小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分,选错、不选或选出的答案超过一个,均记零分)1.(3分)(2018•泰安)计算:﹣(﹣2)+(﹣2)0的结果是()A.﹣3 B.0 C.﹣1 D.32.(3分)(2018•泰安)下列运算正确的是()A.2y3+y3=3y6B.y2•y3=y6C.(3y2)3=9y6D.y3÷y﹣2=y53.(3分)(2018•泰安)如图是下列哪个几何体的主视图与俯视图()A.B.C.D.4.(3分)(2018•泰安)如图,将一张含有30°角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠2=44°,则∠1的大小为()A.14°B.16°C.90°﹣αD.α﹣44°5.(3分)(2018•泰安)某中学九年级二班六组的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A.42、42 B.43、42 C.43、43 D.44、436.(3分)(2018•泰安)夏季来临,某超市试销A、B两种型号的风扇,两周内共销售30台,销售收入5300元,A型风扇每台200元,B型风扇每台150元,问A、B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B 型风扇销售了y台,则根据题意列出方程组为()A.B.C.D.7.(3分)(2018•泰安)二次函数y=ax2+bx+c的图象如图所示,则反比例函数y=与一次函数y=ax+b在同一坐标系内的大致图象是()A.B.C.D.8.(3分)(2018•泰安)不等式组有3个整数解,则a的取值范围是()A.﹣6≤a<﹣5 B.﹣6<a≤﹣5 C.﹣6<a<﹣5 D.﹣6≤a≤﹣59.(3分)(2018•泰安)如图,BM与⊙O相切于点B,若∠MBA=140°,则∠ACB的度数为()A.40°B.50°C.60° D.70°10.(3分)(2018•泰安)一元二次方程(x+1)(x﹣3)=2x﹣5根的情况是()A.无实数根B.有一个正根,一个负根C.有两个正根,且都小于3 D.有两个正根,且有一根大于311.(3分)(2018•泰安)如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,△ABC经过平移后得到△A1B1C1,若AC上一点P(,)平移后对应点为P1,点P1绕原点顺时针旋转180°,对应点为P2,则点P2的坐标为()A.(,)B.(﹣,﹣)C.(,)D.(﹣,﹣)12.(3分)(2018•泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.8二、填空题(本大题共6小题,满分18分。
泰安市2018年初中学业水平考试数学试题一、选择题(本大题共12个小题,在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对3分,选错、不选或选出的答案超过一个,均记零分)1. 计算:的结果是()A. -3B. 0C. -1D. 32. 下列运算正确的是()A. B. C. D.3. 如图是下列哪个几何体的主视图与俯视图()学%科%网...A. B. C. D.4. 如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.5. 某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、436. 夏季来临,某超市试销、两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问、两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.7. 二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.8. 不等式组有3个整数解,则的取值范围是()A. B. C. D.9. 如图,与相切于点,若,则的度数为()A. B. C. D.10. 一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于311. 如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.12. 如图,的半径为2,圆心的坐标为,点是上的任意一点,,且、与轴分别交于、两点,若点、点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8二、填空题(本大题共6小题,满分18分.只要求填写最后结果,每小题填对得3分)13. 一个铁原子的质量是,将这个数据用科学记数法表示为__________.14. 如图,是的外接圆,,,则的直径..为__________.15. 如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为__________.16. 如图,在中,,,,点是边上的动点(不与点重合),过作,垂足为,点是的中点,连接,设,的面积为,则与之间的函数关系式为__________.17. 《九章算术》是中国传统数学最重要的著作,在“勾股”章中有这样一个问题:“今有邑方二百步,各中开门,出东门十五步有木,问:出南门几步而见木?”用今天的话说,大意是:如图,是一座边长为200步(“步”是古代的长度单位)的正方形小城,东门位于的中点,南门位于的中点,出东门15步的处有一树木,求出南门多少步恰好看到位于处的树木(即点在直线上)?请你计算的长为__________步.三、解答题(本大题共7小题,满分66分.解答应写出文字说明、证明过程或演算步骤.)18. 先化简,再求值:,其中.19. 文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)20. 为增强学生的安全意识,我市某中学组织初三年级1000名学生参加了“校园安全知识竞赛”,随机抽取了一个班学生的成绩进行整理,分为,,,四个等级,并把结果整理绘制成条形统计图与扇形统计图(部分),请依据如图提供的信息,完成下列问题:(1)请估计本校初三年级等级为的学生人数;(2)学校决定从得满分的3名女生和2名男生中随机抽取3人参加市级比赛,请求出恰好抽到2名女生和1名男生的概率.21. 