(最新)沪科版八年级数学上册《平面直角坐标系》导学案
- 格式:doc
- 大小:49.00 KB
- 文档页数:2
第2课时图形与坐标教学目标【知识与技能】进一步学习和应用平面直角坐标系,认识坐标系中的图形.【过程与方法】通过探索平面上的点连接成的图形,形成二维平面图形的概念,发展抽象思维能力.【情感、态度与价值观】培养学生的合作交流意识和探索精神,体验通过二维坐标来描述图形顶点,从而描述图形的方法.重点难点【重点】理解平面上的点连接成的图形,计算围成的图形的面积.【难点】不规则图形面积的求法.教学过程一、创设情境,导入新知师:上节课我们学习了平面直角坐标系的概念,也学习了已知点的坐标,怎样在平面直角坐标系中把这个点表示出来.下面请大家在方格纸上建立一个平面直角坐标系,并在上面标出A(5,1),B(2,1),C(2,-3)这三个点.学生作图.教师边操作边讲解:二、合作探究,获取新知师:现在我们把这三个点用线段连接起来,看一下得到的是什么图形?生甲:三角形.生乙:直角三角形.师:你能计算出它的面积吗?生:能.教师挑一名学生:你是怎样算的呢?生:AB的长是5-2=3,BC的长是1-(-3)=4,所以三角形ABC的面积是×3×4=6.师:很好!教师边操作边讲解:大家再描出四个点:A(-1,2),B(-2,-1),C(2,-1),D(3,2),并将它们依次连接起来看看形成的是什么图形?学生完成操作后回答:平行四边形.师:你能计算它的面积吗?生:能.教师挑一名学生:你是怎么计算的呢?生:以BC为底,A到BC的垂线段AE为高,BC的长为4,AE的长为3,平行四边形的面积就是4×3=12.师:很好!刚才是已知点,我们将它们顺次连接形成图形,下面我们来看这样一个连接成的图形:教师多媒体出示下图:师:如果我们取x轴正半轴上的点为起始点,按逆时针顺序,你能说出这个图形是由哪些点顺次连接成的吗?生:能.(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4)……师:很好!你怎样向另一个同学描述这样一个八角星,让他画出来呢?生:在坐标系里画出点(6,0),(4,2),(4,4),(2,4),(0,6),(-2,4),(-4,4),……,然后把它们顺次连接成一个封闭的图形.三、练习新知师:我们现在已经建立了点与图形之间的联系,能用点来表示图形了.我们来看这样一个例子,已知△ABC三个顶点的坐标分别为A(-1,1),B(4,1),C(6,4),求△ABC的面积.教师找一名学生板演,其余学生在下面做,然后集体订正得到:由图可知,△ABC的面积S=×5×3=7.5.四、课堂小结师:我们今天学习了哪些新知识?有什么收获?生:我们今天学了由点连接成的图形,求封闭图形的面积.教师补充完善.教学反思本节课开始时我给出三点的坐标,让学生自己建立平面直角坐标系,并且在其中描出这些点,既复习了上节课的内容,又引出了本节课所要讲的知识.在画出三角形和平行四边形后,我引导学生去利用网格计算封闭图形的面积.通过八角星的例子引导学生自己去学习找点的位置和它们的坐标之间的关系,形成数形结合的思想,用数字特征去描述它们之间的关系.。
2023沪教版八年级上册数学平面直角坐标系教案2023沪教版八年级上册数学平面直角坐标系教案1【活动目标】1、感知在等量的橡皮泥上印制“饼干”其数量的多少与印制饼干用的模具的大小,排列的疏密以及橡皮泥底板厚薄之间的关系。
2、体验数学操作活动的乐趣。
【活动准备】1、幼儿人手一块同样大小的橡皮泥,泥工板2、印制饼干用的大小模具(瓶盖)若干3、幼儿记录用的纸和笔人手一份,自制桂冠一顶。
【活动过程】1、出示橡皮泥引起幼儿操作兴趣。
2、教师示范用模具(小瓶盖)印制饼干并讲述印制饼干的要求。
老师:今天老师要教小朋友用模具来印饼干。
先看老师是怎样印的:先将一块橡皮泥放在大瓶盖内压平铺满,然后选择一个小模具(小瓶盖)在橡皮泥上面印压饼干。
要求印的时候每个饼干不重叠,不交叉要饼干是完整的。
