2018版高中数学人教B版必修四学案第一单元 1.2.1 三角函数的定义 Word版含答案
- 格式:docx
- 大小:193.71 KB
- 文档页数:11
任意角的三角函数$1.2.1三角函数定义教学设计(一)地位与作用这一节阐述概念的内涵;在揭示内涵的基础上说明本课内容的核心所在;必要时要对概念在中学数学中的地位进行分析;明确概念所反映的数学思想方法。
在此基础上确定教学重点。
在初中初步了解三角函数的基础上,进一步推广三角函数。
(二)教学目标一堂课的教学目标是教学目的的具体化,是教学活动每一阶段所要实现的教学结果,是衡量教学质量的标准。
为了更加清晰地把握教学目标,以给课堂中教和学的行为做出准确定向,需要对教学目标中的关键词进行解析,即要解析了解、理解、掌握、经历、体验、探究等的具体含义,其中特别要明确当前内容所反映的数学思想方法的教学目标。
教学目标:理解任意角三角函数(正弦、余弦、正切)的定义。
目标解析:(1)知道三角函数研究的问题;(2)经历“单位圆法”定义三角函数的过程;(3)知道三角函数的对应法则、自变量(定义域)、函数值(值域);(4)体会定义三角函数过程中的数形结合、数学模型、化归等思想方法.(三)重点与难点这一栏目的要点是:教师根据自己以往的教学经验,对学生认知状况的分析,以及数学知识内在的逻辑关系,在思维发展理论的指导下,对本内容在教与学中可能遇到的困难进行预测,并对出现困难的原因进行分析。
在上述分析的基础上指出教学难点。
教学重点与难点:重点:借助直角坐标系理解三角函数的定义,能判断三角函数在各象限的符号难点:利用定义解题,判断符号。
(四)教学过程设计在设计教学过程时,如下问题需要予以关注: 强调教学过程的内在逻辑线索; 要给出学生思考和操作的具体描述;要突出核心概念的思维建构和技能操作过程,突出思想方法的领悟过程分析;以“问题串”方式呈现为主,应当认真思考每一问题的设计意图、师生活动预设,以及需要概括的概念要点、思想方法,需要进行的技能训练,需要培养的能力,等。
另外,要根据内容特点设计教学过程,如基于问题解决的设计,讲授式教学设计,自主探究式教学设计,合作交流式教学设计,等。
人教B版数学必修4 第一章基本初等函数(Ⅱ)教学设计一、教材分析1、本单元教学内容的范围1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角本章知识结构如下:2、本单元教学内容在模块内容体系中的地位和作用(1)三角函数是一类十分重要的初等函数,它与本模块第三章“三角恒等变换”构成了高中“三角”知识的主体,是中学数学的重要内容之一,也是学习后继内容和高等数学的基础。
(2)三角函数是数学中重要的数学模型之一,是研究度量几何的基础,又是研究自然界周期变化规律最强有力的数学工具。
(3)三角函数作为描述周期现象的重要数学模型,与其它学科如天文学、物理学等联系非常紧密。
因此三角函数的学习可以培养学生的数学应用能力。
(4)三角函数的基础知识,主要是平面几何中的相似形和圆。
研究三角函数的方法,主要是在必修1中建立的研究初等函数的方法。
因此,通过对三角函数的学习,可以初步地把“数”与“形”联系起来。
(5)通过对三角函数的学习,不仅能使学生获得新的知识和技能,而且可以培养学生的辨证唯物主义观点,提高分析问题和解决问题的能力。
3、本单元教学内容总体教学目标 (1)任意角的概念、弧度制了解任意角的概念.了解弧度制的概念,能进行弧度与角度的互化. (2)任意角的三角函数理解任意角的正弦、余弦、正切的定义;了解任意角的余切、正割、余割的定义;并会利用单位圆中的有向线段表示正弦、余弦和正切,并理解其原理。
理解同角三角函数的基本关系式: 22sin cos 1x x +=,sin tan cos xx x=;借助单位圆的直观性探索正弦、余弦、正切的诱导公式,能进行同角三角函数之间的变换,会求任意角的三角函数值,并记住某些特殊角的三角函数值。
教学设计人教B版2021版。
必修4 1.2.1三角函数的定义(第一课时)一、【教学目标】1、知识与技能目标:(1)理解任意角的正弦、余弦、正切的定义;了解任意角的余切、正割、余割的定义。
(2)会利用三角函数的定义分析、解决一些三角函数求值、确定三角函数的符号问题。
2、过程与方法目标:由三角函数的定义引导学生自主研究同角三角函数的基本关系式,提高学生的建模意识。
培养学生发现问题、分析问题、解决问题的能力,特殊到一般的思维方法,渗透分类讨论思想及转化思想,优化思维品质.3、情感与态度目标:通过经历的用三角函数的定义出发,求三角函数值,激发学生的求知欲,鼓励学生积极参与、大胆尝试、勇于探索、敢于创新,磨练思维品质,从中获得成功的体验。
引导学生养成自主学习的学习习惯。
二、【学情分析】1学生具备初中三角函数的定义,高中终边相同的角的概念方面的知识。
2、这个班级是营口市第二高级中学的理科普通班,学生基础知识掌握一般。
有学习积极性。
有一定的参与意识。
三、【教学重点、难点】(一)教学重点三角函数的定义,明确对应法则和定义域。
(二)教学难点1 通过坐标求任意角的三角函数的值,判断三角函数在各个象限的符号。
2、对学生进行思维灵活性的培养。
在解题过程中常常要分类讨论思想,提高学生从特殊到一般的概括能力。
四、【教学方法】讲练结合【教学过程】1.2.1三角函数的定义(第一课时)1.2.1教学活动【预习要求】1掌握任意角的正弦、余弦、正切的定义;2掌握正弦、余弦、正切函数的定义域。
【预习】教材第14-16页,1初中知识再现:在初中我们学习了锐角三角函数,它是以锐角为自变量,边的比值为函数值的三角函数:sin α= ;cos α=tan α=cot α=2.任意角的三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P,, 则P 与原点的距离02222>+=+=y x y x r 根据三角形的相似知识得到xyr y r x ,,均为定值。
人民教育出版社B版高中数学目录(全)高中数学(B版)必修一第一章集合1.1集合与集合的表示方法1.1.1集合的概念1.1.2集合的表示方法1.2集合之间的关系与运算1.2.1集合之间的关系1.2.2集合的运算整合提升第二章函数2.1 函数2.1.1函数2.1.2函数的表示方法2.1.3函数的单调性2.1.4函数的奇偶性2.2一次函数和二次函数2.2.1一次函数的性质与图象2.2.2二次函数的性质与图象2.2.3待定系数法2.3函数的应用(I)2.4函数与方程2.4.1函数的零点2.4.2求函数零点近似解的一种计算方法——二分法整合提升第三章基本初等函数(I)3.1指数与指数函数3.1.1实数指数幂及其运算3.1.2指数函数3.2对数与对数函数3.2.1对数及其运算3.2.2对数函数-3.2.3指数函数与对数函数的关系3.3幂函数3.4函数的应用(Ⅱ)整合提升高中数学(B版)必修二第1章立体几何初步1.1空间几何体1.1.1构成空间几何体的基本元素1.1.2棱柱、棱锥和棱台的结构特征1.1.3圆柱、圆锥、圆台和球1.1.4投影与直观图1.1.5三视图1.1.6棱柱、棱锥、棱台和球的表面积1.1.7柱、锥、台和球的体积1.2点、线、面之间的位置关系1.2.1平面的基本性质与推论1.2.2空间中的平行关系(第1课时)空间中的平行关系(第2课时)1.2.3空间中的垂直关系(第1课时)空间中的垂直关系(第2课时)综合测试阶段性综合评估检测(一)第2章平面解析几何初步2.1平面直角坐标系中的基本公式2.2直线的方程2.2.1直线方程的概念与直线的斜率2.2.2直线方程的几种形式2.2.3两条直线的位置关系2.2.4点到直线的距离2.3 圆的方程2.3.1圆的标准方程2.3.2圆的一般方程2.3.3直线与圆的位置关系2.3.4圆与圆的位置关系2.4空间直角坐标系综合测试高中数学(B版)必修三一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样显示全部信息第一章算法初步1.1 算法与程序框图1.1.1 算法的概念1.1.2 程序框图1.1.3 算法的三种基本逻辑结构和框图表示1.2 基本算法语句1.2.1 赋值、输入和输出语句1.2.2 条件语句1.2.3 循环语句1.3 中国古代数学中的算法案例单元回眸第二章统计2.1 随机抽样2.1.1 简单随机抽样2.1.2 系统抽样2.1.3 分层抽样2.1.4 数据的收集2.2 用样本估计总体2.2.1 用样本的频率分布估计总体的分布2.2.2 用样本的数字特征估计总体的数字特征2.3 变量的相关性2.3.1 变量间的相关关系2.3.2 两个变量的线性相关单元回眸第三章概率3.1 事件与概率3.1.1 随机现象3.1.2 事件与基本事件空间3.1.3 频率与概率3.1.4 概率的加法公式3.2 古典概型3.2.1 古典概型3.3 随机数的含义与应用3.3.1 几何概型3.3.2 随机数的含义与应用3.4 概率的应用单元回眸高中数学(B版)必修四第一章基本初等函数(2)1.1 任意角的概念与弧度制1.1.1 角的概念的推广1.1.2 弧度制和弧度制与角度制的换算1.2 任意角的三角函数1.2.1 三角函数的定义1.2.2 单位圆与三角函数线1.2.3 同角三角函数的基本关系式1.2.4 诱导公式1.3 三角函数的图象与性质1.3.1 正弦函数的图象与性质1.3.2 余弦函数、正切函数的图象与性质1.3.3 已知三角函数值求角单元回眸第二章平面向量2.1 向量的线性运算2.1.1 向量的概念2.1.2 向量的加法2.1.3 向量的减法2.1.4数乘向量2.1.5 向量共线的条件与轴上向量坐标运算2.2 向量的分解与向量的坐标运算2.2.1 平面向量基本定理2.2.2 向量的正交分解与向量的直角坐标运算2.2.3 用平面向量坐标表示向量共线条件2.3 平面向量的数量积2.3.1 向量数量积的物理背景与定义2.3.2 向量数量积的运算律2.3.3 向量数量积的坐标运算与度量公式2.4 向量的应用2.4.1 向量在几何中的应用2.4.2 向量在物理中的应用单元回眸第三章三角恒等变换3.1 和角公式3.1.1 两角和与差的余弦3.1.2 两角和与差的正弦3.1.3 两角和与差的正切3.2 倍角公式和半角公式3.2.1 倍角公式3.2.2 半角的正弦、余弦和正切3.3 三角函数的积化和差与和差化积单元回眸高中数学(B版)必修五第一章解三角形1.1 正弦定理和余弦定理1.1.1 正弦定理1.1.2 余弦定理1.2 应用举例复习与小结第一章综合测试第二章数列2.1 数列2.1.1 数列2.1.2 数列的递推公式(选学)2.2 等差数列2.2.1 等差数列2.2.2 等差数列的前n项和2.3 等比数列2.3.1 等比数列2.3.2 等比数列的前n项和复习与小结第二章综合测试第三章不等式. 