如图,矩形的两边、的长分别为3、8,是的中点,反比例函数的图象经过点,与交于点.(1)若点坐标为,求的值及图象经过、两点的一次函数的表达式;(2)若,求反比例函数的表达式.22. 如图,中,是上一点,于点,是的中点,于点,与交于点,若,平分,连接,.(1)求证:;(2)小亮同学经过探究发现:.请你帮助小亮同学证明这一结论.(3)若,判定四边形是否为菱形,并说明理由.23. 如图,在平面直角坐标系中,二次函数交轴于点、,交轴于点,在轴上有一点,连接.(1)求二次函数的表达式;(2)若点为抛物线在轴负半轴上方的一个动点,求面积的最大值;(3)抛物线对称轴上是否存在点,使为等腰三角形,若存在,请直接写出所有点的坐标,若不存在请说明理由.24. 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3)BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.。
中考数学模拟试题四一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( C )A.B.C.D.2.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠13.已知a,b满足方程组,则a+b的值为()A.-4 B.4 C.-2 D.24.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或105.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球6.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105 B.众数是104 C.中位数是104 D.方差是507.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<-29.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.410.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有( B )A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,满分18分)11.分解因式:3a2﹣6a+3= .12.实数的平方根为.13.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k= .15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为.16.如图,已知直线y=-34x+3分别交x轴、y轴于点A、B,P是抛物线y=-12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=-34x+3于点Q,则当PQ=BQ时,a的值是.三、解答下列各题(共72分)17.(6分)计算:(-2017)0+|1-2|-2cos45°++(-)-2.18.(6分)化简•÷,并求值,其中a与2、3构成△ABC的三边,且a为整数.19.(6分)20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.20.(8分)2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?21.(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)22.(8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAB=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1S3-S22的最大值,并求出此时a,b的值.23.(8分)2017年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.求当x的值至少为多少时,该服装商店才不会亏本?24.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25. (12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).(1)求此抛物线的解析式;(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上.19. 证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.20. 解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.21. 解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.22.23. 解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.24. (1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,PA=PE,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(2)解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.25. 解:(1)∵抛物线y=ax2+bx+c经过点C(0,3),顶点为M(﹣1,4),∴,解得:.∴所求抛物线的解析式为y=﹣x2﹣2x+3.(2)依照题意画出图形,如图1所示.令y=﹣x2﹣2x+3=0,解得:x=﹣3或x=1,故A(﹣3,0),B(1,0),∴OA=OC,△AO C为等腰直角三角形.设AC交对称轴x=﹣1于F(﹣1,y F),由点A(﹣3,0)、C(0,3)可知直线AC的解析式为y=x+3,∴y F=﹣1+3=2,即F(﹣1,2).