印压3次后提问:你们印了几块饼干幼儿:3块老师:猜猜看继续印下去还能印几块饼干幼儿:5块也有的说7块,3、幼儿第一次尝试操作:探索同样大的橡皮泥在同一底板中,用小模具印制饼干的数量与饼干排列疏密的关系。
老师:我给你们准备了和我一样大的橡皮泥,一样大的底板和小模具,请小朋友来印饼干,并将数量写在记录纸上“第一次操作”格子里。
老师巡视幼儿操作情况。
4、组织讨论:为什么印出的饼干会不一样多引导幼儿比较两名幼儿印制的饼干。
老师:同样大的橡皮泥,用相同的模具印饼干,为什么明明印了5块毛毛印了7块呢幼儿甲:明明印的饼干空隙大,毛毛的空隙小。
幼儿乙:明明的饼干没有排好,中间缝大,毛毛的缝小所以印的饼干多老师小结:同样大的橡皮泥,在同样大的底板中,用同样大的模具印饼干,排列越紧,印的饼干越多,排列越疏,印的越少。
5、幼儿进行第二次探索,同样大的橡皮泥,在同一底板中,用大模具印饼干,并记录操作结果。
老师:第一次用小模具和第二次用大模具印的饼干一样多吗为什么幼儿回答。
老师小结:同样大的橡皮泥在同一底板中,用小模具印的饼干多,用大模具印的饼干少。
6、幼儿进行第三次探索:饼干的数量与橡皮泥底板的厚薄之间的关系。
第十一章平面直角坐标系11.1平面内点的坐标第1课时平面直角坐标系◇教学目标◇【知识与技能】1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等的概念;2.理解坐标平面内的点与有序实数对的一一对应关系;3.能在方格纸中建立平面直角坐标系来描述点的位置.【过程与方法】1.通过画坐标系,由点找坐标等过程,发展学生的数形结合意识、合作交流意识;2.通过对一些点的坐标进行观察,探索坐标轴上点的坐标有什么特点,纵坐标或横坐标相同的点所连成的线段与两坐标轴之间的关系,培养学生的探索意识.【情感、态度与价值观】让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习活动的积极性和好奇心.◇教学重难点◇【教学重点】理解平面直角坐标系的有关知识;在给定的平面直角坐标系中,会根据点的位置写出它的坐标.【教学难点】坐标轴上的数字与坐标系中的坐标之间的关系.◇教学过程◇一、情境导入假如你到了某一个城市旅游,那么你应怎样确定旅游景点的位置呢?下面给出一张某市旅游景点的示意图,根据示意图(如图),回答以下问题:(1)你是怎样确定各个景点位置的?(2)“大成殿”在“中心广场”南、西各多少个格?“碑林”在“中心广场”北、东各多少个格?(3)如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,那么你能表示“碑林”的位置吗?“大成殿”的位置呢?二、合作探究1.平面直角坐标系、横轴、纵轴、横坐标、纵坐标、原点的定义和象限的划分.在了解有关平面直角坐标系的知识后,再返回刚才讨论的问题.结论:如果以“中心广场”为原点作两条互相垂直的数轴,分别取向右、向上的方向为数轴的正方向,一个方格的边长看作一个单位长度,则“碑林”的位置是(3,1),“大成殿”的位置是(-2,-2).问题:在(3)的条件下,你能把其他景点的位置表示出来吗?结论:能,钟楼的位置是(-2,1),雁塔的位置是(0,3),影月湖的位置是(0,-5),科技大学的位置是(-5,-7).2.例题讲解典例写出图中多边形ABCDEF各顶点的坐标.此图中各顶点的坐标是否永远不变?你能举个例子吗?[解析]多边形ABCDEF各顶点的坐标分别为A(-2,0),B(0,-3),C(3,-3),D(4,0),E(3,3),F(0,3).不是.当坐标轴的位置发生变动时,各点的坐标相应地变化.若以线段BC所在的直线为x轴,纵轴(y轴)位置不变,如图,则六个顶点的坐标分别为A(-2,3),B(0,0),C(3,0),D(4,3),E(3,6),F(0,6).再思考这个结论是否是永恒的.结论:不是.还能再改变坐标轴的位置,得出不同的坐标.继续进行坐标轴的变换,总结一下共有多少种不同的变换方式.3.想一想在上例中,(1)点B与点C的纵坐标相同,线段BC的位置有什么特点?(2)线段测定位置有什么特点?