3.1 不等关系与不等式3.1.1 不等关系3.1.2 不等式的性质3.2 均值不等式3.3 一元二次不等式及其解法3.4 不等式的实际应用3.5 二元一次不等式(组)与简单的线性规划问题3.5.1 二元一次不等式(组)与简单的线性规划问题3.5.2 简单的线性规划复习与小结第三章综合测试高中数学(B版)选修1-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离高中数学(B版)选修1-2目录:第一章统计案例1.1独立性检验1.2回归分析单元回眸第二章推理与证明2.1合情推理与演绎推理2.2直接证明与间接证明单元回眸第三章数系的扩充与复数的引入3.1数系的扩充与复数的引入3.2复数的运算单元回眸第四章框图4.1流程图4.2结构图单元回眸高中数学(人教B)选修2-1第1章常用逻辑用语1.1 命题与量词1.2 基本逻辑联结词1.3充分条件、必要条件与命题的四种形式1.3.1推出与充分条件、必要条件1.3.2命题的四种形式第1章综合测试题第2章圆锥曲线与方程2.1 曲线与方程2.1.1 曲线与方程的概念2.1.2 由曲线求它的方程、由方程研究曲线的性2.2 椭圆2.2.1椭圆的标准方程2.2.2椭圆的几何性质2.3 双曲线2.3.1双曲线的标准方程2.3.2双曲线的几何性质2.4 抛物线2.4.1抛物线的标准方程2.4.2抛物线的几何性质.2.5直线与圆锥曲线第2章综合测试题阶段性综合评估检测(一)第3章空间向量与立体几何3.1 空间向量及其运算3.1.1 空间向量的线性运算3.1.2 空间向量的基本定理3.1.3两个向量的数量积3.1.4空间向量的直角坐标运算3.2 空间向量在立体几何中的应用3.2.1 直线的方向向量与直线的向量方程3.2.2平面的法向量与平面的向量表示3.2.3直线与平面的夹角3.2.4二面角及其度量3.2.5距离第3章综合测试题阶段性综合评估检测(二)高中数学人教B选修2-2第一章导数及其应用1.1 导数1.1.1 函数的平均变化率1.1.2 瞬时速度与导数1.1.3 导数的几何意义1.2 导数的运算1.2.1 常数函数与幂函数的导数1.2.2 导数公式表及数学软件的应用1.2.3 导数的四则运算法则1.3 导数的应用1.3.1 利用导数判断函数的单调性1.3.2 利用导数研究函数的极值1.3.3 导数的实际应用1.4 定积分与微积分基本定理1.4.1 曲边梯形面积与定积分1.4.2 微积分基本定理本章整合提升第二章推理与证明2.1 合情推理与演绎推理2.1.1 合情推理2.1.2 演绎推理2.2 直接证明与间接证明2.2.1 综合法与分析法2.2.2 反证法2.3 数学归纳法本章整合提升第三章数系的扩充与复数3.1 数系的扩充与复数的概念3.1.1 实数系3.1.2 复数的概念3.1.3 复数的几何意义3.2 复数的运算3.2.1 复数的加法与减法3.2.2 复数的乘法3.2.3 复数的除法本章整合提升高中数学人教B选修2-3第一章计数原理1.1基本计数原理1.2排列与组合1.2.1排列1.2.2组合1.3二项式定理1.3.1二项式定理1.3.2杨辉三角单元回眸第二章概率2.1离散型随机变量及其分布列2.1.1离散型随机变量2.1.2离散型随机变量的分布列2.1.3超几何分布2.2条件概率与事件的独立性2.2.1条件概率2.2.2事件的独立性2.2.3独立重复试验与二项分布2.3随机变量的数字特征2.3.1离散型随机变量的数学期望2.3.2离散型随机变量的方差2.4正态分布单元回眸第三章统计案例3.1独立性检验3.2回归分析单元回眸高中数学(B版)选修4-1第一章相似三角形定理与圆幂定理1.1相似三角形1.1.1相似三角形判定定理1.1.2相似三角形的性质1.1.3平行截割定理1.1.4锐角三角函数与射影定理1.2圆周角与弦切角1.2.1圆的切线1.2.2圆周角定理1.2.3弦切角定理1.3圆幂定理与圆内接四边形1.3.1圆幂定理1.3.2圆内接四边形的性质与判定本章小结阅读与欣赏欧几里得附录不可公度线段的发现与逼近法第二章圆柱、圆锥与圆锥曲线2.1平行投影与圆柱面的平面截线2.1.1平行投影的性质2.1.2圆柱面的平面截线2.2用内切球探索圆锥曲线的性质2.2.1球的切线与切平面2.2.2圆柱面的内切球与圆柱面的平面截线2.2.3圆锥面及其内切球2.2.4圆锥曲线的统一定义本章小结阅读与欣赏吉米拉•丹迪林附录部分中英文词汇对照表后记高中数学(B版)选修4-4第一章坐标系1.1直角坐标系,平面上的伸缩变换1.2极坐标系本章小结第二章参数方程2.1曲线的参数方程2.2直线和圆的参数方程2.3圆锥曲线的参数方程2.4一些常见曲线的参数方程本章小结附录部分中英文词汇对照表后记高中数学(B版)选修4-5第一章不等式的基本性质和证明的基本方法1.1不等式的基本性质和一元二次不等式的解法1.2基本不等式1.3绝对值不等式的解法1.4绝对值的三角不等式1.5不等式证明的基本方法本章小结第二章柯西不等式与排序不等式及其应用2.1柯西不等式2.2排序不等式2.3平均值不等式(选学)2.4最大值与最小值问题,优化的数学模型本章小结阅读与欣赏著名数学家柯西第三章数学归纳法与贝努利不等式3.1数学归纳法原理3.2用数学归纳法证明不等式、贝努利不等式本章小结阅读与欣赏完全归纳法和不完全归纳法数学归纳法数学归纳法简史附录部分中英文词汇对照表。
班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。
——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。
第一课时三角函数的定义与公式一预习课本P11~15,思考并完成以下问题(1)任意角的三角函数的定义是什么?(2)三角函数值的大小与其终边上的点P的位置是否有关?(3)如何求三角函数的定义域?(4)如何判断三角函数值在各象限内的符号?(5)诱导公式一是什么?[新知初探]1.任意角的三角函数的定义前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y 余弦x叫做α的余弦,记作cos α,即cos α=x正切yx叫做α的正切,记作tan α,即tan α=yx(x≠0)三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数[点睛] 三角函数也是函数,都是以角为自变量,以单位圆上点的坐标(坐标的比值)为函数值的函数;三角函数值只与角α的大小有关,即由角α的终边位置决定.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.诱导公式一即终边相同的角的同一三角函数值相等.[点睛] 诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值相等.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cos α=cos β.( )(2)若sin α=sin β,则α=β.( )(3)已知α是三角形的内角,则必有sin α>0.( )答案:(1)√(2)×(3)√2.若sin α<0,tan α>0,则α在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C3.已知角α的终边与单位圆的交点P ⎝⎛⎭⎪⎫55,-255,则sin α+cos α=( )A .55B .-55C .255D .-255答案:B4.sin π3=________,cos 3π4=________.答案:32 -22三角函数的定义及应用[典例] 设a <0,角α的终边与单位圆的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A .25 B .-25C .15D .-15[解析] ∵点P 在单位圆上,则|OP |=1. 即-3a2+4a2=1,解得a =±15.∵a <0,∴a =-15.∴P 点的坐标为⎝ ⎛⎭⎪⎫35,-45.∴sin α=-45,cos α=35.∴sin α+2cos α=-45+2×35=25.[答案] A利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr,cosα=xr.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]1.如果α的终边过点P (2sin 30°,-2cos 30°),那么sin α的值等于( ) A .12 B .-12C .-32D .-33解析:选C 由题意知P (1,-3), 所以r = 12+-32=2,所以sin α=-32. 2.已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.解:根据三角函数的定义,tan α=a 12=512,∴a =5,∴P (12,5).这时r =13,∴sin α=513,cos α=1213,从而sin α+cos α=1713.三角函数值符号的运用[典例] (1)( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)设α是第三象限角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.(2)∵α是第三象限角,∴2k π+π<α<2k π+3π2,k ∈Z.∴k π+π2<α2<k π+3π4.∴α2在第二、四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2在第二象限.[答案] (1)D (2)B对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.[活学活用]1.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin C解析:选D ∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.2.若角α是第二象限角,则点P (sin α,cos α)在第________象限. 解析:∵α为第二象限角, ∴sin α>0,cos α<0.∴P (sin α,cos α)位于第四象限. 答案:四诱导公式一的应用[典例] 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12 =64+14 =1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式求解任意角的三角函数的步骤[活学活用] 求下列各式的值:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+cos 360°-tan 1 125°. 解:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4=sin ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=sin π3+tan π4=32+1. (2)sin 810°+cos 360°-tan 1 125°=sin(2×360°+90°)+cos(360°+0°)-tan(3×360°+45°) =sin 90°+cos 0°-tan 45° =1+1-1 =1.层级一 学业水平达标1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A .⎝ ⎛⎭⎪⎫12,32 B .⎝ ⎛⎭⎪⎫-12,32 C .⎝ ⎛⎭⎪⎫-32,12 D .⎝ ⎛⎭⎪⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限,∴x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32, ∴P ⎝ ⎛⎭⎪⎫-12,32.2.