高一数学三角函数教案
- 格式:docx
- 大小:37.79 KB
- 文档页数:5
数学老师高中备课教案
教案标题:三角函数的性质与应用
教学目标:
1. 熟练掌握三角函数的基本定义及性质;
2. 能够运用三角函数解决实际问题;
3. 培养学生的数学思维和解决问题的能力。
教学重点:
1. 三角函数的基本定义及性质;
2. 三角函数的应用。
教学难点:
1. 理解三角函数的周期性;
2. 能够灵活运用三角函数解决实际问题。
教学过程:
一、导入(5分钟)
老师通过展示一个与三角函数相关的实际问题引入本节课内容,激发学生的学习兴趣。
二、讲解三角函数的基本定义及性质(15分钟)
1. 介绍正弦函数、余弦函数、正切函数等三角函数的定义;
2. 讲解三角函数的周期性及其性质;
3. 引导学生探讨三角函数的性质,并举例说明。
三、练习与讨论(20分钟)
1. 让学生进行课堂练习,巩固三角函数的基本知识;
2. 学生分组讨论解决实际问题的方法,并举手分享解决思路。
四、应用实践(15分钟)
1. 给学生布置一道综合应用题,要求学生利用所学知识解答;
2. 学生在小组内相互讨论解题方法,思考如何运用三角函数解决实际问题。
五、总结与展望(5分钟)
老师对本节课的教学内容进行总结,并展望下节课的内容,激励学生持续学习。
教学反思:
通过本节课的备课和教学实践,我发现学生在掌握三角函数的基本概念和性质方面存在一定困难,需要加强训练和巩固。
下节课我将安排更多的练习和应用题,加强学生的实践能力和解决问题的能力,确保他们能够熟练掌握三角函数的应用。
高中数学第十七课教案
教学目标:
1. 理解正弦、余弦和正切三角函数的定义。
2. 掌握角度的度数和弧度的转换方法。
3. 能够应用三角函数解决实际问题。
教学重点与难点:
重点:正弦、余弦和正切三角函数的定义及应用。
难点:角度的度数和弧度的转换方法。
教学准备:
1. 教材:高中数学教材
2. 教具:黑板、彩色粉笔、计算器等
教学步骤:
一、引入
老师介绍三角函数的概念及其在数学中的重要性,并提出本节课的学习目标。
二、讲解
1. 正弦、余弦和正切三角函数的定义及性质。
2. 角度的度数和弧度的概念及转换方法。
三、实例讲解
通过几个实际问题的讲解,引导学生理解三角函数的应用。
四、练习
1. 学生课堂练习,加深对三角函数的理解。
2. 布置相关习题作业,巩固所学知识。
五、总结
回顾本节课所学内容,强调三角函数的重要性及应用。
教学反思:
本节课通过实例讲解和练习等方式,提升学生对三角函数的理解和应用能力。
在引入、讲解、练习的过程中,应注意引导学生自主思考和解决问题的能力。
高中数学三角函数教案三角函数内容在高中数学课程中占有重要的地位,它是描述现实世界周期现象的重要模型,又是高中教材中基本初等函数的其中之一。
下面店铺为你整理了高中数学三角函数教案,希望对你有帮助。
高中数学三角函数教案:任意角的三角函数一、教学目标1.掌握任意角的正弦、余弦、正切函数的定义(包括定义域、正负符号判断);了解任意角的余切、正割、余割函数的定义.2.经历从锐角三角函数定义过度到任意角三角函数定义的推广过程,体验三角函数概念的产生、发展过程. 领悟直角坐标系的工具功能,丰富数形结合的经验.3.培养学生通过现象看本质的唯物主义认识论观点,渗透事物相互联系、相互转化的辩证唯物主义世界观.4.培养学生求真务实、实事求是的科学态度.二、重点、难点、关键重点:任意角的正弦、余弦、正切函数的定义、定义域、(正负)符号判断法.难点:把三角函数理解为以实数为自变量的函数.关键:如何想到建立直角坐标系;六个比值的确定性( α确定,比值也随之确定)与依赖性(比值随着α的变化而变化).三、教学理念和方法教学中注意用新课程理念处理传统教材,学生的数学学习活动不仅要接受、记忆、模仿和练习,而且要自主探索、动手实践、合作交流、阅读自学,师生互动,教师发挥组织者、引导者、合作者的作用,引导学生主体参与、揭示本质、经历过程.根据本节课内容、高一学生认知特点和我自己的教学风格,本节课采用“启发探索、讲练结合”的方法组织教学.四、教学过程[执教线索:回想再认:函数的概念、锐角三角函数定义(锐角三角形边角关系)——问题情境:能推广到任意角吗?——它山之石:建立直角坐标系(为何?)——优化认知:用直角坐标系研究锐角三角函数——探索发展:对任意角研究六个比值(与角之间的关系:确定性、依赖性,满足函数定义吗?)——自主定义:任意角三角函数定义——登高望远:三角函数的要素分析(对应法则、定义域、值域与正负符号判定)——例题与练习——回顾小结——布置作业](一)复习引入、回想再认开门见山,面对全体学生提问:在初中我们初步学习了锐角三角函数,前几节课,我们把锐角推广到了任意角,学习了角度制和弧度制,这节课该研究什么呢?探索任意角的三角函数(板书课题),请同学们回想,再明确一下:(情景1)什么叫函数?或者说函数是怎样定义的?让学生回想后再点名回答,投影显示规范的定义,教师根据回答情况进行修正、强调:传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一确定的值和它对应,那么就说y是x的函数,x叫做自变量,自变量x的取值范围叫做函数的定义域.现代定义:设A、B是非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数,在集合B中都有唯一确定的数f(x)和它对应,那么就称映射?:A→B为从集合A到集合B的一个函数,记作:y= f(x),x∈A ,其中x叫自变量,自变量x的取值范围A叫做函数的定义域高中数学三角函数教案:三角函数的诱导公式1教学目标1.知识与技能(1)能够借助三角函数的定义及单位圆中的三角函数线推导三角函数的诱导公式。
高中高一数学教案:三角函数的周期性一、教学目标通过本节课的学习,学生将能够:1.了解三角函数的概念以及周期性的定义和判断方法;2.掌握正弦函数、余弦函数、正切函数等三角函数的周期性特征及其图像;3.实现对于具体函数的周期的计算。
二、教学内容本节课的教学内容主要包括:1.三角函数的概念;2.三角函数的周期性特征;3.三角函数的具体例子及其周期的计算。
三、教学重点和难点教学重点:1.正弦函数、余弦函数、正切函数等三角函数的周期性特征;2.对于具体函数的周期的计算方法。
教学难点:如何深入理解三角函数的周期性特征,如何应用三角函数的周期性进行具体函数的周期计算。
四、教学过程1. 引入新知识1.1 教师可以先设计一道有关周期性的问题,在引导学生认识周期性的基础上,向学生提出三角函数的周期性概念。
例如:某个人在上楼梯时,每走三层就会重复一次,这是什么现象?1.2 引导学生认识正弦函数和余弦函数的图像,并说明正弦函数和余弦函数的周期都为 $2\\pi$。
并可以通过以下图片简单地说明:正弦函数的图像:$$ y = f(x) = \\sin x $$余弦函数的图像:$$ y = f(x) = \\cos x $$2. 深入讲解2.1 正切函数的图像引导学生认识正切函数的图像,以及其周期性特征,由于正切函数没有周期性,因此需要通过讲解正切函数的图像和特性来说明:正切函数的图像:$$ y = f(x) = \\tan x $$2.2 三角函数的具体例子及其周期的计算引导学生通过给定的具体函数来求其周期,例如:$$ y = f(x) = 2\\sin \\frac{3}{4} x $$可以通过以下步骤计算:•当 $3x/4=\\pi$ 时,$y = 2 \\sin \\pi = 0$;•当 $3x/4=2\\pi$ 时,$y = 2 \\sin 2\\pi = 0$;•当 $3x/4=3\\pi$ 时,$y = 2 \\sin 3\\pi = 0$;•当 $3x/4=4\\pi$ 时,$y = 2 \\sin 4\\pi = 0$;•…从上面的计算结果可以看出,$\\sin(3x/4)$ 以 $2\\pi/3$ 为周期,因此可以通过以下公式得出周期:$$ T = \\frac{2\\pi}{3} $$五、教学评价本节课主要考察学生对于三角函数周期性的理解以及其应用能力。