(3)坐标轴上点的坐标有什么特点?【归纳总结】(1)坐标轴上的点的坐标中至少有一个是0;横轴上的点的纵坐标为0,纵轴上的点的横坐标为0.(2)x轴、y轴把坐标平面分成四个象限,但是坐标轴上的点不属于任何一个象限.(3)各个象限内的点的坐标特征:第一象限(+,+),第二象限(-,+),第三象限(-,-),第四象限(+,-).变式训练如图,确定点A,B,C,D,E,F,G的坐标.[解析]点A(-1,-1),点B(0,-3),点C(2,-5),点D(4,-1),点E(3,2),点F(-2,3),点G(2,-2).三、板书设计平面直角坐标系1.平面直角坐标系:横轴、纵轴、横坐标、纵坐标、原点.2.象限的划分.◇教学反思◇学生在实际生活中经常遇到物体位置的问题,可能想不到这些问题与数学的联系,老师在这节课上应引导学生建立平面直角坐标系来表示物体的位置,让学生参与到探索获取新知的活动中,主动学习思考,感受数学的魅力,增强学生学习数学的兴趣.。
11.1 平面内点的坐标(2)学习目标:1、通过找点、连线、观察,确定图形的大致形状并能计算图形的面积.2、会根据实际情况建立适当的坐标系.3、通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系,体会平面直角坐标系在实际中的应用.学习重点::会根据实际情况建立适当的坐标系,用平面直角坐标系表示具体的地理位置.学习难点:通过点的位置关系探索坐标之间的关系以及根据坐标之间的关系探索点的位置关系一、学前准备B(2,1),C(2,-3)各点,并按次序A→B→C→A将所描出的点连接起来;说出得到的是什么图形;并计算它的面积.2.如图,矩形ABCD的长与宽分别是6,4,建立适当的直角坐标系,并写出各个顶点的坐标。
3. 如图(1)写出坐标:A( ),B( ),C( ),D( )(2)对称点的坐标特点:点A与点B关于____轴对称, 两个点的横坐标_____,纵坐标互为________点A与点C关于____轴对称, 两个点的纵坐标_____,横坐标互为________点A与点D关于______对称, 两个点的横、纵坐标分别互为________(3)平面直角坐标系中的点到坐标轴的距离:点P(x,y)到x轴的距离是_____,到y轴的距离是______.练一练:1.已知点P关于x轴的对称点P1的坐标是(2,3),那么点P关于原点的对称点P2的坐标是()A.(-3,-2) B.(2,-3)C.(-2,-3)D.(-2,3)2.点A(2,3)到x轴的距离为;点B(-4,0)到y轴的距离为;预习疑难摘要_________________________________________________________________________________________________________________________________________________________________________________________________二、探究活动 (一)师生探究·解决问题例1. 在平面直角坐标系中描出A(-1,2), B(-2,-1),C(2,-1),D(3,2)各点,并按次序 A→B→C→D→A 将所描出的点连接起来; 说出得到的是什么图形;并计算它的面积.例2 如图,正方形ABCD 的边长为4,请建立一个平面直角坐标系,并写出正方形的四个顶点A ,B ,C ,D 在这个平面直角坐标系中的坐标.(二)独立思考·巩固升华1.矩形ABCD 中,三点的坐标分别是(0,0);(5,0);(5,3).则第四点的坐标是( ) A .(0,3)B .(3,0)C .(0,5)D .(5,0)2.点C 到x 轴的距离为1,到y 轴的距离为3,且在第三象限,则C 点坐标是 __ 三、自我测试1. (1)假如你想让你的同学在看不到图形的情况下,准确地画出如图所示小船图案,你怎样来描述 (2)计算图中小船图案面积yx1234–1–2–3–41234–1–2–3–4O2. 建立一个平面直角坐标系,.用坐标表示图中各点的位置四、应用与拓展1.已知点A(-4,2),点B(3,2),那么A、B的直线与坐标轴有的位置关系是______________________________________________________.2. 已知点C(2,-4),点D(2,3),那么C、D的直线与坐标轴有的位置关系是_______________________________________________________.五、反思与修正。