若角α的终边上一点的坐标为(1,-1),则cos α为( ) A .1 B .-1 C .22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+-12=2,∴cos α=xr=12=22. 3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角.4.代数式sin 120°cos 210°的值为( ) A .-34B .34C .-32D .14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴s in 120°cos 210°=32×⎝ ⎛⎭⎪⎫-32=-34,故选A. 5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=yr=25=25 5.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-25 5. 6.tan ⎝⎛⎭⎪⎫-17π3=________. 解析:tan ⎝ ⎛⎭⎪⎫-17π3=tan ⎝ ⎛⎭⎪⎫-6π+π3=tan π3= 3. 答案: 37.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________.解析:∵tan α=a 5=-125,∴a =-12.∴r = 25+a 2=13.∴sin α=-1213,cos α=513.∴sin α+cos α=-713.答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0.答案:09.求下列三角函数值:(1)cos(-1 050°);(2)tan 19π3;(3)sin ⎝ ⎛⎭⎪⎫-31π4.解:(1)∵-1 050°=-3×360°+30°,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan ⎝ ⎛⎭⎪⎫3×2π+π3=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin ⎝ ⎛⎭⎪⎫-31π4=sin ⎝⎛⎭⎪⎫-4×2π+π4=sin π4=22. 10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上, ∴x 21+y 21=1,即x 21+⎝ ⎛⎭⎪⎫-222=1, 解得x 1=22或x 2=-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.给出下列函数值:①sin(-1 000°);②cos ⎝ ⎛⎭⎪⎫-π4;③tan 2,其中符号为负的个数为( )A .0B .1C .2D .3解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0; ∵-π4是第四象限角,∴cos ⎝ ⎛⎭⎪⎫-π4>0; ∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.故选B. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( ) A .8B .-8C .4D .-4 解析:选B 由题意r =|OP |=m 2+-62=m 2+36,故cos α=mm 2+36=-45,解得m =-8. 5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 解析:|OP |=42+y 2.根据任意角三角函数的定义得,y42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8. 答案:-86.tan 405°-sin 450°+cos 750°=________.解析:原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 答案:327.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎪⎫-23π4. 解:(1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0,∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角, ∵-23π4=-6π+π4,∴-23π4是第一象限角. ∴sin 4<0,tan ⎝⎛⎭⎪⎫-23π4>0, ∴sin 4tan ⎝⎛⎭⎪⎫-23π4<0.8.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限. (2)若角α的终边上一点是M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1, 得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.。
1.3 三角函数的图象与性质 1.3.1 正弦函数的图象与性质 第1课时 正弦函数的图象与性质1.能正确使用“五点法”、“几何法”作出正弦函数的图象.(难点)2.理解正弦函数的性质,会求正弦函数的最小正周期、奇偶性、单调区间及最值.(重点)[基础·初探]教材整理1 正弦函数的图象阅读教材P 37~P 38“例1”以上部分,完成下列问题.1.利用正弦线可以作出y =sin x ,x ∈[0,2π]的图象,要想得到y =sin x (x ∈R )的图象,只需将y =sin x ,x ∈[0,2π]的图象沿x 轴平移±2π,±4π…即可,此时的图象叫做正弦曲线.2.“五点法”作y =sin x ,x ∈[0,2π]的图象时,所取的五点分别是(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫32π,-1和(2π,0).判断(正确的打“√”,错误的打“×”) (1)正弦函数的图象向左右是无限伸展的.( )(2)正弦函数y =sin x 的图象在x ∈[2k π,2k π+2π],(k ∈Z )上的图象形状相同,只是位置不同.( )(3)正弦函数y =sin x (x ∈R )的图象关于x 轴对称.( ) (4)正弦函数y =sin x (x ∈R )的图象关于原点成中心对称.( )【解析】由正弦曲线的定义可知只有(3)错误.【答案】(1)√(2)√(3)×(4)√教材整理2正弦函数的性质阅读教材P39~P40“例2”以上部分,完成下列问题.1.函数的周期性(1)周期函数:对于函数f (x),如果存在一个非零常数T,使得定义域内的每一个x值,都满足f (x+T)=f (x),那么函数f (x)就叫做周期函数,非零常数T叫做这个函数的周期.(2)最小正周期:对于一个周期函数f (x),如果在它的所有周期中存在一个最小的正数,那么这个最小正数就叫做它的最小正周期.2.正弦函数的性质函数y=sin x定义域(-∞,+∞)值域[-1,1]奇偶性奇函数周期性最小正周期:2π单调性在⎣⎢⎡⎦⎥⎤2kπ-π2,2kπ+π2(k∈Z)上递增;在⎣⎢⎡⎦⎥⎤2kπ+π2,2kπ+32π(k∈Z)上递减最值x=2kπ+π2,(k∈Z)时,y最大值=1;x=2kπ-π2(k∈Z)时,y最小值=-1函数y=sin x的一条对称轴是()A.x=π2 B.x=π4C.x=0D.x=π【解析】y=sin x的对称轴是x=kπ+π2(k∈Z),∴应选A.【答案】 A[质疑·手记]预习完成后,请将你的疑问记录,并与“小伙伴们”探讨交流:疑问1:_________________________________________________________ 解惑:_________________________________________________________ 疑问2:_________________________________________________________ 解惑:_________________________________________________________ 疑问3:_________________________________________________________ 解惑:_________________________________________________________ 疑问4:_________________________________________________________解惑:_________________________________________________________[小组合作型]五点法作函数的图象作函数y=sin x,x∈[0,2π]与函数y=-1+sin x,x∈[0,2π]的简图,并研究它们之间的关系.【导学号:72010021】【精彩点拨】可以用“五点法”原理在同一坐标系中作出两函数的图象,然后比较它们的关系.【自主解答】按五个关键点列表:x 0π2π3π22πsin x 010-10-1+sin x -10-1-2-1由图象可以发现,把y=sin x,x∈[0,2π]的图象向下平移1个单位长度即可得y =-1+sin x ,x ∈[0,2π]的图象.1.五点法作图,要抓住五个关键点,使函数式中的x 依次取0,π2,π,32π,2π,然后解出相应的y 值,再描点,连线得出图象.2.y =sin x ±b 的图象可以由y =sin x 的图象上、下平移获得. [再练一题]1.作出函数y =1+sin x (x ∈[0,2π])的简图. 【解】 列表:x 0 π2 π 32π 2π y1211描点连线:求三角函数的周期求下列函数的最小正周期.(1)y =sin 12x ; (2)y =2sin ⎝ ⎛⎭⎪⎫x 3-π6.【精彩点拨】 求周期的方法可以用诱导公式sin(x +2k π)=sin x 得到. 【自主解答】 (1)如果令u =12x ,则sin 12x =sin u 是周期函数,且最小正周期为2π.∴sin ⎝ ⎛⎭⎪⎫12x +2π=sin 12x ,即sin ⎣⎢⎡⎦⎥⎤12(x +4π)=sin 12x .∴y =sin 12x 的最小正周期是4π. (2)∵2sin ⎝ ⎛⎭⎪⎫x 3-π6+2π=2sin ⎝ ⎛⎭⎪⎫x 3-π6, 即2sin ⎣⎢⎡⎦⎥⎤13(x +6π)-π6=2sin ⎝ ⎛⎭⎪⎫x 3-π6,∴y =2sin ⎝ ⎛⎭⎪⎫x 3-π6的最小正周期是6π.用定义求周期时应注意,从等式f (x +T )=f (x )来看,应强调是自变量x 本身加的常数才是周期,如:f (2x +T )=f (2x ),T 不是周期,要写成f (2x +T )=f ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +T 2=f (2x ),T 2是f (x )的周期.[再练一题]2.求下列函数的周期: (1)y =sin ⎝ ⎛⎭⎪⎫2x +π3;(2)y =|sin x |.