高一数学《三角函数的诱导公式(第1课时)》教案示范三篇高一数学《三角函数的诱导公式(第1课时)》教案1教材分析:高一数学《三角函数的诱导公式(第1课时)》是一节基础性课程,课本中主要包含了三角函数诱导公式的定义、常见角度的三角函数值以及相应的推导方法等内容。
教师需要全面了解教材的内容,并对教材的组织结构、难易程度及与之相应的教学资源进行细致的分析和处理。
教学目标:通过本节课的教学,学生应该能够掌握诱导公式的基本概念、运用方法及其相关定理,能够熟练地计算一些常见角度的三角函数值,并能够对不同情况下的三角函数值进行求解。
教学重点:本节课教学的重点主要集中在诱导公式的定义及其相关定理的理解和运用上,同时也需要教师在教学过程中重点关注学生对于诱导公式的记忆和运用情况。
教学难点:本节课教学难点在于对于一些相对较为复杂的求解题目的讲解和理解,尤其是在涉及到三角函数值之间的相互替换问题时需要引导学生注重方法逻辑的分析和运用。
学情分析:本节课所涉及到的内容主要是在初中阶段所学习的三角函数知识的基础上进一步推广和延伸,对于新生来说可能需要花费一定的时间来加深对于三角函数概念的理解和记忆。
教学策略:教师可以通过引入案例以及图像的呈现等方式来促进学生对于三角函数概念以及诱导公式的理解和记忆,同时也需要关注学生在解题过程中的思维逻辑和分析方法的引导。
教学方法:本节课教学方法需要注重理论掌握和实践操作的结合,可以通过练习习题,讲解案例和互动讨论等方式来提高学生的思维能力和实际操作水平。
同时也可以通过个性化的辅导方式注重对于学生的学习经历和个体差异进行分析和处理。
高一数学《三角函数的诱导公式(第1课时)》教案2本节课的教学过程如下:一、导入环节(约5分钟)教学内容:复习三角函数的基本概念,介绍本节课的主题——三角函数的诱导公式。
教学活动:1.学生们通过手写练习纸,复习三角函数的基本公式和图像;2.老师引导学生们思考有哪些角的三角函数值已知,而另外一个角的三角函数值不易计算;3.通过引导,学生们提出了需要学习三角函数的诱导公式的需求;4.老师介绍三角函数的诱导公式的含义和作用,引发学生们兴趣。
高一数学三角函数教案在一年的数学教学任务中,作为高一数学老师的你知道如何写一篇高一数学三角函数教案吗?来写一篇高一数学三角函数教案吧,它会对你的教学工作起到不菲的帮助。
下面是为大家收集有关于高一数学三角函数教案,希望你喜欢。
高一数学三角函数教案1一、教材《直线与圆的位置关系》是高中人教版必修2第四章第二节的内容,直线和圆的位置关系是本章的重点内容之一。
从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。
从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。
二、学情学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法讨论点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。
三、教学目标(一)知识与技能目标能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。
(二)过程与方法目标经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。
(三)情感态度价值观目标激发求知欲和学习爱好,锻炼乐观探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。
四、教学重难点(一)重点用解析法讨论直线与圆的位置关系。
(二)难点体会用解析法解决问题的数学思想。
五、教学方法根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持.在教学中采纳小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,老师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。
高中数学新教材第六章教案
主题:三角函数
一、教学目标
1. 了解三角函数的概念和性质。
2. 掌握正弦函数、余弦函数、正切函数的定义和图象。
3. 能够运用三角函数解决实际问题。
二、教学重点与难点
1. 三角函数的定义和性质。
2. 三角函数的图象和性质。
3. 运用三角函数解决实际问题的能力。
三、教学准备
1. 教师准备课件、教学实验材料等。
2. 学生复习相关知识,做好课前预习。
四、教学步骤
1. 引入
通过一个实际生活中的例子介绍三角函数的概念,引导学生思考三角函数的应用场景。
2. 概念讲解
讲解三角函数的定义和性质,包括正弦函数、余弦函数、正切函数的定义和周期性,周期、相位等概念。
3. 图象分析
介绍正弦函数、余弦函数、正切函数的图象,讲解图象的特点和变化规律。
4. 练习训练
通过练习题训练学生对三角函数的掌握程度,加深对概念和性质的理解。
5. 实际问题解决
引导学生通过实际问题运用三角函数解决,培养学生解决问题的能力。
6. 总结
总结本节课的重点内容,强化学生对三角函数的理解和掌握。
五、作业布置
布置相关练习作业,巩固本节课所学内容。
六、教学反思
教师可以根据学生的学习情况和反馈对本节课进行评估和反思,不断完善教学内容和方式。
高中高一数学教案:三角函数的周期性教学目标:1. 理解三角函数的周期性概念;2. 掌握正弦函数和余弦函数的周期;3. 掌握正切函数的周期。
教学重点:1. 正弦函数和余弦函数的周期;2. 正切函数的周期。
教学准备:1. 幻灯片或黑板;2. 教材、课本。
教学过程:Step 1:引入三角函数的周期性(5分钟)1. 引导学生绘制一个完整的正弦函数图像,并观察图像的特点。
2. 提示学生正弦函数图像是否具有重复的模式。
3. 引导学生思考正弦函数的周期性概念。
Step 2:正弦函数和余弦函数的周期(15分钟)1. 将幻灯片或黑板上的正弦函数图像展示给学生。
2. 引导学生观察并分析正弦函数的周期。
3. 解释正弦函数的周期为2π。
4. 将同样的步骤应用于余弦函数,解释余弦函数的周期也为2π。
Step 3:正切函数的周期(10分钟)1. 将幻灯片或黑板上的正切函数图像展示给学生。
2. 引导学生观察并分析正切函数的周期。
3. 解释正切函数的周期为π。
Step 4:总结(5分钟)1. 对三角函数的周期性进行总结,重点强调正弦函数和余弦函数的周期为2π,正切函数的周期为π。
2. 鼓励学生自己思考和总结其他三角函数的周期。
Step 5:练习与讨论(15分钟)1. 给学生几个练习题,让他们通过计算来确定其他三角函数的周期。
2. 引导学生通过讨论来解决不确定问题,营造积极的课堂氛围。
3. 对学生的答题过程进行指导和纠正,确保他们对三角函数的周期具有清晰的认识。
Step 6:作业布置(5分钟)1. 布置相关的练习题作为课后作业,巩固学生对三角函数周期的理解和应用。
教学反思:本节课主要讲解了三角函数的周期性,强调了正弦函数和余弦函数的周期为2π,正切函数的周期为π,并通过练习和讨论巩固了学生的学习成果。
教案设计了多种教学方法,如引导学生观察和分析,讨论和指导等,以激发学生的学习兴趣和积极性,提高教学效果。