第11章平面直角坐标系教案教学设计11.1 平面内点的坐标 (1)第1课时平面直角坐标系 (1)第2课时坐标平面内的图形 (5)11.2 图形在坐标系中的平移 (8)章末复习 (12)11.1 平面内点的坐标第1课时平面直角坐标系【知识与技能】理解和掌握平面直角坐标系的有关知识,领会其特征.【过程与方法】经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台.【情感与态度】认识直角坐标系的作用,体现现实生活中的坐标的应用价值,激发学习的兴趣.【教学重点】重点是认识直角坐标系,感受有序实数对的应用.【教学难点】难点是对有序实数对的理解.一、创设情境,导入新知1.回顾交流.教师提问:什么叫做数轴?实数与数轴建立了怎样的关系?学生思考后回答:(1)规定了原点、正方向、单位长度的直线叫做数轴.(2)数轴上的点同实数建立了一一对应的关系.教师引申:实际上这个实数可以称为这个点在数轴上的坐标.【教学说明】学生通过思考问题,复习旧知识,为新知识建立铺垫.2.问题提出.提问:请同学们观看屏幕投影片,你发现了什么?投影显示有关有序实数对的情境.【情境1】我们都有过去电影院看电影的经历.大家知道,影剧院对所有观众的座位都按“几排几号”编号,以便确定每一个座位在剧院中的位置,这样观众就能根据入场券上的“排数”和“号数”准确地“对号入座”.学生活动:通过观察,发现了电影院中的“几排几号”是有序实数对.【情境2】请以下座位的同学今天放学后参加英语口语测试:(1, 4),(2, 3),(5, 4),(2, 2),(5, 7).【教学说明】教师在学生回答的基础上,进一步引导学生从中发现数学问题:确定一个位置需要两个数据,体会认识有序实数对的重要性.二、建立表象,数形结合新知探究:平面直角坐标系相关概念小明:音乐喷泉在中山北路西边50米,北京西路北边100米.小丽能根据小明的提示从图中用“·”标出音乐喷泉的位置吗?思考:1.确定平面上一点的位置需要什么条件?2.既然确定平面上一点的位置需要两个数,那么能否用两条数轴建立模型来表示平面上任一点的位置呢?【教学说明】教师在学生回答的基础上,边操作边讲出:为了确定平面上一个点的位置,我们可以在平面内画两条互相垂直、原点重合的数轴,这样就组成平面直角坐标系.确定水平的数轴称为x轴(横轴),习惯上我们取向右为正方向;竖直的数轴称为y轴(纵轴),取向上方向为正方向;两轴交点为原点,这样就形成了坐标平面.有了坐标平面,平面内的点就可以用一个有序实数对来表示.引导观察:如下图中点P可以这样表示:由P向x轴作垂线,垂足M在x轴上的坐标是-2,点P向y轴作垂线,垂足N在y轴的坐标是3,于是就说点P的横坐标是-2,纵坐标是3,把横坐标写在纵坐标前面记作(-2, 3),即P点坐标(-2, 3).引导练习:写出点A、B、C的坐标.学生相互交流,得出正确答案.(强调点的坐标的有序性和正确规范书写)教师提问:请同学们想一想:原点O的坐标是什么?x轴和y轴上的点坐标有什么特点?学生观察发现:O的坐标(0, 0),x轴上的点纵坐标为0,y轴上的点横坐标为0.三、运用新知,深化理解1.(广西北海中考)在平面直角坐标系中,点M(-2,1)在()A.第一象限B.第二象限C.第三象限D.第四象限2.在平面直角坐标系中,若点P(a-3,a+1)在第二象限,则a的取值范围为()A.-1<a<3B.a>3C.a<-1D.a>-13.如图为九嶷山风景区的几个景点的平面图,以舜帝陵为坐标原点,建立平面直角坐标系,则玉王宫岩所在位置的坐标为.4.