【解】 (1)∵sin ⎝ ⎛⎭⎪⎫2x +π3=sin ⎝ ⎛⎭⎪⎫2x +π3+2π,即sin ⎣⎢⎡⎦⎥⎤2⎝ ⎛⎭⎪⎫x +π+π3=sin ⎝ ⎛⎭⎪⎫2x +π3,∴y =sin ⎝ ⎛⎭⎪⎫2x +π3的最小正周期是π.(2)令f (x )=|sin x |,则f (k π+x )=|sin(k π+x )|=|±sin x |=|sin x |=f (x )(k ∈Z 且k ≠0).∴k π是函数f (x )的周期,则最小正周期为π.正弦函数的单调性及应用已知函数f (x )=sin x -1.(1)写出f (x )的单调区间;(2)求f (x )的最大值和最小值及取得最值时x 的集合; (3)比较f ⎝ ⎛⎭⎪⎫-π18与f ⎝ ⎛⎭⎪⎫-π12的大小. 【精彩点拨】 结合正弦函数的单调性及单调区间求解即可.【自主解答】 (1)∵函数f (x )=sin x -1与g (x )=sin x 的单调区间相同, ∴f (x )=sin x -1的增区间为 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2(k ∈Z ), 减区间为⎣⎢⎡⎦⎥⎤2k π+π2,2k π+32π(k ∈Z ). (2)∵函数g (x )=sin x ,当x =2k π+π2(k ∈Z )时,取最大值1, 当x =2k π+32π(k ∈Z )时,取最小值-1. ∴函数f (x )=sin x -1,当x =2k π+π2(k ∈Z )时,取最大值0, 当x =2k π+32π(k ∈Z )时,取最小值-2. (3)f ⎝ ⎛⎭⎪⎫-π18=sin ⎝ ⎛⎭⎪⎫-π18-1, f ⎝ ⎛⎭⎪⎫-π12=sin ⎝ ⎛⎭⎪⎫-π12-1, ∵-π2<-π12<-π18<π2,且y =sin x 在⎣⎢⎡⎦⎥⎤-π2,π2上是增函数,∴sin ⎝ ⎛⎭⎪⎫-π12<sin ⎝ ⎛⎭⎪⎫-π18.∴f ⎝ ⎛⎭⎪⎫-π18>f ⎝ ⎛⎭⎪⎫-π12.1.求正弦函数的单调区间和最值时要联系正弦函数的图象,同时注意三角函数的周期性.2.比较三角函数值的大小时,需要把角化为同一单调区间上的同名三角函数,然后用三角函数的单调性即可,如果角不在同一单调区间上,一般用诱导公式进行转化,然后再比较.[再练一题] 3.比较大小:(1)sin 250°与sin 260°; (2)sin ⎝ ⎛⎭⎪⎫-235π与sin ⎝ ⎛⎭⎪⎫-174π.【解】 (1)sin 250°=sin(180°+70°)=-sin 70°,sin 260°=sin(180°+80°)=-sin 80°,因为0°<70°<80°<90°,且函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2是增函数,所以sin 70°<sin 80°,所以-sin 70°>-sin 80°,即sin 250°>sin 260°. (2)sin ⎝ ⎛⎭⎪⎫-23π5=-sin 23π5=-sin 3π5=-sin ⎝ ⎛⎭⎪⎫π-2π5=-sin 2π5,sin ⎝ ⎛⎭⎪⎫-17π4=-sin 17π4=-sin π4. 因为0<π4<2π5<π2,且函数y =sin x ,x ∈⎣⎢⎡⎦⎥⎤0,π2是增函数,所以sin π4<sin 2π5,-sin π4>-sin 2π5, 即sin ⎝ ⎛⎭⎪⎫-23π5<sin ⎝ ⎛⎭⎪⎫-17π4.[探究共研型]正弦函数的值域与最值问题探究1 函数y =sin ⎝ ⎛⎭⎪⎫x +π4在x ∈[0,π]上最小值能否为-1?【提示】 不能.因为x ∈[0,π],所以x +π4∈⎣⎢⎡⎦⎥⎤π4,5π4,由正弦函数图象可知函数的最小值为-22.探究2 函数y =A sin x +b ,x ∈R 的最大值一定是A +b 吗?【提示】 不是.因为A >0时最大值为A +b ,若A <0时最大值应为-A +b .求下列函数的值域.(1)y =3+2sin ⎝ ⎛⎭⎪⎫2x -π3;(2)y =1-2sin 2x +sin x .【精彩点拨】 (1)用|sin α|≤1构建关于y 的不等式,从而求得y 的取值范围.(2)用t 代替sin x ,然后写出关于t 的函数,再利用二次函数的性质及|t |≤1即可求出y 的取值范围.【自主解答】 (1)∵-1≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1, ∴-2≤2sin ⎝ ⎛⎭⎪⎫2x -π3≤2,∴1≤2sin ⎝ ⎛⎭⎪⎫2x -π3+3≤5,∴1≤y ≤5,即函数y =3+2sin ⎝ ⎛⎭⎪⎫2x -π3的值域为[1,5].(2)y =1-2sin 2x +sin x , 令sin x =t ,则-1≤t ≤1, y =-2t 2+t +1=-2⎝ ⎛⎭⎪⎫t -142+98.由二次函数y =-2t 2+t +1的图象可知-2≤y ≤98, 即函数y =1-2sin 2x +sin x 的值域为⎣⎢⎡⎦⎥⎤-2,98.1.换元法,旨在三角问题代数化,要防止破坏等价性.2.转化成同一函数,要注意不要一见sin x 就有-1≤sin x ≤1,要根据x 的范围确定.[再练一题]4.设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值. 【解】 f (x )=cos 2x +sin x =1-sin 2x +sin x =-⎝ ⎛⎭⎪⎫sin x -122+54.∵|x |≤π4,∴-22≤sin x ≤22, ∴当sin x =-22时取最小值为1-22.1.以下对于正弦函数y =sin x 的图象描述不正确的是( ) A.在x ∈[2k π,2k π+2π],k ∈Z 上的图象形状相同,只是位置不同 B.关于x 轴对称C.介于直线y =1和y =-1之间D.与y 轴仅有一个交点【解析】 观察y =sin x 图象可知A ,C ,D 正确,且关于原点中心对称,故选B.【答案】 B2.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )【解析】 由y =sin x 在[0,2π]上的图象作关于x 轴的对称图形,应为D 项. 【答案】 D3.点M ⎝ ⎛⎭⎪⎫π2,-m 在函数y =sin x 的图象上,则m 等于( )A.0B.1C.-1D.2【解析】 由题意-m =sin π2,∴-m =1,∴m =-1. 【答案】 C4.若sin x =2m +1且x ∈R ,则m 的取值范围是__________.【导学号:72010022】【解析】因为-1≤sin x≤1,sin x=2m+1,所以-1≤2m+1≤1,解得-1≤m≤0.【答案】[-1,0]5.(2016·西安高一检测)用五点法画出函数y=-2sin x在区间[0,2π]上的简图. 【解】列表:x 0π2π3π22πsin x 010-10y=-2sin x 0-2020我还有这些不足:(1)_________________________________________________________(2)_________________________________________________________ 我的课下提升方案:(1)_________________________________________________________(2)_________________________________________________________学业分层测评(八)(建议用时:45分钟)[学业达标]一、选择题1.函数y=sin|x|的图象是()【解析】 ∵函数y =sin|x |是偶函数,且x ≥0时,sin|x |=sin x .故应选B. 【答案】 B2.(2016·济南高一检测)函数y =|sin x |的一个单调递增区间是( ) A.⎝ ⎛⎭⎪⎫π2,π B.(π,2π) C.⎝ ⎛⎭⎪⎫π,3π2 D.(0,π)【解析】 作出函数y =|sin x |的图象,如图,观察图象知C 正确, 故选C. 【答案】 C3.在[0,2π]内,不等式sin x <-32的解集是( )【导学号:72010023】A.(0,π)B.⎝ ⎛⎭⎪⎫π3,4π3 C.⎝ ⎛⎭⎪⎫4π3,5π3 D.⎝ ⎛⎭⎪⎫5π3,2π 【解析】 画出y =sin x ,x ∈[0,2π]的草图如下:因为sin π3=32, 所以sin ⎝ ⎛⎭⎪⎫π+π3=-32,sin ⎝ ⎛⎭⎪⎫2π-π3=-32. 即在[0,2π]内,满足sin x =-32的是x =4π3或x =5π3. 可知不等式sin x <-32的解集是⎝ ⎛⎭⎪⎫4π3,5π3.【答案】 C4.(2016·兰州高一检测)设a >0,对于函数f (x )=sin x +asin x (0<x <π),下列结论正确的是( )A.有最大值而无最小值B.有最小值而无最大值C.有最大值且有最小值D.既无最大值又无最小值【解析】 因为0<x <π,所以0<sin x ≤1,1sin x ≥1,所以函数f (x )=sin x +a sin x=1+asin x 有最小值而无最大值,故选B.【答案】 B5.函数y =sin(2x +φ)(0≤φ≤π)是R 上的偶函数,则φ的值是( ) A.0 B.π4 C.π2D.π【解析】 当φ=π2时,y =sin ⎝ ⎛⎭⎪⎫2x +π2=cos 2x ,而y =cos 2x 是偶函数,故选C.【答案】 C 二、填空题6.y =sin ⎝ ⎛⎭⎪⎫ωx +π3(ω>0)的周期是23π,则ω=________.【解析】 根据题意有sin ⎝ ⎛⎭⎪⎫ω⎝⎛⎭⎪⎫x +2π3+π3=sin ⎝ ⎛⎭⎪⎫ωx +π3, sin ⎝ ⎛⎭⎪⎫ωx +2πω3+π3=sin ⎝ ⎛⎭⎪⎫ωx +π3, ∴2π3ω=2π, ∴ω=3. 【答案】 37.函数y =log 2(sin x )的定义域为________.【解析】 据题意知sin x >0,得x ∈(2k π,2k π+π)(k ∈Z ). 【答案】 (2k π,2k π+π)(k ∈Z )8.(2016·杭州高一检测)若x 是三角形的最小角,则y =sin x 的值域是________.【解析】 由三角形内角和为π知,若x 为三角形中的最小角, 则0<x ≤π3,由y =sin x 图象知y ∈⎝ ⎛⎦⎥⎤0,32.【答案】 ⎝ ⎛⎦⎥⎤0,32三、解答题9.定义在R 上的函数f (x )既是偶函数又是周期函数,若f (x )的最小正周期是π,且当x ∈⎣⎢⎡⎦⎥⎤0,π2时,f (x )=sin x ,求f ⎝ ⎛⎭⎪⎫5π3的值.【解】 ∵f (x )的最小正周期是π,∴f ⎝ ⎛⎭⎪⎫5π3=f ⎝ ⎛⎭⎪⎫5π3-2π=f ⎝ ⎛⎭⎪⎫-π3. ∵f (x )是R 上的偶函数, ∴f ⎝ ⎛⎭⎪⎫-π3=f ⎝ ⎛⎭⎪⎫π3=sin π3=32, ∴f ⎝ ⎛⎭⎪⎫5π3=32. 10.已知函数f (x )=2a sin ⎝ ⎛⎭⎪⎫2x -π3+b 的定义域为⎣⎢⎡⎦⎥⎤0,π2,最大值为1,最小值为-5,求a 和b 的值.【解】 ∵0≤x ≤π2, ∴-π3≤2x -π3≤23π,∴-32≤sin ⎝ ⎛⎭⎪⎫2x -π3≤1,易知a ≠0.当a >0时,最大值为2a +b =1, 最小值为-3a +b =-5.