设点D坐标为(﹣1,y D),则S△ADC=DF•AO=×|y D﹣2|×3.又∵S△ABC=AB•OC=×[1﹣(﹣3)]×3=6,且S△ADC=S△ABC,∴×|y D﹣2|×3.=6,解得:y D=﹣2或y D=6.∴点D的坐标为(﹣1,﹣2)或(﹣1,6).(3)如图2,点P′为点P关于直线CE的对称点,过点P′作PH⊥y轴于H,设P′E交y轴于点N.在△EON和△CP′N中,,∴△EON≌△CP′N(AAS).设NC=m,则NE=m,∵A(﹣3,0)、M(﹣1,4)可知直线AM的解析式为y=2x+6,∴当y=3时,x=﹣,即点P(﹣,3).∴P′C=PC=,P′N=3﹣m,在Rt△P′NC中,由勾股定理,得:+(3﹣m)2=m2,解得:m=.∵S△P′NC=CN•P′H=P′N•P′C,∴P′H=.由△CHP′∽△CP′N可得:,∴CH==,∴OH=3﹣=,∴P′的坐标为(,).将点P′(,)代入抛物线解析式,得:y=﹣﹣2×+3=≠,∴点P′不在该抛物线上.。
山东省泰安市2018年中考数学试卷一、选择题1.计算:的结果是()A. -3B. 0C. -1D. 32.下列运算正确的是()A. B. C. D.3.如图是下列哪个几何体的主视图与俯视图()A. B. C. D.4.如图,将一张含有角的三角形纸片的两个顶点叠放在矩形的两条对边上,若,则的大小为()A. B. C. D.5.某中学九年级二班六级的8名同学在一次排球垫球测试中的成绩如下(单位:个)35 38 42 44 40 47 45 45则这组数据的中位数、平均数分别是()A. 42、42B. 43、42C. 43、43D. 44、436.夏季来临,某超市试销,两种型号的风扇,两周内共销售30台,销售收入5300元,型风扇每台200元,型风扇每台150元,问,两种型号的风扇分别销售了多少台?若设型风扇销售了台,型风扇销售了台,则根据题意列出方程组为()A. B.C. D.7.二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系内的大致图象是()A. B. C. D.8.不等式组有3个整数解,则的取值范围是()A. B. C. D.9.如图,与相切于点,若,则的度数为()A. B. C. D.10.一元二次方程根的情况是()A. 无实数根B. 有一个正根,一个负根C. 有两个正根,且都小于3D. 有两个正根,且有一根大于311.如图,将正方形网格放置在平面直角坐标系中,其中每个小正方形的边长均为1,经过平移后得到,若上一点平移后对应点为,点绕原点顺时针旋转,对应点为,则点的坐标为()A. B. C. D.12.如图,的半径为2,圆心的坐标为,点是上的任意一点,,且,与轴分别交于,两点,若点,点关于原点对称,则的最小值为()A. 3B. 4C. 6D. 8二、填空题13.一个铁原子的质量是,将这个数据用科学记数法表示为________ .14.如图,是的外接圆,,,则的直径为________.15.如图,在矩形中,,,将矩形沿折叠,点落在处,若的延长线恰好过点,则的值为________.16.观察“田”字中各数的关系:则C的值为________。
中考数学模拟试题四一、选择题(每小题3分,共30分)1.如图所示,该几何体的俯视图是( C )A.B.C.D.2.若代数式+有意义,则实数x的取值范围是()A.x≠1 B.x≥0 C.x≠0 D.x≥0且x≠13.已知a,b满足方程组,则a+b的值为()A.-4 B.4 C.-2 D.24.等腰三角形边长分别为a,b,2,且a,b是关于x的一元二次方程x2-6x+n-1=0的两根,则n的值为()A.9 B.10 C.9或10 D.8或105.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是( A )A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球6.小红同学四次中考数学模拟考试成绩分别是:96,104,104,116,关于这组数据下列说法错误的是()A.平均数是105 B.众数是104 C.中位数是104 D.方差是507.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为()A.25:9 B.5:3 C.:D.5:38.在平面直角坐标系中,过点(-2,3)的直线l经过一、二、三象限,若点(0,a),(-1,b),(c,-1)都在直线l上,则下列判断正确的是()A.a<b B.a<3 C.b<3 D.c<-29.如图,在矩形ABCD中,AB=6,BC=8,点E是BC中点,点F是边CD上的任意一点,当△AEF的周长最小时,则DF的长为()A.1 B.2 C.3 D.410.如图,将矩形ABCD的一个角翻折,使得点D恰好落在BC边上的点G处,折痕为EF,若EB为∠AEG的平分线,EF和BC的延长线交于点H.下列结论中:①∠BEF=90°;②DE=CH;③BE=EF;④△BEG和△HEG的面积相等;⑤若,则.以上命题,正确的有( B )A.2个B.3个C.4个D.5个二、填空题(本大题共6小题,每小题3分,满分18分)11.分解因式:3a2﹣6a+3= .12.实数的平方根为.13.如图,直线y=2x+4与x,y轴分别交于A,B两点,以OB为边在y轴右侧作等边三角形OBC,将点C向左平移,使其对应点C′恰好落在直线AB 上,则点C′的坐标为.14.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象交矩形OABC的边AB于点D,交边BC于点E,且BE=2EC.若四边形ODBE的面积为6,则k= .15.已知圆锥的侧面积为15π,底面半径为3,则圆锥的高为.16.如图,已知直线y=-34x+3分别交x轴、y轴于点A、B,P是抛物线y=-12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=-34x+3于点Q,则当PQ=BQ时,a的值是.三、解答下列各题(共72分)17.(6分)计算:(-2017)0+|1-2cos45°++(-)-2.18.(6分)化简•÷,并求值,其中a与2、3构成△ABC的三边,且a为整数.19.(6分)20.如图,AB⊥BD于点B,ED⊥BD于点D,AE交BD于点C,且BC=DC.