写出图中点A、B、C、D、E、F的坐标.(注:每小格的长度代表单位“1”.)【教学说明】通过新课的讲解以及学生的练习,充分做到讲练结合,让学生更好巩固新知识.通过本环节的讲解与训练,让学生对利用新知识解决一些简单问题有了更加明确的认识,同时也尽量让学生明白知识点不是孤立的,需要前后联系,才能更好地处理一些新问题.【参考答案】1.B2.A3.(2, 4)4.解:A(-3, -2),B(-5, 4),C(4, -4),D(0, -3),E(2, 5),F(-3, 0).四、师生互动,课堂小结本节课我们学习了平面直角坐标系.学习本节我们要掌握以下三方面的知识内容:1.能够正确画出直角坐标系.2.能在直角坐标系中,根据坐标找出点,由点求出坐标.坐标平面内的点和有序实数对是一一对应的.3.掌握象限内、x轴及y轴上点的坐标的特征:第一象限:(+,+)第二象限:(-,+)第三象限:(-,-)第四象限:(+,-);x轴上的点的纵坐标为0,表示为(x, 0);y轴上的点的横坐标为0,表示为(0, y).4.通过这节课的学习,你还有哪些疑惑,大家交流.【教学说明】引导学生自己小结本节课的知识要点及数学方法,从而将本节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.1.课本第5页练习1、2、3.2.完成练习册中相应的作业.基于本节课内容的特点和学生的心理及思维发展的特征,在教学中选择激趣法、讨论法和总结法相结合.通过学习使学生理解和掌握平面直角坐标系的有关知识,领会其特征,经历现实生活中有关有序实数对的例子,让学生充分体会平面直角坐标系是构建有序实数对的平台,体会现实生活中的坐标的应用价值,激发学习的兴趣.第2课时坐标平面内的图形【知识与技能】充分应用平面上点的坐标的有关知识,进一步认识坐标系中的图形.【过程与方法】经历由坐标描点,绘制图形,让学生体会数学之生动美感.【情感与态度】培养学生合作交流意识和探索精神,体验数、符号是描述现实世界的重要手段.【教学重点】重点是理解平面直角坐标形成的图形.【教学难点】难点是对平面上点的坐标的理解.一、回顾交流,检测所学1.在平面直角坐标系中,标出下列各点:(1)点A在y轴上,位于原点上方,距离原点2个单位的长度;(2)点B在x轴上,位于原点右侧,距离原点1个单位的长度;(3)点C在x轴上方,y轴右侧,距离每条坐标轴都是2个单位的长度;(4)点D在x轴上方,位于原点右侧,距离原点3个单位长度;(5)点E在x轴上方,y轴右侧,距离x轴2个单位长度,距离y轴4个单位长度,依次连接这些点,你能得到什么图形?2.在平面直角坐标系中选择一些横、纵坐标满足下面条件的点,标出它们的位置,看看它们在第几象限.(1)点M(x, y)的坐标xy<0;(2)点M(x, y)的坐标xy=0;(3)点M(x, y)的坐标xy>0.【教学说明】将上节知识点进行很好的回顾以加深学生的印象,同时使知识系统化.二、范例学习,理解新知例1在平面直角坐标系中描出下列各组点,并将各组内的点用线段顺次连接起来,说说你得到了什么图形,并计算它们的面积.(1)A(5, 2),B(2, 2),C(2,-2).(2)A(-1,2),B(-2,-1),C(2,-1),D(3, 2).【解】(1)得到的是一个直角三角形,如图①,它的面积是12×3×4=6.(2)得到的是一个平行四边形,如图②,它的面积是4×3=12.【教学说明】教师给出规范解答步骤,学生模仿,便于今后在解决数学问题时有章可循.例2 如图(1),正方形ABCD的边长为4,请建立一个平面直角坐标系,并写出四边形的四个顶点A,B,C,D在这个平面直角坐标系中的坐标.【解】如图(2),以顶点A为原点,AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系.此时,正方形的四个顶点A,B,C,D的坐标分别为:A(0,0),B(4,0),C(4,4),D(0,4).教师提问:你还能另建立一个平面直角坐标系吗?并写出A、B、C、D坐标.【教学说明】此题可以另建立平面直角坐标系,培养学生一题多解,从不同角度分析问题的习惯.三、运用新知,深化理解1.一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1),(-1, 2),(3,-1),则第四个顶点的坐标为()A.(2, 2)B.(3, 2)C.(3, 3)D.(2, 3)2.如图在正方形网格中,若A(1, 1),B(2, 0),则C点的坐标为()A.(-3,-2)B.(3,-2)C.(-2,-3)D.(2,-3)。