由⎩⎪⎨⎪⎧ 2a +b =1,-3a +b =-5,解得⎩⎪⎨⎪⎧a =12-63,b =-23+12 3. 当a <0时,最大值为-3a +b =1, 最小值为2a +b =-5.由⎩⎪⎨⎪⎧ -3a +b =1,2a +b =-5,解得⎩⎪⎨⎪⎧a =-12+63,b =19-12 3.[能力提升]1.函数y =sin(-x ),x ∈[0,2π]的简图是( )【解析】 因为y =sin(-x )=-sin x ,x ∈[0,2π]的图象可看作是由y =sin x ,x ∈[0,2π]的图象关于x 轴对称得到的.故选B.【答案】 B2.直线x sin α+y +2=0的倾斜角的取值范围是________. 【解析】 ∵sin α∈[-1,1],∴-sin α∈[-1,1],∴已知直线的斜率范围为[-1,1],由倾斜角与斜率关系得倾斜角范围是⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π 【答案】 ⎣⎢⎡⎦⎥⎤0,π4∪⎣⎢⎡⎭⎪⎫3π4,π3.已知直线y =a ,函数y =sin x ,x ∈[0,2π],试探求以下问题. (1)当a 为何值时,直线y =a 与函数y =sin x 的图象只有一个交点? (2)当a 为何值时,直线与函数图象有两个交点? (3)当a 为何值时,直线与函数图象有三个交点? (4)当a 为何值时,直线与函数图象无交点?【解】 作出直线y =a ,与函数y =sin x ,x ∈[0,2π]的图象(如图所示),由图象可知.(1)当a =1或-1时,直线与函数图象只有一个交点. (2)当-1<a <0或0<a <1时,直线与函数图象有两个交点. (3)当a =0时,直线与函数图象有三个交点. (4)当a <-1或a >1时,直线与函数图象无交点.。
【北师大版】高中数学必修四全册学案(全册共340页附答案)目录§1周期现象§2角的概念的推广§3弧度制4.1 单位圆与任意角的正弦函数、余弦函数的定义4.2 单位圆与周期性4.3 单位圆与正弦函数、余弦函数的基本性质4.4 单位圆的对称性与诱导公式(一)4.4 单位圆的对称性与诱导公式(二)5.1 正弦函数的图像5.2 正弦函数的性质§6余弦函数的图像与性质7.1 正切函数的定义7.2 正切函数的图像与性质7.3 正切函数的诱导公式§8函数y=A sin(ωx+φ)的图像与性质(一)§8函数y=A sin(ωx+φ)的图像与性质(二)§9三角函数的简单应用章末复习课第二章平面向量§1从位移、速度、力到向量2.1 向量的加法2.2 向量的减法3.1 数乘向量3.2 平面向量基本定理§4平面向量的坐标§5从力做的功到向量的数量积§1周期现象内容要求 1.了解周期现象,能判断简单的实际问题中的周期(重点).2.初步了解周期函数的概念,能判断简单的函数的周期性(难点).知识点周期现象(1)概念:相同间隔重复出现的现象.(2)特点:①有一定的规律;②不断重复出现.【预习评价】1.(正确的打“√”,错误的打“×”)(1)地球上一年春、夏、秋、冬四季的变化是周期现象.(√)(2)钟表的分针每小时转一圈,它的运行是周期现象.(√)2.观察“2,0,1,7,2,0,1,7,2,0,1,7,…”寻找规律,则第25个数字是________.解析观察可知2,0,1,7每隔四个数字重复出现一次,具有周期性,故第25个数字为2. 答案 2题型一周期现象的判断【例1】判断下列现象是否为周期现象,并说明理由.(1)地球的自转;(2)连续抛掷一枚骰子,朝上一面的点数;(3)钟表的秒针的转动;(4)某段高速公路每天通过的车辆数.解(1)地球每天自转一圈,并且每一天内的任何时段总会重复前一天内相同时段的动作,因此是周期现象.(2)连续抛掷一枚骰子,朝上一面的点数有可能为1,2,…,6,并且前一次出现的点数,下一次可能出现,也可能不出现,故出现的点数是随机的,因此不是周期现象.(3)钟表的秒针的转动,每一分钟转一圈,并且每分钟总是重复前一分钟的动作,因此是周期现象.(4)某段高速公路每天通过的车辆数,会因时间、天气、交通状况等因素而发生变化,没有一个确定的规律,因此不是周期现象.规律方法周期现象的判断关键:首先要认真审题,明确题目的实际背景,然后应牢牢抓住“间隔相同,现象(或值)重复出现”这一重要特征进行判断.【训练1】判断下列现象是否为周期现象:(1)每届奥运会的举办时间;(2)北京天安门广场的国旗,日出时升旗,日落时降旗,则其每天的升旗时间;(3)中央电视台每晚7:00的新闻联播.解(1)奥运会每4年一届,所以其举办时间呈周期现象.(2)北京每天的日出、日落随节气变化,并非恒定,相邻两天的升旗时间间隔是变化的,不是常数,所以不是周期现象.(3)每24小时,新闻联播重复一次,所以是周期现象.题型二周期现象的应用【例2】一个地区不同日子里白昼的时长是不同的,所给表是某地一年中10天测量的白昼时间统计表(时间近似到0.1小时):坐标系中画出这些数据的散点图,并估计该地区一年中大约有多少天白昼时间大于15.9小时.(2)白昼时间的变化是否具有周期现象?你估计该地区来年6月21日的白昼时间是多少?解(1)散点图如图所示,因为从4月27日至8月13日的白昼时间均超过15.9小时,所以该地区一年白昼时间超过15.9小时的大约有3+31+30+31+12=107(天).(2)由散点图可知,白昼时间的变化是周期现象,该地区来年6月21日的白昼时间为19.4小时.规律方法收集数据、画散点图,分析、研究数据特点从而得出结论是用数学方法研究现实问题的常用方法.【训练2】受日月的引力,海水会发生涨落,这种现象叫做潮汐.已知某海滨浴场的海浪高度y(米)是时间t(0≤t≤24,单位:时)的函数,记作y=f(t),下表是某日各时的浪高数据:几次?时间最长的一次是什么时候?有多长时间?解由题中表可知,一天内能开放三次,时间最长的一次是上午9时至下午3时,共6个小时.【例3】2017年5月1日是星期一,问2017年10月1日是星期几?解按照公历记法,2017年5、7、8这三个月份都是31天,6、9月份各30天.从2017年5月1日到2017年10月1日共有153天,因为每星期有7天,故由153=22×7-1知,从2017年5月1日再过154天恰好与5月1日相同都是星期一,这一天是公历2017年10月2日,故2017年10月1日是星期日.【迁移1】试确定自2017年5月1日再过200天是星期几?解由200=28×7+4知自2017年5月1日再过200天是星期五.【迁移2】从2017年5月1日到2017年10月1日经过了几个星期五?几个星期一?解因为从2017年5月1日到2017年10月1日的153天中有21个完整的周期零6天,在每个周期中有且仅有一个星期五和一个星期一,故共经过了22个星期五,21个星期一.【迁移3】试确定自2017年5月1日再过7k+3(k∈Z)天后那一天是星期几?解每隔七天,周一至周日依次循环,故7k天后为周一,7k+3天后为星期四.规律方法应用周期性解决实际问题的两个要点特别提醒计算两个日期的间隔时间时要注意有的月份30天,有的月份31天,二月份有28天(或29天).课堂达标1.下列自然现象:月亮东升西落,气候的冷暖,昼夜变化,火山爆发.其中是周期现象的有( )A.1个B.2个C.3个D.4个解析月亮东升西落及昼夜变化为周期现象;气候的冷暖与火山爆发不是周期现象,故选B.答案 B2.如果今天是星期五,则58天后的那一天是星期( )A.五B.六C.日D.一解析每隔七天循环一次,58=7×8+2,故58天后为周日.答案 C3.共有50架飞机组成编队,按侦察机、直升机、轰炸机、歼击机的顺序轮换编队,则最后一架飞机是________飞机.解析周期为4,50=12×4+2,所以最后一架是直升机.答案直升机4.某物体作周期运动,如果一个周期为0.4秒,那么运动4秒,该物体经过了________个周期.解析4÷0.4=10,所以经过了10个周期.答案105.某班有48名学生,每天安排4名同学进行卫生值日,按一周上五天课,一学期二十周计算,该班每位同学一学期要值日几次?解共有48名学生,每天安排4名,则12个上课日就轮完一遍.一学期有5×20=100(个)上课日,而12×8=96(个)上课日,所以一个学期内该班每位同学至少值日8次,有部分同学要值日9次.课堂小结1.对于某些具有重复现象的事件,研究其规律,可预测未来在一定时间该现象发生的可能性及发生规律,具有一定的研究价值.2.利用散点图可以较直观地分析两变量之间的某种关系,然后再利用这种关系选择一种合适的函数去拟合这些散点,从而可以避免因盲目选择函数模型而造成的不必要的失误.基础过关1.下列是周期现象的为( ) ①闰年每四年一次;②某交通路口的红绿灯每30秒转换一次; ③某超市每天的营业额; ④某地每年6月份的平均降雨量. A .①②④B .②④C .①②D .①②③解析 ①②是周期现象;③中每天的营业额是随机的,不是周期现象;④中每年6月份的降雨量也是随机的,不是周期现象. 答案 C2.把17化成小数,小数点后第20位是( )A .1B .2C .4D .8解析 17=0.1·42857·,小数点后“142857”呈周期性变化,且周期为 6.∵20=3×6+2,∴第20位为4. 答案 C3.按照规定,奥运会每4年举行一次.2016的夏季奥运会在巴西举办,那么下列年份中不举办夏季奥运会的应该是( ) A .2020 B .2024 C .2026D .2028解析 C 中2026不是4的倍数,选C. 答案 C4.把一批小球按2个红色,5个白色的顺序排列,第30个小球是________色. 解析 周期为7,30=4×7+2,所以第30个小球与第2个小球颜色相同,为红色. 答案 红5.如图所示,变量y与时间t(s)的图像如图所示,则时间t至少隔________ s时y=1会重复出现1次.答案 26.若今天是星期一,则第7天后的那一天是星期几?第120天后的那一天是星期几?(注:今天是第一天)解每星期有7天,从星期一到星期日,呈周期性变化,其周期为7.∴第7天后的那一天是星期一.∵120=17×7+1,∴第120天后的那一天是星期二.7.水车上装有16个盛水槽,每个盛水槽最多盛水10升,假设水车5分钟转一圈,计算1小时内最多盛水多少升?解因为1小时=60分钟=12×5分钟,且水车5分钟转一圈,所以1小时内水车转12圈.又因为水车上装有16个盛水槽,每个盛水槽最多盛水10升,所以每转一圈,最多盛水16×10=160(升,)所以水车1小时内最多盛水160×12=1 920(升).能力提升8.钟表分针的运动是一个周期现象,其周期为60分钟,现在分针恰好指在2点处,则100分钟后分针指在( )A.8点处B.10点处C.11点处D.12点处解析由于100=1×60+40,所以100分钟后分针所指位置与40分钟后分针所指位置相同,现在分针恰好指在2点处,经过40分钟分针应指在10点处,故选B.答案 B9.设钟摆每经过1.8秒回到原来的位置.在图中钟摆达到最高位置A点时开始计时,经过1分钟后,钟摆的大致位置是( )A.点A处B.点B处C.O、A之间D.O、B之间解析 钟摆的周期T =1.8 秒,1分钟=(33×1.8+0.6)秒,又T 4<0.6<T2,所以经过1分钟后,钟摆在O 、B 之间. 答案 D10.今天是星期六,再过100天后是星期________. 解析 100=14×7+2,∴再过100天是星期一. 答案 一11.