第五章三角函数5.2.1三角函数的概念教学设计一、教学目标1. 借助单位圆理解三角函数(正弦、余弦、正切)的定义,会求具体弧度的三个三角函数值.2.从三角函数的定义认识其定义域、函数值在各个象限的符号.3.根据定义理解公式一,初步解决与三角函数值有关的一些简单问题.二、教学重难点1.教学重点三角函数的定义.三角函数值在各个象限内的符号,公式一.2.教学难点用角的终边上的点刻画三角函数.三角函数值的符号的应用.三、教学过程(一)探究一:三角函数的概念1.定义:设α是一个任意角,α∈R,它的終边OP与单位圆交于点P(x,y).(1)把点P的纵坐标y叫做α的正弦函数,记作sinα,即y=sinα;(2)把点P的横坐标x叫做α的余弦函数,记作cosα,即x=cosα;(3)把点P 的纵坐标与横坐标的比值y x叫做α的正切,记作tan α,即tan y x α=(x ≠0).2.记法:通常将三角函数记为:正弦函数:sin ,y x x =∈R ;余弦函数:cos ,y x x =∈R ; 正切函数:tan ,()2y x x k k ππ=≠+∈Z . 探究二:三角函数的定义域交流讨论完成下表:探究三:各象限角的三角函数值的符号各个象限角的三角函数值的符号求证:角θ为第三象限角的充要条件是sin 0,(1)tan 0.(2)θθ<⎧⎨>⎩.证明:先证充分性,即如果(1)(2)式都成立,那么θ为第三象限角.因为(1)式sin 0θ<成立,所以θ角的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合;又因为(2)式tan 0θ>成立,所以θ角的终边可能位于第一或第三象限.因为(1)(2)式都成立,所以θ角的终边只能位于第三象限.于是角θ为第三象限角.再证必要性,即如果角θ为第三象限角,那么(1)(2)式都成立.因为角θ为第三象限角,所以sin 0θ<,同时tan 0θ>,即(1)(2)式都成立.综上,命题得证.探究四:公式一公式一:sin(2)sin cos(2)cos tan(2)tan .k k k k απααπααπα+⋅=+⋅=+⋅=∈Z 其中 在运算中起到简化的作用,即利用公式一,可以把任意角的三角函数值,转化为求0到2π范围角的三角函数值.(二)课堂练习1.已知4sin 5α=,α在第二象限,则tan α=( ) A .43 B .43- C .34 D .34- 答案:B 解析:由4sin 5α=及α是第二象限角,得3cos 5α==-,所以sin tan s 43co ααα==-. 故选: B2.如果点(sin ,cos )P θθ位于第三象限,那么角θ所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 答案:C3.已知点()2,0A -,()2,0B ,若圆()()22230x y r r -+=>上存在点P (不同于点A ,B ),使得0PA PB ⋅=,则r 的取值范围是( )A.(1,5)B.[]1,5C.(]1,3D.[)3,5 答案:B解析:0PA PB ⋅=,∴点P 在以AB 为直径的圆224x y +=上. 圆222(3)(0)x y r r -+=>上存在点P (不同于点A ,B ),使得0PA PB ⋅=,∴圆222(3)(0)x y r r -+=>与圆224x y +=有公共点,|2|32r r ∴-≤≤+,解得15r ≤≤,故选B.(三)小结作业小结:本节课我们主要学习了哪些内容?1.三角函数的定义.2.三角函数的定义域.3.各象限角的三角函数值的符号.4.公式一.四、板书设计1.定义:正弦函数:sin ,y x x =∈R ; 余弦函数:cos ,y x x =∈R ;正切函数:tan ,()2y x x k k ππ=≠+∈Z . 2.三角函数的定义域.3.各象限角的三角函数值的符号.4.公式一sin(2)sin cos(2)cos tan(2)tan .k k k k απααπααπα+⋅=+⋅=+⋅=∈Z 其中。
第五章三角函数5.7 三角函数的应用(第2 课时)【教学内容】学习三角函数模型的简单应用,进一步突出函数来源于生活应用于生活的思想,让学生体验一些具有周期性变化规律的实际问题的数学“建模”。
【教学目标】1.了解三角函数是描述周期变化现象的重要函数模型;2.初步学会使用数据分析或图像特征进行一些简单的函数模型求解;3.会使用三角函数模型解决简单的实际问题。
【教学重难点】教学重点:用三角函数模型解决具有周期变化的实际问题.教学难点:对问题实际意义的数学解释,从实际问题中抽象出三角函数模型.【教学过程】一、导入新课思考:生活中有什么事情是周而复始发生的?举例:小结:从上述例子中,可以得知生活中有很多重复出现的现象,我们尝试利用某种函数模型去研究当中的规律,帮助我们做出更加科学的决策。
请问你认为目前我们所学的什么函数模型适用于上述规律呢?函数模型;因为它具有性质。
二、课堂探究例题 1 如图,我国某地一天从 6—14 时的温度变化曲线近似满足函数y =A sin(ωx +ϕ) +b ( A > 0,ω> 0, ϕ<π)(1)求这一天 6—14 时的最大温差;(2)写出这段曲线的函数解析式。
解:(1)由图可知,这段时间的最大温差是20℃(2)由图可以看出,从 6—14 时的图像是函数小结:(1)振幅A=b=如何求函数中的ω和ϕ;(2)所求函数模型只能近似刻画某个区间的变化规律。
例题 2:货船进出港时间问题:海水受日月的引力,在一定的时候发生涨落的现象叫潮.一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节某天的时刻与水深关系的预报.(1)选用一个函数来近似描述这一天该港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4 米,安全条例规定至少要有1.5 米的安全间隙(船底与洋底的距离),该船这一天何时能进入港口?在港口能呆多久?(3)若某船的吃水深度为4 米,安全间隙为1.5 米,该船在2:00 开始卸货,吃水深度以每小时0.3 米的速度减少,如果这条船停止卸货后需0.4 小时才能驶到深水域,那么该船在什么时间必须停止卸货,将船驶向较深的水域?问题探究 1:请同学们仔细观察表格中的数据,你能够从中得到一些什么信息?小组合作发现,代表发言。
任意角的三角函数(一)一、教学目标:1、知识与技能〔1〕掌握任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;〔2〕理解任意角的三角函数不同的定义方法;〔3〕了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;〔4〕掌握并能初步运用公式一;〔5〕树立映射观点,正确理解三角函数是以实数为自变量的函数.2、过程与方法初中学过:锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域以及这三种函数的值在各象限的符号.最后主要是借助有向线段进一步认识三角函数.讲解例题,总结方法,巩固练习.3、情态与价值任意角的三角函数可以有不同的定义方法,而且各种定义都有自己的特点.过去习惯于用角的终边上点的坐标的“比值〞来定义,这种定义方法能够表现出从锐角三角函数到任意角的三角函数的推广,有利于引导学生从自己已有认知基础出发学习三角函数,但它对准确把握三角函数的本质有一定的不利影响,“从角的集合到比值的集合〞的对应关系与学生熟悉的一般函数概念中的“数集到数集〞的对应关系有冲突,而且“比值〞需要通过运算才能得到,这与函数值是一个确定的实数也有不同,这些都会影响学生对三角函数概念的理解.本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.这个定义清楚地说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.二、教学重、难点重点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;终边相同的角的同一三角函数值相等〔公式一〕.难点: 任意角的正弦、余弦、正切的定义〔包括这三种三角函数的定义域和函数值在各象限的符号〕;三角函数线的正确理解.三、学法与教学用具任意角的三角函数可以有不同的定义方法,本节利用单位圆上点的坐标定义任意角的正弦函数、余弦函数.