第11章 平面直角坐标系11.1 平面内点的坐标第1课时 平面直角坐标系及点的坐标1.理解平面直角坐标系以及横轴、纵轴、原点、坐标等概念,认识并能画出平面直角坐标系;2.理解各象限内及坐标轴上的点的坐标的特征;(重点)3.会用象限或坐标轴说明直角坐标系内点的位置,能根据点的位置确定横、纵坐标的符号.(难点)一、情境导入我们已经学过了数轴,知道数轴上的点与实数一一对应,在建立了数轴之后,我们就可以确定直线上点的位置,如图.那么,如何确定平面内点的位置呢?二、合作探究探究点一:认识平面直角坐标系如图所示,点A 、点B 所在的位置是()A .第二象限,y 轴上B .第四象限,y 轴上C .第二象限,x 轴上D .第四象限,x 轴上解析:根据点在平面直角坐标系中的位置来判定.点A 在第四象限,点B 在x 轴正半轴上.故选D.方法总结:两坐标轴上的点不属于任何一个象限,象限是按逆时针方向排列的.探究点二:各象限内及坐标轴上的点的坐标的特征【类型一】 已知点的坐标判断点所在的象限设点M(a,b)为平面直角坐标系内的点.(1)当a>0,b<0时,点M位于第几象限?(2)当ab>0时,点M位于第几象限?(3)当a为任意有理数,且b<0时,点M位于第几象限?解析:(1)横坐标为正,纵坐标为负的点在第四象限;(2)由ab>0知a,b同号,则点M 在第一或第三象限;(3)b<0,则点M在x轴下方.解:(1)点M在第四象限;(2)可能在第一象限(a>0,b>0)或者在第三象限(a<0,b<0);(3)可能在第三象限(a<0,b<0)或者第四象限(a>0,b<0)或者y轴负半轴上.方法总结:熟记各象限内点的坐标的符号特征:(+,+)表示第一象限内的点,(-,+)表示第二象限内的点,(-,-)表示第三象限内的点,(+,-)表示第四象限内的点.【类型二】根据点所在的象限求字母的取值范围在平面直角坐标系中,点P(m,m-2)在第一象限内,则m的取值范围是________.解析:根据第一象限内点的坐标的符号特征,横坐标为正,纵坐标为正,可得关于m的一元一次不等式组⎩⎪⎨⎪⎧m>0,m-2>0.解得m>2.故答案为m>2.方法总结:求点的坐标中字母的取值范围的方法:根据各个象限内点的坐标的符号特征,列出关于字母的不等式或不等式组,解不等式或不等式组即可求出相应字母的取值范围.【类型三】坐标轴上点的坐标特征点A(m+3,m+1)在x轴上,则A点的坐标为( )A.(0,-2) B.(2,0)C.(4,0) D.(0,-4)解析:点A(m+3,m+1)在x轴上,根据x轴上点的坐标特征知m+1=0,求出m的值代入m+3中即可.故选B.方法总结:坐标轴上的点的坐标特点:x轴上的点的纵坐标为0,y轴上的点的横坐标为0.根据点所在坐标轴确定字母取值,进而求出点的坐标.【类型四】由点到坐标轴的距离确定点的位置已知点P到x轴的距离为2,到y轴的距离为1.如果过点P作两坐标轴的垂线,垂足分别在x轴的正半轴上和y轴的负半轴上,那么点P的坐标是( ) A.(2,-1) B.(1,-2)C.(-2,-1) D.(1,2)解析:由点P到x轴的距离为2,可知点P的纵坐标的绝对值为2,又因为垂足在y轴的负半轴上,则纵坐标为-2;由点P到y轴的距离为1,可知点P的横坐标的绝对值为1,又因为垂足在x轴的正半轴上,则横坐标为1.故点P的坐标是(1,-2).故选B.方法总结:本题的易错点有三处:①混淆距离与坐标之间的区别;②不知道与“点P 到x轴的距离”对应的是纵坐标,与“点P到y轴的距离”对应的是横坐标;③忽略坐标的符号出现错解.