一个质点,在平衡位置O 点附近振动,如果不考虑阻力,可将此振动看作周期运动,从O 点开始计时,质点向左运动第一次到达M 点用了0.3 s ,又经过0.2 s 第二次通过M 点,则质点第三次通过M 点,还要经过的时间可能是________ s.解析 质点从O 点向左运动,O →M 用了0.3 s ,M →A →M 用了0.2 s ,由于M →O 与O →M 用时相同,因此质点运动半周期T2=0.2+0.3×2=0.8(s),从而当质点第三次经过M 时用时应为M →O →B →O →M ,所用时间为0.3×2+0.8=1.4(s). 答案 1.412.游乐场中的摩天轮匀速旋转,每转一圈需要12分钟,其中心O 距离地面40.5米,半径40米.如果你从最低处登上摩天轮,那么你与地面的距离将随时间的变化而变化,以你登上摩天轮的时刻开始计时,请解答下列问题:(1)你与地面的距离随时间的变化而变化,这个现象是周期现象吗? (2)转四圈需要多少时间?(3)你第四次距地面最高需要多少时间? (4)转60分钟时,你距离地面是多少? 解 (1)是周期现象,周期12分钟/圈. (2)转四圈需要时间为4×12=48(分钟).(3)第1次距离地面最高需122=6(分钟),而周期是12分钟,所以第四次距地面最高需12×3+6=42(分钟).(4)∵60÷12=5,∴转60分钟时你距离地面与开始时刻距离地面相同,即40.5-40=0.5(米).13.(选做题)下面是一个古希腊的哲学家、数学家、天文学家毕达哥拉斯的故事:有一次毕达哥拉斯处罚学生,让他来回数在黛安娜神庙的七根柱子(这七根柱子的标号分别为A,B,C,…,G),如图所示,一直到指出第1 999个数的柱子的标号是哪一个才能够停止.你能帮助这名学生尽快结束这个处罚吗?解通过观察可发现规律:数“2,3,4,…,1 997,1 998,1 999”按标号为“B,C,D,E,F,G,F,E,D,C,B,A”这12个字母循环出现,因此周期是12.先把1去掉,(1 999-1)÷12=166……6,因此第1 999个数的柱子的标号与第167个周期的第6个数的标号相同,故数到第1 999个数的柱子的标号是G.§2角的概念的推广内容要求 1.理解正角、负角、零角与象限角的概念(知识点1 角的概念(1)角的概念:角可以看成平面内一条射线绕着端点O从一个位置OA旋转到另一个位置OB 所形成的图形.点O是角的顶点,射线OA,OB分别是角α的始边和终边.(2)按照角的旋转方向,分为如下三类:(正确的打“√”,错误的打“×”)(1)按逆时针方向旋转所成的角是正角(√)(2)按顺时针方向旋转所成的角是负角(√)(3)没有作任何旋转就没有角对应(×)(4)终边和始边重合的角是零角(×)(5)经过1小时时针转过30°(×)知识点2 象限角如果角的顶点与坐标原点重合,角的始边与x轴的非负半轴重合,那么,角的终边(除端点外)在第几象限,就说这个角是第几象限角.如果角的终边在坐标轴上,就认为这个角不属于任何一个象限.【预习评价】1.锐角属于第几象限角?钝角又属于第几象限角?提示锐角属于第一象限角,钝角属于第二象限角.2.第二象限的角比第一象限的角大吗?提示不一定.如120° 是第二象限的角,390°是第一象限的角,但120°<390°.知识点3 终边相同的角所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任何一个与角α终边相同的角,都可以表示成角α与周角的整数倍的和.【预习评价】(正确的打“√”,错误的打“×”)(1)终边相同的角一定相等(×)(2)相等的角终边一定相同(√)(3)终边相同的角有无数多个(√)(4)终边相同的角它们相差180°的整数倍(×)题型一角的概念的推广【例1】写出下图中的角α,β,γ的度数.解要正确识图,确定好旋转的方向和旋转的大小,由角的概念可知α=330°,β=-150°,γ=570°.规律方法 1.理解角的概念的三个“明确”2.表示角时的两个注意点(1)字母表示时:可以用希腊字母α,β等表示,“角α”或“∠α”可以简化为“α”.(2)用图示表示角时:箭头不可以丢掉,因为箭头代表了旋转的方向,也即箭头代表着角的正负.【训练1】(1)图中角α=________,β=________;(2)经过10 min,分针转了________.解析(1)α=-(180°-30°)=-150°β=30°+180°=210°.(2)分针按顺时针过了周角的16,即-60°.答案(1)-150°210°(2)-60°题型二终边相同的角【例2】已知α=-1 910°.(1)把α写成β+k×360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.解(1)-1 910°=250°-6×360°,其中β=250°,从而α=250°+(-6)×360°,它是第三象限角.(2)令θ=250°+k×360°(k∈Z),取k=-1,-2就得到满足-720°≤θ<0°的角,即250°-360°=-110°,250°-720°=-470°.所以θ为-110°,-470°.规律方法将任意角化为α+k·360°(k∈Z,且0°≤α<360°)的形式,关键是确定k.可用观察法(α的绝对值较小时适用),也可用除以360°的方法.要注意:正角除以360°,按通常的除法进行,负角除以360°,商是负数,且余数为正值.【训练2】写出终边在阴影区域内(含边界)的角的集合.解 终边在直线OM 上的角的集合为M ={α|α=45°+k ·360°,k ∈Z }∪{α|α=225°+k ·360°,k ∈Z }={α|α=45°+2k ·180°,k ∈Z }∪{α|α=45°+(2k +1)·180°,k ∈Z } ={α|α=45°+n ·180°,n ∈Z }.同理可得终边在直线ON 上的角的集合为{α|α=60°+n ·180°,n ∈Z }, 所以终边在阴影区域内(含边界)的角的集合为 {α|45°+n ·180°≤α≤60°+n ·180°,n ∈Z }.【探究1】 在四个角-20°,-400°,-2 000°,1 600°中,第四象限角的个数是( ) A .0 B .1 C .2D .3解析 -20°是第四象限角,-400°=-360°-40°与-40°终边相同,是第四象限角,-2 000°=-6×360°+160°与160°终边相同,是第二象限角,1 600°=4×360°+160°与160°终边相同,是第二象限角,故第四象限角有2个. 答案 C【探究2】 写出终边落在第一象限和第二象限内的角的集合.解 根据终边相同的角一定是同一象限的角,又可以先写出第一象限锐角范围和第二象限钝角的范围,再加上360°的整数倍即可. 所以表示为:第一象限角的集合:S ={β|β=k ·360°+α,0°<α<90°,k ∈Z },或S ={β|k ·360°<β<k ·360°+90°,k ∈Z }.第二象限角的集合:S ={β|β=k ·360°+α,90°<α<180°,k ∈Z },或S ={β|k ·360°+90°<β<k ·360°+180°,k ∈Z }.【探究3】 已知α为第二象限角,那么2α,α2分别是第几象限角?解 ∵α是第二象限角,∴90+k ×360°<α<180°+k ×360°,180°+2k ×360°<2α<360°+2k ×360°,k ∈Z .∴2α是第三或第四象限角,或是终边落在y 轴的非正半轴上的角.同理45°+k 2×360°<α2<90°+k2×360°,k ∈Z .当k 为偶数时,不妨令k =2n ,n ∈Z ,则45°+n ×360°<α2<90°+n ×360°,此时,α2为第一象限角;当k 为奇数时,令k =2n +1,n ∈Z ,则225°+n ×360°<α2<270°+n ×360°,此时,α2为第三象限角.∴α2为第一或第三象限角. 【探究4】 已知α为第一象限角,求180°-α2是第几象限角.解 ∵α为第一象限角,∴k ·360°<α<k ·360°+90°,k ∈Z , ∴k ·180°<α2<k ·180°+45°,k ∈Z , ∴-45°-k ·180°<-α2<-k ·180°,k ∈Z ,∴135°-k ·180°<180°-α2<180°-k ·180°,k ∈Z .当k =2n (n ∈Z )时,135°-n ·360°<180°-α2<180°-n ·360°,为第二象限角;当k =2n +1(n ∈Z )时,-45°-n ·360°<180°-α2<-n ·360°,为第四象限角.∴180°-α2是第二或第四象限角.规律方法 1.象限角的判定方法(1)根据图像判定.利用图像实际操作时,依据是终边相同的角的概念,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.(2)将角转化到0°~360°范围内,在直角坐标平面内,0°~360°范围内没有两个角终边是相同的.2.α,2α,α2等角的终边位置的确定方法不等式法:(1)利用象限角的概念或已知条件,写出角α的范围. (2)利用不等式的性质,求出2α,α2等角的范围.(3)利用“旋转”的观点,确定角终边的位置.例如,如果得到k ×120°<α3<k ×120°+30°,k ∈Z ,可画出0°<α3<30°所表示的区域,再将此区域依次逆时针或顺时针转动120°(如图所示).易错警示 由α的范围确定2α的范围时易忽视终边在坐标轴上的情况.课堂达标1.-361°的终边落在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 因为-361°的终边和-1°的终边相同,所以它的终边落在第四象限,故选D. 答案 D2.设A ={θ|θ为锐角},B ={θ|θ为小于90°的角},C ={θ|θ为第一象限的角},D ={θ|θ为小于90°的正角},则下列等式中成立的是( ) A .A =B B .B =C C .A =CD .A =D解析 直接根据角的分类进行求解,容易得到答案. 答案 D3.将-885°化为α+k ·360°(0°≤α<360°,k ∈Z )的形式是________________. 答案 195°+(-3)×360°4.与-1 692°终边相同的最大负角是________. 解析 ∵-1 692°=-5×360°+108°, ∴与108°终边相同的最大负角为-252°. 答案 -252°5.如图所示,写出终边落在阴影部分的角的集合.解设终边落在阴影部分的角为α,角α的集合由两部分组成.①{α|k·360°+30°≤α<k·360°+105°,k∈Z}.②{α|k·360°+210°≤α<k·360°+285°,k∈Z}.∴角α的集合应当是集合①与②的并集:{α|k·360°+30°≤α<k·360°+105°,k∈Z}∪{α|k·360°+210°≤α<k·360°+285°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,k∈Z}∪{α|(2k+1)180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|2k·180°+30°≤α<2k·180°+105°,或(2k+1)·180°+30°≤α<(2k+1)180°+105°,k∈Z}={α|n·180°+30°≤α<n·180°+105°,n∈Z}.课堂小结1.