说明了正弦、余弦函数中从自变量到函数值之间的对应关系,也说明了这两个函数之间的关系.另外,这样的定义使得三角函数所反映的数与形的关系更加直接,数形结合更加紧密,这就为后续内容的学习带来方便,也使三角函数更加好用了.教学用具:投影机、三角板、圆规、计算器四、教学设想第一课时任意角的三角函数〔一〕提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?如图,设锐角α的顶点与原点O重合,始边与x轴的正半轴重合,么它的终边在第一象限.在α的终边上任取一点(,)P a b ,它与原点的距离0r =>.过P 作x 轴的垂线,垂足为M ,那么线段OM 的长度为a ,线段MP 的长度为b .那么sin MP bOP rα==;cos OM a OP r α==; tan MP bOM aα==.思考:对于确定的角α,这三个比值是否会随点P 在α的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段OP 的长1r =的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:sin MP b OP α==; cos OM a OP α==; tan MP bOM aα==. 思考:上述锐角α的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题――任意角的三角函数.【探究新知】1.探究:结合上述锐角α的三角函数值的求法,我们应如何求解任意角的三角函数值呢?显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设α是一个任意角,它的终边与单位圆交于点(,)P x y ,那么: (1)y 叫做α的正弦(sine),记做sin α,即sin y α=; 〔2〕x 叫做α的余弦(cossine),记做cos α,即cos x α=; 〔3〕y x 叫做α的正切(tangent),记做tan α,即tan (0)yx xα=≠. 注意:当α是锐角时,此定义与初中定义相同〔指出对边,邻边,斜边所在〕;当α不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点(,)P x y ,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢? 前面我们已经知道,三角函数的值与点P 在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离r =那么sin α=,cos α=,tan yxα=.所以,三角函数是以为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求53π的正弦、余弦和正切值. 例2.角α的终边过点0(3,4)P --,求角α的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设3,4,x y =-=-那么5r ==.于是4sin 5y r α==-,3cos 5x r α==-,4tan 3y x α==. 5.巩固练习17P 第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:例3.求证:当且仅当不等式组sin 0{tan 0θθ<>成立时,角θ为第三象限角.8.思考:根据三角函数的定义,终边相同的角的同一三角函数值有和关系? 显然: 终边相同的角的同一三角函数值相等.即有公式一:sin(2)sin k απα+=cos(2)cos k απα+= (其中k Z ∈) tan(2)tan k απα+=9.例题讲评例4.确定以下三角函数值的符号,然后用计算器验证: (1)cos250︒; (2)sin()4π-; (3)tan(672)︒-; (4)tan3π例5.求以下三角函数值:(1)'sin148010︒; (2)9cos4π; (3)11tan()6π- 利用公式一,可以把求任意角的三角函数值, 转化为求0到2π(或0︒到360︒)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题. 10.巩固练习17P 第4,5,6,7题11.学习小结(1)本章的三角函数定义与初中时的定义有何异同? (2)你能准确判断三角函数值在各象限内的符号吗? (3)请写出各三角函数的定义域;(4)终边相同的角的同一三角函数值有什么关系?你在解题时会准确熟练应用公式一吗?五、评价设计1.作业:习题1.2 A组第1,2题.2.比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握,知道推导方法.第二课时任意角的三角函数〔二〕【复习回顾】1、三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式〔一〕:终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆. 【探究新知】1.引入:角是一个图形概念,也是一个数量概念〔弧度数〕.作为角的函数——三角函数是一个数量概念〔比值〕,但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?2.[边描述边画]以坐标原点为圆心,以单位长度1为半径画一个圆,这个圆就叫做单位圆〔注意:这个单位长度不一定就是1厘米或1米〕.当角α为第一象限角时,那么其终边与单位圆必有一个交点(,)P x y ,过点P 作PM x ⊥轴交x 轴于点M ,那么请你观察:根据三角函数的定义:|||||sin |MP y α==;|||||cos |OM x α==随着α在第一象限内转动,MP 、OM 是否也跟着变化? 3.思考:〔1〕为了去掉上述等式中的绝对值符号,能否给线段MP 、OM 规定一个适当的方向,使它们的取值与点P 的坐标一致?〔2〕你能借助单位圆,找到一条如MP 、OM 一样的线段来表示角α的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角α的终边不在坐标轴时,以O 为始点、M 为终点,规定:当线段OM 与x 轴同向时,OM 的方向为正向,且有正值x ;当线段OM 与x 轴反向时,OM 的方向为负向,且有正值x ;其中x 为P 点的横坐标.这样,无论那种情况都有cos OM x α==同理,当角α的终边不在x 轴上时,以M 为始点、P 为终点,规定:当线段MP 与y 轴同向时,MP 的方向为正向,且有正值y ;当线段MP 与y 轴反向 时,MP 的方向为负向,且有正值y ;其中y 为P 点的横坐标.这样,无论那种情况都有sin MP y α==4.像MP OM 、这种被看作带有方向的线段,叫做有向线段〔direct line segment 〕.5.如何用有向线段来表示角α的正切呢?如上图,过点(1,0)A 作单位圆的切线,这条切线必然平行于轴,设它与α的终边交于点T ,请根据正切函数的定义与相似三角形的知识,借助有向线段OA AT 、,我们有tan y AT xα==我们把这三条与单位圆有关的有向线段MP OM AT 、、,分别叫做角α的正弦线、余弦线、正切线,统称为三角函数线.6.探究:〔1〕当角α的终边在第二、第三、第四象限时,你能分别作出它们的正弦线、余弦线和正切线吗?〔2〕当α的终边与x 轴或y 轴重合时,又是怎样的情形呢?7.例题讲解 例1.42ππα<<,试比较,tan ,sin ,cos αααα的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质. 8.练习19P 第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角α的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用. 