求证:AB=ED.20.(8分)2016年为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如图的调查问卷(单选).在随机调查了某市全部10000名司机中的部分司机后,统计整理并制作了如下的统计图:根据以上信息解答下列问题:(1)补全条形统计图,并计算扇形统计图中m= ;(2)该市支持选项C的司机大约有多少人?(3)若要从该市支持选项C的司机中随机选择200名,给他们签订“永不酒驾”的保证书,则支持该选项的司机小李被选中的概率是多少?21.(8分)某中学九年级数学兴趣小组想测量建筑物AB的高度.他们在C处仰望建筑物顶端,测得仰角为48°,再往建筑物的方向前进6米到达D处,测得仰角为64°,求建筑物的高度.(测角器的高度忽略不计,结果精确到0.1米)(参考数据:sin48°≈,tan48°≈,sin64°≈,tan64°≈2)22.(8分)已知四边形ABCD是边长为4的正方形,以AB为直径在正方形内作半圆,P是半圆上的动点(不与点A、B重合),连接PA、PB、PC、PD.(1)如图①,当PA的长度等于时,∠PAB=60°;当PA的长度等于时,△PAD是等腰三角形;(2)如图②,以AB边所在直线为x轴、AD边所在直线为y轴,建立如图所示的直角坐标系(点A即为原点O),把△PAD、△PAB、△PBC的面积分别记为S1、S2、S3.坐标为(a,b),试求2 S1S3-S22的最大值,并求出此时a,b的值.23.(8分)2017年春季,建阳区某服装商店分两次从批发市场购进同一款服装,数量之比是2:3,且第一、二次进货价分别为每件50元、40元,总共付了4400元的货款.(1)求第一、二次购进服装的数量分别是多少件?(2)由于该款服装刚推出时,很受欢迎,按每件70元销售了x件;后来,由于该服装滞销,为了及时处理库存,缓解资金压力,其剩余部分的按每件30元全部售完.求当x的值至少为多少时,该服装商店才不会亏本?24.(10分)如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于F.(1)求∠CPE的度数;(2)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.25. (12分)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A、B两点,与y轴交于点C(0,3),且此抛物线的顶点坐标为M(﹣1,4).(1)求此抛物线的解析式;(2)设点D为已知抛物线对称轴上的任意一点,当△ACD与△ACB面积相等时,求点D的坐标;(3)点P在线段AM上,当PC与y轴垂直时,过点P作x轴的垂线,垂足为E,将△PCE沿直线CE翻折,使点P的对应点P′与P、E、C处在同一平面内,请求出点P′坐标,并判断点P′是否在该抛物线上.19. 证明:∵AB⊥BD,ED⊥BD,∴∠ABC=∠D=90°,在△ABC和△EDC中,∴△ABC≌△EDC(ASA)∴AB=DE.20. 解:(1)∵69÷23%﹣60﹣69﹣36﹣45=90(人).∴C选项的频数为90,补全图形如下:.∵m%=60÷(69÷23%)=20%.∴m=20,故答案为:20;(2)支持选项C的人数大约为:90÷300=30%,10000×30%=3000(人).答:该市支持选项C的司机大约有3000人.(3)∵该市支持选项C的司机总人数=10000×30%=3000人,∴小李被选中的概率是,答:支持该选项的司机小李被选中的概率是.21. 解:根据题意,得∠ADB=64°,∠ACB=48°在Rt△ADB中,tan64°=,则BD=≈AB,在Rt△ACB中,tan48°=,则CB=≈AB,∴CD=BC﹣BD即6=AB﹣AB解得:AB=≈14.7(米),∴建筑物的高度约为14.7米.22.23. 解:(1)设第一、二次购进服装的数量分别是a件和b件,根据题意得:,解得:,答:第一、二次购进服装的数量分别是40件和60件;(2)根据题意得:70x+30(40+60﹣x)﹣4400≥0,解得:x≥35;答:当x的值至少为35时,商店才不会亏本.24. (1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,PA=PE,∴∠DAP=∠DCP,∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(2)解:在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴PA=PC,∠BAP=∠BCP,∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.25. 解:(1)∵抛物线y=ax2+bx+c经过点C(0,3),顶点为M(﹣1,4),∴,解得:.∴所求抛物线的解析式为y=﹣x2﹣2x+3.(2)依照题意画出图形,如图1所示.令y=﹣x2﹣2x+3=0,解得:x=﹣3或x=1,故A(﹣3,0),B(1,0),∴OA=OC,△AO C为等腰直角三角形.设AC交对称轴x=﹣1于F(﹣1,y F),由点A(﹣3,0)、C(0,3)可知直线AC的解析式为y=x+3,∴y F=﹣1+3=2,即F(﹣1,2).设点D坐标为(﹣1,y D),则S△ADC=DF•AO=×|y D﹣2|×3.又∵S△ABC=AB•OC=×[1﹣(﹣3)]×3=6,且S△ADC=S△ABC,∴×|y D﹣2|×3.=6,解得:y D=﹣2或y D=6.∴点D的坐标为(﹣1,﹣2)或(﹣1,6).(3)如图2,点P′为点P关于直线CE的对称点,过点P′作PH⊥y轴于H,设P′E交y轴于点N.在△EON和△CP′N中,,∴△EON≌△CP′N(AAS).设NC=m,则NE=m,∵A(﹣3,0)、M(﹣1,4)可知直线AM的解析式为y=2x+6,∴当y=3时,x=﹣,即点P(﹣,3).∴P′C=PC=,P′N=3﹣m,在Rt△P′NC中,由勾股定理,得:+(3﹣m)2=m2,解得:m=.∵S△P′NC=CN•P′H=P′N•P′C,∴P′H=.由△CHP′∽△CP′N可得:,∴CH==,∴OH=3﹣=,∴P′的坐标为(,).将点P′(,)代入抛物线解析式,得:y=﹣﹣2×+3=≠,∴点P′不在该抛物线上.。