对角的理解,初中阶段是以“静止”的眼光看,高中阶段应用“运动”的观点下定义,理解这一概念时,要注意“旋转方向”决定角的“正负”,“旋转量”决定角的“绝对值大小”.2.区域角的表示形式并不唯一,如第二象限角的集合,可以表示为{α|90°+k×360°<α<180°+k×360°,k∈Z},也可以表示为{α|-270°+k×360°<α<-180°+k×360°,k∈Z}.基础过关1.下列各组角中,终边相同的是( )A.495°和-495°B.1 350°和90°C.-220°和140°D.540°和-810°解析-220°=-360°+140°,∴-220°与140°终边相同.答案 C2.设A={小于90°的角},B={锐角},C={第一象限角},D={小于90°而不小于0°的角},那么有( )A.B C A B.B A CC.D A∩C) D.C∩D=B解析锐角、0°~90°的角、小于90°的角及第一象限角的范围,如下表所示.答案 D3.若α是第四象限角,则180°-α是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角解析可以给α赋一特殊值-60°,则180°-α=240°,故180°-α是第三象限角.答案 C4.已知角α=-3 000°,则与角α终边相同的最小正角是______.解析∵-3 000°=-9×360°+240°,∴与-3 000°角终边相同的最小正角为240°.答案240°5.在-180°~360°范围内,与2 000°角终边相同的角是______.解析因为2 000°=200°+5×360°,2 000°=-160°+6×360°,所以在-180°~360°范围内与2 000°角终边相同的角有-160°,200°两个.答案-160°,200°6.在0°~360°范围内,找出与下列各角终边相同的角,并判定它们是第几象限角.(1)-150°;(2)650°;(3)-950°15′.解(1)因为-150°=-360°+210°,所以在0°~360°范围内,与-150°角终边相同的角是210°角,它是第三象限角.(2)因为650°=360°+290°,所以在0°~360°范围内,与650°角终边相同的角是290°角,它是第四象限角.(3)因为-950°15′=-3×360°+129°45′,所以在0°~360°范围内,与-950°15′角终边相同的角是129°45′角,它是第二象限角.7.写出与25°角终边相同的角的集合,并求出该集合中满足不等式-1 080°≤β<-360°的角β.解与25°角终边相同的角的集合为S={β|β=k·360°+25°,k∈Z}.令k=-3,则有β=-3×360°+25°=-1 055°,符合条件;令k=-2,则有β=-2×360°+25°=-695°,符合条件;令k =-1,则有β=-1×360°+25°=-335°,不符合条件. 故符合条件的角有-1 055°,-695°.能力提升8.以下命题正确的是( ) A .第二象限角比第一象限角大B .A ={α|α=k ·180°,k ∈Z },B ={β|β=k ·90°,k ∈Z },则ABC .若k ·360°<α<k ·360°+180°(k ∈Z ),则α为第一或第二象限角D .终边在x 轴上的角可表示为k ·360°(k ∈Z ) 解析 A 不正确,如-210°<30°.在B 中,当k =2n ,k ∈Z 时,β=n ·180°,n ∈Z . ∴AB ,∴B 正确.又C 中,α为第一或第二象限角或在y 轴的非负半轴上, ∴C 不正确.显然D 不正确. 答案 B9.集合M =⎩⎨⎧⎭⎬⎫x |x =k ·180°2±45°,k ∈Z ,P =⎩⎨⎧⎭⎬⎫x |x =k ·180°4±90°,k ∈Z ,则M 、P之间的关系为( ) A .M =P B .M P C .M PD .M ∩P =∅解析 对集合M 来说,x =(2k ±1)·45°,即45°的奇数倍;对集合P 来说,x =(k ±2)·45°,即45°的倍数. 答案 B10.已知角α、β的终边相同,那么α-β的终边在________. 解析 ∵α、β终边相同, ∴α=k ·360°+β(k ∈Z ).∴α-β=k ·360°,故α-β终边会落在x 轴非负半轴上. 答案 x 轴的非负半轴上11.若α为第一象限角,则k ·180°+α(k ∈Z )的终边所在的象限是第________象限. 解析 ∵α是第一象限角,∴k 为偶数时,k ·180°+α终边在第一象限;k 为奇数时,k ·180°+α终边在第三象限. 答案 一或三12.求终边在直线y =x 上的角的集合S .解 因为直线y =x 是第一、三象限的角平分线,在0°~360°之间所对应的两个角分别是45°和225°,所以S ={α|α=k ·360°+45°,k ∈Z }∪{α|α=k ·360°+225°,k∈Z }={α|α=2k ·180°+45°,k ∈Z }∪{α|α=(2k +1)·180°+45°,k ∈Z }={α|α=n ·180°+45°,n ∈Z }.13.(选做题)已知角α、β的终边有下列关系,分别求α、β间的关系式: (1)α、β的终边关于原点对称; (2)α、β的终边关于y 轴对称.解 (1)由于α、β的终边互为反向延长线,故α、β相差180°的奇数倍(如图1),于是α-β=(2k -1)·180°(k ∈Z ).(2)在0°~360°内,设α的终边所表示的角为90°-θ,由于α、β关于y 轴对称(如图2),则β的终边所表示的角为90°+θ.于是α=90°-θ+k 1·360°(k 1∈Z ),β=90°+θ+k 2·360°(k 2∈Z ).两式相加得α+β=(2k +1)·180°(k ∈Z ).§3 弧度制内容要求 1.了解弧度制的意义,能正确地进行弧度与角度的换算,熟记特殊角的弧度数(重点).2.掌握弧度制下的弧长公式,会用弧度解决一些实际问题(难点).知识点1 弧度制 (1)角度制与弧度制的定义(2)如果半径为r 的圆的圆心角α所对弧的长为l ,那么角α的弧度数的绝对值是|α|=lr. 【预习评价】(正确的打“√”,错误的打“×”)(1)“度”与“弧度”是度量角的两种不同的度量单位(√) (2)1°的角是周角的1360,1 rad 的角是周角的12π(√)(3)1°的角比1 rad 的角要大(×)(4)1 rad 的角的大小和所在圆的半径的大小有关(×) 知识点2 角度制与弧度制的换算 常见角度与弧度互化公式如下:请填充完整下表,一些特殊角的角度数与弧度数的对应关系有:设扇形的半径为R ,弧长为l ,α(0<α<2π)为其圆心角,则1.一个扇形的半径为2 cm ,圆心角为π6,则该扇形所对的弧长l =________cm.答案π32.一个扇形的半径为2 cm ,其对应的弧长为2.则该扇形的面积为________cm 2. 答案 2知识点4 利用弧度制表示终边相同的角在弧度制下,与α终边相同的角连同α在内可以表示为2k π+α(k ∈Z ),其中α的单位必须是弧度. 【预习评价】1.与30°终边相同的角为( ) A .2k π+π3(k ∈Z )B .2k π+π6(k ∈Z )C .360°k +π3(k ∈Z )D .2k π+30°(k ∈Z )答案 B2.终边在x 轴上的角的集合用弧度制表示为________. 答案 {α|α=k π,k ∈Z }题型一 角度与弧度的互化【例1】 将下列角度与弧度进行互化: (1)20°;(2)-15°;(3)7π12;(4)-115π.解 (1)20°=20×π180 rad =π9 rad.(2)-15°=-15×π180 rad =-π12 rad.(3)712π rad =712×180°=105°. (4)-115π rad =-115×180°=-396°.规律方法 角度制与弧度制互化的原则、方法以及注意点(1)原则:牢记180°=π rad ,充分利用1°=π180rad 和1 rad =⎝ ⎛⎭⎪⎫180π°进行换算.(2)方法:设一个角的弧度数为α,角度数为n ,则α rad =α·180°;n °=n ·π180rad.(3)注意点:①用“弧度”为单位度量角时,“弧度”二字或“rad”可以省略不写;②用“弧度”为单位度量角时,“常常把弧度数写成多少π的形式,如无特别要求,不必把π写成小数;③度化弧度时,应先将分、秒化成度,再化成弧度. 【训练1】 将下列各角度与弧度互化: (1)512π;(2)-76π;(3)-157°30′. 解 (1)512π=512×180°=75°;(2)-76π=-76×180°=-210°;(3)-157°30′=-157.5°=-157.5×π180rad=-78π rad.题型二 用弧度制表示终边相同的角【例2】 (1)把-1 480°写成α+2k π(k ∈Z )的形式,其中0≤α<2π; (2)若β∈[-4π,0),且β与(1)中α终边相同,求β. 解 (1)∵-1 480°=-74π9=-10π+16π9,0≤16π9<2π,∴-1 480°=16π9-2×5π=16π9+2×(-5)π.(2)∵β与α终边相同,∴β=2k π+16π9,k ∈Z .又∵β∈[-4π,0),∴β1=-2π9,β2=-209π.【训练2】 用弧度制表示终边在图中阴影区域内角的集合(包括边界)并判断 2 015°是不是这个集合的元素.解 因为150°=5π6.所以终边在阴影区域内角的集合为S =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫β⎪⎪⎪5π6+2k π≤β≤3π2+2k π,k ∈Z . 因为2 015°=215°+5×360°=43π36+10π,又5π6<43π36<3π2.所以2 015°=43π36∈S ,即2 015°是这个集合的元素.方向1 求弧长【例3-1】 已知扇形OAB 的圆心角α为120°,半径长为6.求的长;解 ∵α=120°=23π,r =6,∴的长l =23π×6=4π.方向2 求圆心角【例3-2】 已知扇形周长为10,面积是4,求扇形的圆心角. 解 设圆心角是θ,半径是r , 则⎩⎪⎨⎪⎧2r +r θ=10,12θ·r 2=4⇒⎩⎪⎨⎪⎧r =4,θ=12或⎩⎪⎨⎪⎧r =1,θ=8(舍).故扇形圆心角为12.方向3 求面积的最值【例3-3】 已知一扇形的周长为40 cm ,当它的半径和圆心角取什么值时,才能使扇形的面积最大?最大面积是多少?解 设扇形的圆心角为θ,半径为r ,弧长为l ,面积为S , 则l +2r =40,∴l =40-2r . ∴S =12lr =12×(40-2r )r =20r -r 2=-(r -10)2+100.∴当半径r =10 cm 时,扇形的面积最大,最大值为100 cm 2,此时θ=l r =40-2×1010rad =2 rad.∴当扇形的圆心角为2 rad ,半径为10 cm 时,扇形的面积最大为100 cm 2.规律方法 灵活运用扇形弧长公式、面积公式列方程组求解是解决此类问题的关键,有时运用函数思想、转化思想解决扇形中的有关最值问题,将扇形面积表示为半径的函数,转化为r 的二次函数的最值问题.课堂达标1.与120°角终边相同的角为( ) A .2k π-2π3(k ∈Z )B.11π3C .2k π-10π3(k ∈Z )D .