【评价设计】1. 作业:比较以下各三角函数值的大小(不能使用计算器)(1)sin15︒、tan15︒〔2〕'cos15018︒、cos121︒〔3〕5π、tan 5π2.练习三角函数线的作图.同角三角函数的基本关系一、教学目标: 1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;〔5〕牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;〔6〕灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;〔7〕掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:〔1〕某任意角的正弦、余弦、正切值中的一个,求其余两个;〔2〕化简三角函数式;〔3〕证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式:1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等.教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】 1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一 下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=.这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评 例6.3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证:cos 1sin 1sin cos x xx x+=-. 通过本例题,总结证明一个三角恒等式的方法步骤. 5.巩固练习23P 页第4,5题 6.学习小结〔1〕同角三角函数的关系式的前提是“同角〞,因此1cos sin 22≠+βα,γβαcos sin tan ≠. 〔2〕利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关 系式;注意三角恒等式的证明方法与步骤.。
芯衣州星海市涌泉学校师范大学附属中学高一数学教案:任意角的三角函数〔定义〕 教材:任意角的三角函数〔定义〕 目的:要求学生掌握任意角的三角函数的定义,继而理解角与=2k +(kZ)的同名三角函数值相等的道理。
过程:一、提出课题:讲解定义:1. 设是一个任意角,在的终边上任取〔异于原点的〕一点P 〔x,y 〕那么P 与原点的间隔02222>+=+=y x y x r〔图示见P13略〕 2.比值r y 叫做的正弦记作:ry =αsin 比值rx 叫做的余弦记作:r x =αcos 比值x y 叫做的正切记作:x y =αtan 比值y x叫做的余切记作:yx =αcot 比值x r 叫做的正割记作:xr =αsec 比值y r 叫做的余割记作:yr =αcsc 注意突出几个问题:①角是“任意角〞,当=2k +(k Z)时,与的同名三角函数值应该是相等的,即但凡终边一样的角的三角函数值相等。
②实际上,假设终边在坐标轴上,上述定义同样适用。
〔下面有例子说明〕③三角函数是以“比值〞为函数值的函数④0>r ,而x,y 的正负是随象限的变化而不同,故三角函数的符号应由象限确定〔今后将专题研究〕 ⑤定义域:二、例一的终边经过点P(2,3),求的六个三角函数值解:13)3(2,3,222=-+=-==r y x∴sin =13133cos =13132 tan =23cot =32 sec =213csc =313 例二求以下各角的六个三角函数值⑴0⑵⑶23π⑷2π 解:⑴⑵⑶的解答见P16-17⑷当=2π时r y x ==,0 ∴sin 2π=1cos 2π=0tan 2π不存在cot 2π=0 sec 2π不存在csc 2π=1 例三教学与测试P103例一求函数x xx xy tan tan cos cos +=的值域解:定义域:cosx 0∴x 的终边不在x 轴上又∵tanx0∴x 的终边不在y 轴上 ∴当x 是第Ⅰ象限角时,0,0>>y xcosx=|cosx|tanx=|tanx|∴y=2 …………Ⅱ…………,0,0><y x |cosx|=cosx|tanx|=tanx∴y=2 …………ⅢⅣ………,0,00,0<><<y x y x |cosx|=cosx|tanx|=tanx∴y=0 例四教学与测试P103例二⑴角的终边经过P(4,3),求2sin +cos 的值⑵角的终边经过P(4a,3a),(a 0)求2sin +cos的值 xo y P(2,-3)解:⑴由定义:5=r sin =53cos =54∴2sin +cos =52 ⑵假设0>aa r 5=那么sin =53cos =54∴2sin +cos =52 假设0<a a r 5-=那么sin =53cos =54∴2sin +cos =52 三、小结:定义及有关注意内容四、作业:课本P19练习1P20习题3教学与测试P1044、5、6、7。
《三角函数》教案设计教案标题:探索三角函数的奥秘教学目标:知识与技能:使学生理解正弦、余弦、正切的基本概念及其在三角形中的应用。
学会利用三角函数解决与角度和边长相关的问题。
过程与方法:通过图形和实例,培养学生观察、归纳和推理的能力。
鼓励学生运用三角函数解决实际问题,提高分析和应用能力。
情感态度与价值观:激发学生对数学的兴趣和好奇心,培养探索精神。
使学生认识到数学在现实生活中的应用价值。
教学内容:三角函数的定义:正弦、余弦、正切。
三角函数的基本性质:周期性、奇偶性、值域等。
三角函数在解三角形中的应用。
教学方法:启发式教学:通过提问和讨论,引导学生自主发现三角函数的性质和规律。
图形辅助教学:利用三角函数图像,帮助学生直观理解函数变化。
案例分析:通过实际问题的分析,培养学生运用知识解决问题的能力。
教学过程:一、导入新课通过现实生活中的例子(如:波动、周期现象等)引出三角函数的概念。
二、新课讲解三角函数定义:结合单位圆和直角三角形,讲解正弦、余弦、正切的定义。
三角函数性质:通过图像和数学推导,探讨三角函数的周期性、奇偶性等性质。
应用举例:展示三角函数在解三角形、物理波动等领域的应用。
三、课堂练习学生独立完成练习题,教师巡视指导,及时解答疑问。
四、小结与作业小结本节课重点内容,布置相关练习题作为课后作业。
教学工具和材料:多媒体课件:包含三角函数图像、定义和性质等内容。
三角板、量角器等绘图工具:帮助学生绘制三角形,直观理解三角函数。
计算器:用于计算三角函数的值。
评估与反馈:通过课堂练习和课后作业,评估学生对三角函数的掌握情况。
收集学生的疑问和反馈,及时调整教学方法和策略。
拓展延伸:鼓励学生探索三角函数在其他领域(如信号处理、图形学等)的应用。
介绍三角函数的历史背景和发展,激发学生对数学文化的兴趣。