若本例题只已知距离而无附加条件,则点P的坐标有四个.【类型五】已知点的坐标在坐标系中描点在如图的直角坐标系中描出下列各点:A (4,3),B (-2,3),C (-4,-1),D (2,-3).解析:本题关键就是已知点的坐标,如何描出点的位置,以描点B (-2,3)为例,即在x 轴上找到坐标-2,过-2对应的点作x 轴的垂线,再在y 轴上找到坐标3,过3对应的点作y 轴的垂线,与前垂线的交点即为B (-2,3),同理可描出其他三个点.解:如图所示:方法总结:在直角坐标系中描出点P (a ,b )的方法:先在x 轴上找到数a 对应的点M ,在y 轴上找到数b 对应的点N ,再分别由点M 、点N 作x 轴、y 轴的垂线,两垂线的交点就是所要描出的点P .已知坐标平面上的点的坐标,描出对应点的位置,反过来在坐标平面上给一点,找出它对应的坐标,熟练掌握平面直角坐标系是解题的关键.三、板书设计平面直角坐标系及点的坐标⎩⎪⎨⎪⎧定义:原点、坐标轴点的坐标⎩⎪⎨⎪⎧定义与符号特征点的坐标的确定描点通过平面直角坐标系的有关内容的学习,反映平面直角坐标系与现实世界的密切联系,让学生认识数学与人类生活的密切联系和对人类历史发展的作用,提高学生参加数学学习的积极性.第2课时 坐标平面内的图形1.在给定的直角坐标系中,会根据坐标描出点的位置,并能求出顺次连接所得图形的面积;(重点)2.能建立适当的直角坐标系,描述图形的位置;(难点)3.通过用直角坐标系表示图形的位置,使学生体会平面直角坐标系在实际问题中的应用.一、情境导入某小区里有一块如图所示的空地,打算进行绿化,小明想请他的同学小慧提一些建议,小明要在电话中告诉小慧同学如图所示的图形,为了描述清楚,他使用了直角坐标系的知识.你知道小明是怎样叙述的吗?二、合作探究探究点一:在坐标平面内描点作图在平面直角坐标系中(每个小方格的边长为单位1)描出下列各点,并将各点用线段依次连接起来:A (0,2),B (-1,-2),C (2,0),D (-2,0),E (1,-2),A (0,2);观察得到的图形,你觉得它的形状像什么?解析:根据网格结构找出各点的位置,然后顺次连接即可.解:如图所示,形状像五角星.方法总结:本题考查了坐标与图形性质,在平面直角坐标系中准确找出各点的位置是解题的关键.探究点二:坐标平面内图形面积的计算如图,已知点A(2,-1),B(4,3),C(1,2),求△ABC的面积.解析:本题宜用补形法.过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F,然后根据S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA即可求出△ABC的面积.解:本题宜用补形法.如图,过点A作x轴的平行线,过点C作y轴的平行线,两条平行线交于点E,过点B分别作x轴、y轴的平行线,分别交EC的延长线于点D,交EA的延长线于点F.∵A(2,-1),B(4,3),C(1,2),∴BD=3,CD=1,CE=3,AE=1,AF=2,BF=4,∴S△ABC=S长方形BDEF-S△BDC-S△CEA-S△BFA=BD·DE-12DC·DB-12CE·AE-12AF·BF=12-1.5-1.5-4=5.方法总结:主要考查如何利用简单方法求坐标系中图形的面积.已知三角形三个顶点坐标,求三角形面积通常有三种方法:方法一:直接法,计算三角形一边的长,并求出该边上的高;方法二:补形法,将三角形面积转化成若干个特殊的四边形和三角形的面积的和与差;方法三:分割法,选择一条恰当的直线,将三角形分割成两个便于计算面积的三角形.探究点三:建立适当的直角坐标系描述图形的位置【类型一】根据点的坐标确定直角坐标系右图是一个围棋棋盘(局部),把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),则黑棋❷的坐标是________.