(2k +1)π+2π3(k ∈Z )解析 120°=2π3且2k π-10π3=(2k -4)π+2π3(k ∈Z ),∴120°与2k π-10π3(k ∈Z ),终边相同.答案 C2.-23π12化为角度应为( )A .-345°B .-15°C .-315°D .-375°解析 -23π12=-2312×180°=-345°.答案 A3.已知扇形的半径为12,弧长为18,则扇形圆心角为________.解析 由弧长公式l =αR 得α=l R =1812=32.答案 324.下列结论不正确的是________(只填序号).①π3 rad =60°;②10°=π18 rad ;③36°=π5 rad ;④5π8 rad =115°. 解析5π8 rad =58×180°=112.5°,∴④错. 答案 ④5.一个扇形的面积为1,周长为4,求圆心角的弧度数. 解 设扇形的半径为R ,弧长为l ,则2R +l =4, ∴l =4-2R ,根据扇形面积公式S =12lR ,得1=12(4-2R )·R ,∴R =1,∴l =2,∴α=l R =21=2,即扇形的圆心角为2 rad.课堂小结1.角的概念推广后,在弧度制下,角的集合与实数集R 之间建立起一一对应的关系:每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.2.解答角度与弧度的互化问题的关键在于充分利用“180°=π rad”这一关系式. 3.在弧度制下,扇形的弧长公式及面积公式都得到了简化,具体应用时,要注意角的单位取弧度.基础过关1.在半径为10的圆中,240°的圆心角所对弧长为( )A.403πB.203π C.2003π D.4003π 解析 240°=240×π180 rad =43π rad ,∴弧长l =|α|·r =43π×10=403π,故选A.答案 A2.下列与9π4的终边相同的角的表达式中,正确的是( )A .2k π+45°(k ∈Z )B .k ·360°+9π4(k ∈Z )C .k ·360°-315°(k ∈Z )D .k π+5π4(k ∈Z )答案 C3.若α=-3,则角α的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析 ∵-π<-3<-π2,∴-3是第三象限角.答案 C4.若三角形三内角之比为4∶5∶6,则最大内角的弧度数是____________. 答案 25π5.如果一扇形的弧长变为原来的32倍,半径变为原来的一半,则该扇形的面积为原扇形面积的________.解析 由于S =12lR ,若l ′=32l ,R ′=12R ,则S ′=12l ′R ′=12×32l ×12R =34S .答案 346.把下列各角化为2k π+α(0≤α<2π,k ∈Z ) 的形式且指出它是第几象限角,并写出与它终边相同的角的集合.(1)-46π3;(2)-1 485°;(3)-20.解 (1)-46π3=-8×2π+2π3,它是第二象限角,终边相同的角的集合为。
1.2 任意角的三角函数 1.2.1 三角函数的定义[学习目标] 1.理解任意角的三角函数的定义.2.掌握三角函数在各个象限的符号.[知识链接]在初中,我们已经学过锐角的三角函数.如图,在Rt △ABC 中,设A 对边为a ,B 对边为b ,C 对边为c ,锐角A 的正弦、余弦、正切分别是什么?答 锐角A 的正弦、余弦、正切依次为:sin A =a c ,cos A =b c ,tan A =a b .[预习导引] 1.三角函数的定义如图,在α的终边上任取一点P (x ,y ), 设OP =r (r ≠0). (1)定义x r 叫做角α的余弦,记作cos_α, 即cos α=xr ; y r 叫做角α的正弦;记作sin_α,即sin α=y r ; y x 叫做角α的正切,记作tan_α,即tan α=y x. 依照上述定义,对于每一个确定的角α,都分别有唯一确定的余弦值、正弦值与之对应;当α≠2k π±π2(k ∈Z )时,它有唯一的正切值与之对应.因此这三个对应法则都是以α为自变量的函数,分别叫做角α的余弦函数、正弦函数和正切函数. (2)有时我们还用到下面三个函数角α的正割:sec α=1cos α=r x ;角α的余割:csc α=1sin α=ry ;角α的余切:cot α=1tan α=xy.这就是说,sec α,csc α,cot α分别是α的余弦、正弦和正切的倒数.由上述定义可知,当α的终边在y 轴上,即α=2k π±π2(k ∈Z )时,tan α,sec α没有意义;当α的终边在x 轴上,即α=k π(k ∈Z )时,cot α,csc α没有意义. 2.三角函数在各个象限的符号3.三角函数的定义域要点一 三角函数定义的应用例1 已知角α的终边在直线y =-3x 上,求10sin α+3cos α的值.解 由题意知,cos α≠0.设角α的终边上任一点为P (k ,-3k )(k ≠0),则 x =k ,y =-3k ,r =k 2+(-3k )2=10|k |.(1)当k >0时,r =10k ,α是第四象限角, sin α=y r =-3k 10k =-31010,1cos α=r x =10k k=10, ∴10sin α+3cos α=10×⎝⎛⎭⎫-31010+310=-310+310=0.(2)当k <0时,r =-10k ,α为第二象限角,sin α=y r =-3k -10k =31010,1cos α=r x =-10k k=-10, ∴10sin α+3cos α=10×31010+3×(-10)=310-310=0.综上所述,10sin α+3cos α=0.规律方法 在解决有关角的终边在直线上的问题时,应注意到角的终边为射线,所以应分两种情况处理,取射线上异于原点的任意一点坐标(a ,b ),则对应角的正弦值为sin α=ba 2+b2,cos α=a a 2+b 2,tan α=ba .跟踪演练1 已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________.答案 -8 解析 因为sin θ=y 42+y 2=-255,所以y <0,且y 2=64,所以y =-8. 要点二 三角函数值符号的判断 例2 判断下列三角函数值的符号: (1)sin 3,cos 4,tan 5; (2)sin(cos θ)(θ为第二象限角). 解 (1)∵π2<3<π<4<3π2<5<2π,∴3,4,5分别在第二、三、四象限, ∴sin 3>0,cos 4<0,tan 5<0. (2)∵θ是第二象限角, ∴-π2<-1<cos θ<0,∴sin(cos θ)<0.规律方法 由三角函数的定义知sin α=y r ,cos α=x r ,tan α=yx (r >0),可知角的三角函数值的符号是由角终边上任一点P (x ,y )的坐标确定的,则准确确定角的终边位置是判断该角的三角函数值符号的关键.跟踪演练2 已知cos θ·tan θ<0,那角θ是( )A .第一或第二象限角B .第二或第三象限角C .第三或第四象限角D .第一或第四象限角 答案 C解析 ∵cos θ·tan θ<0,∴⎩⎪⎨⎪⎧cos θ<0,tan θ>0或⎩⎪⎨⎪⎧cos θ>0,tan θ<0. 由⎩⎪⎨⎪⎧ cos θ<0,tan θ>0,得角θ为第三象限角. 由⎩⎪⎨⎪⎧cos θ>0,tan θ<0,得角θ为第四象限角. ∴角θ为第三或第四象限角. 要点三 三角函数的定义域 例3 求下列函数的定义域: (1)y =sin x +cos x tan x ;(2)y =-cos x +sin x .解 (1)要使函数有意义,须tan x ≠0,所以x ≠k π+π2,k ∈Z 且x ≠k π,k ∈Z ,所以x ≠k π2,k ∈Z .于是函数的定义域是⎩⎨⎧⎭⎬⎫x |x ∈R 且x ≠k π2,k ∈Z .(2)要使函数有意义,须⎩⎪⎨⎪⎧-cos x ≥0,sin x ≥0,得⎩⎪⎨⎪⎧2k π+π2≤x ≤2k π+3π2,k ∈Z ,2k π≤x ≤2k π+π,k ∈Z . 解之得2k π+π2≤x ≤2k π+π,k ∈Z .所以函数的定义域是⎩⎨⎧⎭⎬⎫x |2k π+π2≤x ≤2k π+π,k ∈Z .规律方法 求函数定义域使式子有意义的情况一般有以下几种:(1)分母不为零,(2)偶次根号下大于等于零,(3)在真数位置时大于零,(4)在底数位置时大于零且不等于1. 跟踪演练3 求函数y =tan x +1sin x 的定义域.解 由⎩⎪⎨⎪⎧ x ≠k π+π2(k ∈Z ),sin x ≠0得⎩⎪⎨⎪⎧x ≠k π+π2(k ∈Z )x ≠k π(k ∈Z ),因而x 的终边不在坐标轴上,所以函数的定义域为⎩⎨⎧⎭⎬⎫x |x ≠k π2,k ∈Z .1.已知角α的终边经过点(-4,3),则cos α等于( ) A.45 B.35 C .-35 D .-45答案 D解析 因为角α的终边经过点(-4,3),所以x =-4,y =3,r =5,所以cos α=x r =-45.2.如果角α的终边过点P (2sin 30°,-2cos 30°),则cos α的值等于( ) A.12 B .-12 C .-32 D.32答案 A解析 2sin 30°=1,-2cos 30°=-3,∴r =2,∴cos α=12.3.若点P (3,y )是角α终边上的一点,且满足y <0,cos α=35,则tan α等于( )A .-34 B.34C.43 D .-43 答案 D 解析 ∵cos α=332+y2=35,∴32+y 2=5, ∴y 2=16,∵y <0,∴y =-4,∴tan α=-43.4.如果sin x =|sin x |,那么角x 的取值集合是________. 答案 {x |2k π≤x ≤2k π+π,k ∈Z }1.三角函数值是比值,是一个实数,这个实数的大小和点P (x ,y )在终边上的位置无关,只由角α的终边位置确定.即三角函数值的大小只与角有关.2.要善于利用三角函数的定义及三角函数的符号规律解题,并且注意掌握解题时必要的分类讨论及三角函数值符号的正确选取.3.要牢记一些特殊角的正弦、余弦、正切值.。
三角函数的定义
学习目标.理解任意角的三角函数的定义.掌握三角函数在各个象限的符号.掌握正弦、余弦、正切函数的定义域.
知识点一任意角的三角函数
使锐角α的顶点与原点重合,始边与轴的非负半轴重合,在终边上任取一点,作⊥轴于,设(,),=.
思考角α的正弦、余弦、正切分别等于什么?
思考对确定的锐角α,α,α,α的值是否随点在终边上的位置的改变而改变?
梳理如图,设(,)是α终边上不同于坐标原点的任意一点,设=(≠).
()定义
叫做角α的,记作,即α=;
叫做角α的,记作,即α=;
叫做角α的,记作,即α=.
依照上述定义,对于每一个确定的角α,都分别有唯一确定的余弦值、正弦值与之对应;当α≠π±(∈)时,它有唯一的正切值与之对应.因此这三个对应法则都是以α为自变量的函数,分别叫做角α的余弦函数、正弦函数和正切函数.
()有时我们还用到下面三个函数
角α的正割:α==;
角α的余割:α==;
角α的余切:α==.
这就是说,α,α,α分别是α的余弦、正弦和正切的倒数.
由上述定义可知,当α的终边在轴上,即α=π±(∈)时,α,α没有意义;当α的终边在轴上,即α=π(∈)时,α,α没有意义.
知识点二正弦、余弦、正切函数的定义域
思考对于任意角α,α,α,α都有意义吗?。