正弦、余弦函数的周期性教案一、教材分析:《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.本节课是学生学习了诱导公式和正弦、余弦函数的图象之后,对三角函数知识的又一深入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力、推理论证能力、分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.所以本课既是前期知识的发展,又是后续有关知识研究的前驱,起着承前启后的作用.二、教学目标:学情分析:学生在知识上已经掌握了诱导公式、正弦、余弦函数图象及五点作图的方法;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经具有一定的数形结合、类比、特殊到一般等数学思想.本课的教学目标:(一)知识与技能1.理解周期函数的概念及正弦、余弦函数的周期性.2.会求一些简单三角函数的周期.(二)过程与方法从学生生活实际的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念.运用数形结合方法研究正弦函数y=sin x 的周期性,通过类比研究余弦函数y=cosx的周期性.(三)情感、态度与价值观让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.三、教学重点:周期函数的定义和正弦、余弦函数的周期性.四、教学难点:周期函数定义及运用定义求函数的周期.五、教学准备:三角板、多媒体课件六、教学流程:求下列函数的周期: (1)3sin4x y =,x R ∈;(2)sin()10y x π=+,x R ∈;(3)cos(2)3y x π=+,x R ∈(4)1sin()24y x π=-,x R ∈ 课外思考:1. 求函数()sin()f x A x ωϕ=+和()cos()f x A x ωϕ=+(其中,,A ωϕ为常数,且0,0A ω≠>)的周期.2.求下列函数的周期:(1)|sin |x y =,x R ∈;(2)|2cos |x y =,x R ∈ 附:板书设计附:1.本节课预计学生建构周期函数概念时有困难,特别是“正弦函数图象的周而复始变化实际上是函数值的周而复始变化” 的本质学生理解有一定困难.为了突破这个难点,借助了几何画板来帮助学生从形象思维过渡到抽象思维.2.预计部分学生对周期函数定义的自变量的任意性的理解有困难,为了突破这个难点,设计了三道判断题让学生分组讨论交流,通过学生思维碰撞来体会数学概念的严谨,通过学生互动建构自己对周期函数概念的认识.3.预计部分学生运用周期函数定义求函数周期有一定困难,为了解决这个困难,在设计中,例1第1问由师生共同完成,完成后小结解题的思路方法.再由学生完成第2问和第3问,再由师生共同点评.教案设计说明 《正弦、余弦函数的周期性》是普通高中课程标准实验教科书必修四第一章第四节第二节课,其主要内容是周期函数的概念及正弦、余弦函数的周期性.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.本课的重点为周期函数的定义和正弦、余弦函数的周期性,难点为周期函数定义及运用定义求函数的周期.本课的教学设计分为六个部分,包括:教材分析,目标分析(含学情分析),教学重难点,教学准备,教学流程,教学过程.设计反映了由学生熟悉的生活的周期现象出发,通过概括、抽象,并结合正弦函数的图象引导学生感受周期函数概念的形成过程,这是设计的数学本质基础;设计中结合本班学生的学习的实际情况,从而确定了教学活动的环节.以这些分析为基础从而确定教学目标,而过程设计则针对目标从九个环节进行具体的设计.教学过程设计自始至终贯穿数形结合思想.下面从如下几个方面进行详细说明.一、教学内容的数学本质及教学目标定位本节课主要内容是周期函数的概念及正弦、余弦函数的周期性.通过对正弦函数图象“周而复始”的变化规律特征的感知,使学生建立比较牢固的理解周期性的认知基础,然后再引导学生了解用代数表达式刻画图象“周而复始”的变化规律.本节课要探究的周期函数的概念的数学本质是从形和数两个方面去刻画“周而复始”的变化规律.学生在知识上已经学习了函数概念与基本初等函数等知识,已经掌握了三角函数图象的画法及五点法作图;在能力上已经具备了一定的形象思维与抽象思维能力;在思想方法上已经接触过数形结合、类比、特殊到一般等数学思想.另外,我还对我班学生的具体情况做了如下分析:我班学生基础知识比较扎实、思维较活跃,学生层次差异不大,能够很好的掌握教材上的内容,能较好地做到数形结合,善于发现问题,深入研究问题,但是部分学生处理抽象问题的能力还有待进一步提高.于是,结合以上的学情分析,我从“知识与技能”、“过程与方法”和“情感态度与价值观”设定目标.其中知识与技能目标为:理解周期函数的概念及正弦、余弦函数的周期性,会求一些简单三角函数的周期.过程与方法则是:从学生实际中的周期现象出发,提供丰富的实际背景,通过对实际背景的分析与y=sin x图形的比较、概括抽象出周期函数的概念. 运用数形结合方法研究正弦函数y=sin x的周期性,通过类比研究余弦函数y=cosx的周期性.并且在过程中渗透了本课的情感态度目标:让学生体会数学来源于生活,体会从感性到理性的思维过程,体会数形结合思想;让学生亲身经历数学研究的过程,享受成功的喜悦,感受数学的魅力.以上是对教学目标定位的说明.二、教学流程入探讨.正弦、余弦函数的周期性是三角函数的一个重要性质,是研究三角函数其它性质的基础,是函数性质的重要补充.通过本课的学习不仅能进一步培养学生的数形结合能力,分析问题和解决问题的能力,而且能使学生把这些认识迁移到后续的知识学习中去,为以后研究三角函数的其它性质打下基础.正弦函数、余弦函数的周期性,与后面高中物理研究的《单摆运动》、《简谐运动》、《机械波》等知识有着密切相关的联系.在数学和其它领域(物理学、生物学、医学等)中具有重要的作用,所以,该内容在教材中具有非常重要的意义,是连接理论知识和实际问题的一个桥梁.四、教学诊断分析1.学习正弦、余弦函数的周期性时,用图象法求周期学生容易理解;建构周期函数概念时学生有困难,特别是“正弦函数图象的周而复始的变化实际上是函数值的周而复始的变化”的本质学生感到有一定困难. 我首先让学生回顾如何利用正弦线画正弦函数y=sin x图象(动画演示),通过动画演示,让学生感知正弦函数图象“周而复始”的变化规律,再引导学生用代数表达式刻画图象“周而复始”的变化规律.2.部分学生对周期函数定义中的任意性理解容易出现错误,需要在教学中反复强调.3.本节课充分利用了多媒体技术的强大功能,把现代信息技术作为学生学习数学和解决问题的强有力工具,使学生乐意投入到现实的、探索性的教学活动中去.五、教法特点及预期效果分析结合教学目标以及学生的实际情况,我采用了启发引导与小组合作交流相结合的教学方式,而在知识构建过程中,在教师引导下,使学生经历了直观感知、观察发现、抽象概括等思维活动,提高数学思维能力;注重信息技术与数学课程的整合,提倡利用信息技术呈现以往教学中难以呈现的课程内容,鼓励学生运用信息技术进行探索和发现.本节课遵循学生的认知规律,通过典型具体例子的分析和学生自主地观察、探索活动,使学生理解周期概念的形成过程,体会蕴含在其中的数形结合的思想方法,把数学的学术形态通过适当的方式转化为学生易于接受的教育形态,教学内容利用生活中的问题和课本上已有的知识创设情境,使教学内容不仅贴近生活,并且来源于旧知识,设计内容一环扣一环,使学生对周期函数的概念理解和应用步步深入.在教学方法上运用多种方法,如观察、分析、归纳、讨论;在知识的学习过程中,重视知识的形成过程和概括过程.在解决问题中,引导学生分析、归纳方法,注意优化学生的思维品质;在教学手段上采用多媒体和黑板重点板书结合的教学方法.通过本节课学习,我力求达到:1 、形成学生主动参与,自主探究,合作交流的课堂气氛.2、学生进一步了解数学来源于生活,理解周期函数和周期的定义.3、让学生体会从感性到理性的思维过程,体会数形结合思想,让学生领悟问题探究的学习方法.由于本课内容不多,难度不大,相信大多数学生都能掌握本课知识,实现预期的目标.。
二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?三、新知探究1.单位圆在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆为单位圆.2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P(x,y),那么:图1-2-1(2)结论①y叫做α的正弦,记作sin_α,即sin α=y;②x叫做α的余弦,记作cos_α,即cos α=x;③yx叫做α的正切,记作tan_α,即tan α=yx(x≠0).(3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P 的坐标是(x ,y ),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点O 的距离是r (r =x 2+y 2>0). 三角函数定义定义域 sinα y r R cosα x r Rtanαy x错误!正弦函数、余弦函数、正切函数统称三角函数. 3.正弦、余弦、正切函数在弧度制下的定义域三角函数 定义域 sin α R cos α Rtan α⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪⎪x ≠k π+π2,k ∈Z4.正弦、余弦、正切函数值在各象限内的符号 (1)图示:图1-2-2(2)口诀:“一全正,二正弦,三正切,四余弦”. 5.诱导公式一四、典例分析、举一反三题型一 三角函数的定义及应用例1 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值.【答案】当α的终边在第二象限时,sin α=255,cos α=-55,tan α=-2. 当α的终边在第四象限时, sin α=-255,cos α=55,tan α=-2.【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5, 所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时,在α终边上取一点P ′(1,-2),则r =12+-22=5, 所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.跟踪训练一1.已知角θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ.【答案】当x =1时,sin θ=31010,tan θ=3;当x =-1时,此时sin θ=31010,tan θ=-3.【解析】由题意知r =|OP |=x 2+9,由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x .∵x ≠0,∴x =±1.当x =1时,P (1,3),此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3),此时sin θ=3-12+32=31010,tan θ=3-1=-3. 题型二 三角函数值的符号 例2 (1)若α是第四象限角,则点P (cos α,tan α)在第________象限.(2)判断下列各式的符号:①sin 183°;②tan 7π4;③cos 5.【答案】(1)四; (2) ①sin 183°<0;②tan 7π4<0;③cos 5>0.【解析】(1)∵α是第四象限角,∴cos α>0,tan α<0,∴点P (cos α,tan α)在第四象限.(2) ①∵180°<183°<270°,∴sin 183°<0;②∵3π2<7π4<2π,∴tan 7π4<0;③∵3π2<5<2π,∴cos。
教案:1.3 三角函数的诱导公式(一)一、教学三维目标(一)知识与技能1.借助单位圆,推导、识记和应用诱导公式;2.理解和掌握公式的内涵及结构特征,会初步运用诱导公式求三角函数值,并进行简单三角函数式的化简。
(二)过程与方法1.通过诱导公式的推导,分析公式的结构特征,使学生体验和理解数形结合、从特殊到一般的数学思想方法;2.通过习题组的练习,提高学生分析问题和解决问题的实践能力,使学生体验和理解转化与化归的数学思想方法。
(三)情感态度与价值观培养学生主动探索,勇于发现的科学精神,并在课程中渗透数形结合、从特殊到一般以及把未知转化为已知的转化与化归的数学思想方法。
二、教学重难点(一)教学重点1. 诱导公式的探究,利用诱导公式进行简单三角函数式的求值和化简;2.利用四组诱导公式会进行简单的化简与证明。
(二)教学难点发现圆的对称性与任意角终边坐标的联系,及诱导公式的合理运用。
三、教学过程(一)、温故知新1、角α与角α的终边相同的角的三角函数值之间的关系公式一:终边相同的角的同一三角函数的值相等。
通过公式一,我们就可以把绝对值大于2π的任意角的三角函数问题,转化 为研究绝对值小于2π的角的三角函数问题.(二)、热身小试求下列各三角函数值: );38sin()1(ππ+ .319cos )2(π (三)、合作探究 变式、求 产生认知冲突,从而进行探究探究1: 角π+α与角α的三角函数值之间的联系。
结论1:角α+π 的终边与角α的终边关于原点对称; 结论2:它们的终边与单位圆的交点坐标满足:横坐标互为相反数,纵坐标互为相反数.由此得出结论(公式二): 完成变式、求结合公式一,对两个公式结构特征进行分析直接抛出探究2:角-α与角α的三角函数值之间有什么联系?学生合作探究,发现结论公式三 Zk k k k ∈=⋅+=⋅+=⋅+,tan )2tan(,sin )2sin(,cos )2cos(απααπααπα.310cos π.tan )tan(,sin )sin(,cos )cos(ααπααπααπ=+-=+-=+.310cos π.tan )tan(,sin )sin(,cos )cos(αααααα-=--=-=-由此给出诱导公式的概念(四)、公式应用 例1、求下列各三角函数值:变式1、求 (由变式一启发思维,进行公式三和二的综合应用) 进而推论:角π-α与角α的三角函数值之间的联系:例2、求下列各三角函数值:(公式的综合应用)四、回顾总结(一)、知识小结:1、诱导公式一、二、三、四的推导、记忆和应用;2、诱导公式的应用原则。
5.2 三角函数的概念教案一、内容和内容解析1.内容三角函数的概念;三角函数的基本性质:三角函数值的符号、诱导公式一、同角三角函数的基本关系.本单元的知识结构:本单元建议用3课时:第一课时,三角函数的概念;第二课时,三角函数的基本性质;第三课时,概念和性质的简单应用.2.内容解析三角函数是一类最典型的周期函数,是解决实际问题的重要工具,是学习数学和物理、天文等其他学科的重要基础.传统上,人们习惯把三角函数看成是锐角三角函数的推广,利用象限角终边上点的坐标比定义三角函数.由于这一定义方法出自欧拉,因此更显出它的权威性.然而,锐角三角函数的研究对象是三角形,是三角形中边与角的定量关系(三角比)的反映;而任意角三角函数的现实背景是周期变化现象,是“周而复始”变化规律的数学刻画.如果以锐角三角函数为基础进行推广,那么三角函数概念发生发展过程的完整性将受到破坏.因此,整体上,任意角三角函数知识体系的建立,应与其他基本初等函数类似,强调以周期变化现象为背景,构建从抽象研究对象(即定义三角函数概念)到研究它的图象、性质再到实际应用的过程,与锐角三角函数的联系可以在给出任意角三角函数定义后再进行考察.一般地,概念的形成应按“事实—概念”的路径,即学生要经历“背景—研究对象—对应关系的本质—定义”的过程.本单元的学习中,学生在经历这个过程而形成三角函数概念的同时,“顺便”就可得到值域、函数值的符号、诱导公式一及同角三角函数的基本关系等性质.根据上述分析,确定本单元的教学重点是:正弦函数、余弦函数、正切函数的定义,诱导公式一,同角三角函数的基本关系.其中,正弦函数、余弦函数的定义是重中之重.二、目标和目标解析1.目标(1)了解三角函数的背景,体会三角函数与现实世界的密切联系;(2)经历三角函数概念的抽象过程,借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义,发展数学抽象素养;(3)掌握三角函数值的符号;(4)掌握诱导公式一,初步体会三角函数的周期性;(5)理解同角三角函数的基本关系式:,体会三角函数的内在联系性,通过运用基本关系式进行三角恒等变换,发展数学运算素养.2.目标解析达成上述目标的标志是:(1)学生能像了解线性函数、反比例函数、二次函数、幂函数、指数函数、对数函数的现实背景那样,知道三角函数是刻画现实世界中“周而复始”变化规律的数学工具,能体会到匀速圆周运动在“周而复始”变化现象中的代表性.(2)学生在经历“周期现象—圆周运动—单位圆上点的旋转运动”的抽象活动中,明确研究的问题(单位圆⊙O上的点P以A为起点作旋转运动,建立一个数学模型,刻画点P的位置变化情况),使研究对象简单化、本质化;学生能分析单位圆上点的旋转中涉及的量及其相互关系,获得对应关系并抽象出三角函数概念;能根据定义求给定角的三角函数值.(3)学生能根据定义得出三角函数在各象限取值的符号规律.(4)学生能根据定义,结合终边相同的角的表示,得出诱导公式一,并能据此描述三角函数周而复始的取值规律,求某些角(特殊角)的三角函数值.(5)学生能利用定义以及单位圆上点的横、纵坐标之间的关系,发现并提出“同角三角函数的基本关系”,并能用于三角恒等变换.三、教学问题诊断分析三角函数概念的学习,其认知基础是函数的一般观念以及对幂函数、指数函数和对数函数的研究经验,另外还有圆的有关知识.这些认知准备对于分析“周而复始”变化现象中涉及的量及其关系、认识其中的对应关系并给出定义等都能起到思路引领作用.然而,前面学习的基本初等函数,涉及的量(常量与变量)较少,解析式都有明确的运算含义,而三角函数中,影响单位圆上点的坐标变化的因素较多,对应关系不以“代数运算”为媒介,是“α与x,y直接对应”,无须计算.虽然α,x,y 都是实数,但实际上是“几何元素间的对应”.所以,三角函数中的对应关系,与学生的已有经验距离较大,由此产生第一个学习难点:理解三角函数的对应关系,包括影响单位圆上点的坐标变化的因素分析,以及三角函数的定义方式的理解.为了破除学生在“对应关系”认识上的定势,帮助他们搞清三角函数的“三要素”,应该根据一般函数概念引导下的“下位学习”的特点,先让学生明确“给定一个角,如何得到对应的函数值”的操作过程,然后再下定义,这样不仅使三角函数定义的引入更自然,而且由三角函数对应关系的独特性,可以使学生再一次认识函数的本质.具体的,可让学生先完成“给定一个特殊角,求它的终边与单位圆交点坐标”的任务.例如“当时,找出相应点P的坐标”并让学生明确点P的坐标的唯一确定性,再借助信息技术,让学生观察任意给定一个角α∈R,它的终边与单位圆的交点坐标是否唯一,从而为理解三角函数的对应关系奠定基础.利用信息技术,可以很容易地建立单位圆上点的横坐标、纵坐标、角、弧之间的联系,并且可以在角的变化过程中进行观察,发现其中的规律性.所以,信息技术可以帮助学生更好地理解三角函数的本质.对于定义“设α是一个任意角,它的终边与单位圆交于点P(x,y),那么y叫做α的正弦函数,记作sinα,即y= sinα;x叫做α的余弦函数,记作cosα,即x= cosα”,可以通过如下几点帮助学生理解:第一,α是一个任意角,同时也是一个实数(弧度数),所以“设α是一个任意角”的意义实际上是“对于R中的任意一个数”;第二,“它的终边与单位圆交于点P(x,y)”,实际上给出了两个对应关系,即(1)实数α(弧度)对应于点P的纵坐标y,(2)实数α(弧度)对应于点P的横坐标x,其中y,x∈[-1,1].因为对于R中的任意一个数α,它的终边唯一确定,所以交点P(x,y)也唯一确定,也就是纵坐标y和横坐标x都由α唯一确定,所以对应关系(1)(2)分别确定了一个函数,这是理解三角函数定义的关键.第三,引进符号sinα,cosα分别表示“α的终边与单位圆交点的纵坐标”、“α的终边与单位圆交点的横坐标”,于是:对于任意一个实数α,按对应关系(1),在集合B={z|-1≤z≤1}中都有唯一确定的数sinα与之对应;按对应关系(2),在集合B中都有唯一确定的数cosα与之对应.所以,sinα,cosα都是一个由α所唯一确定的实数.这里,对符号sinα,cosα和tanα的认识是第二个难点.可以通过类比引进符号logab表示ax=b 中的x,说明引进这些符号的意义.本单元的第三个学习难点是对三角函数内在联系性的认识.出现这个难点的主要原因在于三角函数联系方式的特殊性,学生在已有的基本初等函数学习中没有这种经验,以及学生从联系的观点看问题的经验不足,对“如何发现函数的性质”的认识不充分等而导致的发现和提出性质的能力不强.为此,教学中应在思想方法上加强引导。
高一数学三角函数教案
高一数学《三角函数》教案如下:
已知三角函数值求角反正弦,反余弦函数
目的:要求学生初步了解理解反正弦、反余弦函数的意义,会由已知角的正弦值、余弦值求出范围内的角,并能用反正弦,反余弦的符号表示角或角的集合。
过程:
一、简单理解反正弦,反余弦函数的意义。
由
1在R上无反函数。
2在上, x与y是一一对应的,且区间比较简单
在上,的反函数称作反正弦函数,
记作,奇函数。
同理,由
在上,的反函数称作反余弦函数,
记作
二、已知三角函数求角
首先应弄清:已知角求三角函数值是单值的。
已知三角函数值求角是多值的。
例一、1、已知,求x
解:在上正弦函数是单调递增的,且符合条件的角只有一个
∴ 即
2、已知
解:,是第一或第二象限角。
即。
3、已知
解: x是第三或第四象限角。
即或
这里用到是奇函数。
例二、1、已知,求
解:在上余弦函数是单调递减的,
且符合条件的角只有一个
2、已知,且,求x的值。
解:, x是第二或第三象限角。
3、已知,求x的值。
解:由上题:。
介绍:∵
∴上题
例三、见课本P74-P75略。
三、小结:求角的多值性
法则:1、先决定角的象限。
2、如果函数值是正值,则先求出对应的锐角x;
如果函数值是负值,则先求出与其绝对值对应的锐角x,
3、由诱导公式,求出符合条件的其它象限的角。
四、作业:P76-77 练习 3
习题4.11 1,2,3,4中有关部分。
高一数学《三角函数的周期性》教案如下:
一、学习目标与自我评估
1 掌握利用单位圆的几何方法作函数的图象
2 结合的图象及函数周期性的定义了解三角函数的周期性,及最小正周期
3 会用代数方法求等函数的周期
4 理解周期性的几何意义
二、学习重点与难点
“周期函数的概念”,周期的求解。
三、学法指导
1、是周期函数是指对定义域中所有都有
,即应是恒等式。
2、周期函数一定会有周期,但不一定存在最小正周期。
四、学习活动与意义建构
五、重点与难点探究
例1、若钟摆的高度与时间之间的函数关系如图所示 1求该函数的周期;
2求时钟摆的高度。
例2、求下列函数的周期。
1 2
总结:1函数其中均为常数,且
的周期T= 。
2函数其中均为常数,且
的周期T= 。
例3、求证:的周期为。
例4、1研究和函数的图象,分析其周期性。
2求证:的周期为其中均为常数,且
总结:函数其中均为常数,且的周期T= 。
例5、1求的周期。
2已知满足,求证:是周期函数
课后思考:能否利用单位圆作函数的图象。
六、作业:
七、自主体验与运用
1、函数的周期为
A、 B、 C、 D、
2、函数的最小正周期是
A、 B、 C、 D、
3、函数的最小正周期是
A、 B、 C、 D、
4、函数的周期是
A、 B、 C、 D、
5、设是定义域为R,最小正周期为的函数,若,则的值等于
A、1
B、
C、0
D、
6、函数的最小正周期是,则
7、已知函数的最小正周期不大于2,则正整数的最小值是
8、求函数的最小正周期为T,且,则正整数的最大值是
9、已知函数是周期为6的奇函数,且则
10、若函数,则
11、用周期的定义分析的周期。
12、已知函数,如果使的周期在内,求正整数的值
13、一机械振动中,某质子离开平衡位置的位移与时间之间的函数关系如图所示:
1 求该函数的周期;
2 求时,该质点离开平衡位置的位移。
14、已知是定义在R上的函数,且对任意有成立,
1 证明:是周期函数;
2 若求的值。
感谢您的阅读,祝您生活愉快。