解析:由已知白棋①的坐标是(-2,-1),白棋③的坐标是(-1,-3),可知y轴应在从左往右数的第四条格线上,且向上为正方向,x轴在从上往下数第二条格线上,且向右为正方向,这两条直线的交点为坐标原点,由此可得黑棋②的坐标是(1,-2).故答案为(1,-2).方法总结:根据点的坐标确定平面直角坐标系时,先将点的坐标进行上下左右平移得到原点的坐标,过这个点的水平线为x 轴、铅直线为y 轴.【类型二】根据几何图形建立直角坐标系并求点的坐标长方形的两条边长分别为4,6,建立适当的直角坐标系,使它的一个顶点的坐标为(-2,-3).请你写出另外三个顶点的坐标.解析:以点(-2,-3)向右2个单位,向上3个单位建立平面直角坐标系,然后画出长方形,再根据平面直角坐标系写出各点的坐标即可.解:如图建立直角坐标系,∵长方形的一个顶点的坐标为A (-2,-3),∴长方形的另外三个顶点的坐标分别为B (2,-3),C (2,3),D (-2,3).方法总结:由已知条件正确确定坐标轴的位置是解决本题的关键,当建立的直角坐标系不同,其点的坐标也就不同,但要注意,一旦直角坐标系确定以后,点的坐标也就确定了.三、板书设计坐标平面内的图形⎩⎪⎨⎪⎧在坐标平面内描点作图坐标平面内图形面积的计算建立适当的直角坐标系描述图形的位置通过学习建立直角坐标系的多种方法,让学生体验数学活动充满着探索性与创造性,激发学生的学习兴趣,感受数学在生活中的应用,增强学生的数学应用意识,让学生认识数学与人类生活的密切联系,提高他们学习数学的兴趣.11.2 图形在坐标系中的平移1.使学生掌握平面直角坐标系中的点或图形平移引起的点的坐标的变化规律;(重点、难点)2.使学生看到平面直角坐标系是数与形之间的桥梁,感受到代数与几何的相互转化,初步建立空间观念.一、情境导入同学们会下棋吗?棋子的移动,什么在变,什么不变?那么在棋盘上推动棋子是否可以看成图形在平面上的平移?二、合作探究探究点一:平面直角坐标系中点的平移将点(1,2)向左平移1个单位,再向下平移2个单位后得到对应点的坐标是________.解析:向左平移1个单位,横坐标减1,向下平移2个单位,纵坐标减2,于是点(1,2)变为(0,0).故答案为(0,0).方法总结:根据平移前后图形的坐标关系:①上加下减(纵坐标变化),左减右加(横坐标变化).②正加负减,即向x (y )轴正方向平移,横(纵)坐标增加;负方向平移,横(纵)坐标减小.探究点二:平面直角坐标系中图形的平移【类型一】已知平移方向与距离,确定平移后图形的位置如图,将三角形ABC 先向下平移5个单位,再向左平移3个单位得到三角形A ′B ′C ′,求三角形A ′B ′C ′的顶点坐标,并画出三角形A ′B ′C ′.解析:按照点的平移规律求出平移后点的坐标,向下平移5个单位,即横坐标不变,纵坐标减5;向左平移3个单位,即纵坐标不变,横坐标减3,再画出图形即可.解:用箭头表示平移,则有:A (3,5)→(3,0)→A ′(0,0),B (0,3)→(0,-2)→B ′(-3,-2),C (2,0)→(2,-5)→C ′(-1,-5).画出三角形A ′B ′C ′如上图.方法总结:画平移后的图形,应先求出平移后各关键点的坐标,再描点连线即可.【类型二】由坐标的变化确定平移过程在如图所示的平面直角坐标系内,画在透明胶片上的平行四边形ABCD ,点A 的坐标是(0,2).现将这张胶片平移,使点A 落在点A ′(5,-1)处,则此平移可以是( )A .先向右平移5个单位,再向下平移1个单位B .先向右平移5个单位,再向下平移3个单位C .先向右平移4个单位,再向下平移1个单位D .先向右平移4个单位,再向下平移3个单位解析:由点A (0,2)变化到点A ′(5,-1)知横纵坐标的变化规律,可得出平移方向与距离,即由横坐标加5,纵坐标减3,得出此平移可以是先向右平移5个单位,再向下平移3个单位.故答案为B.方法总结:①可用排除法,对照备选选项,逐一分析,选择出正确答案.②由坐标定平移口诀:坐标变化定平移,横变纵定左右移,横坐标变大向右移,纵变横定上下移,纵坐标变大向上移,横变纵变两次移.③左右(上下)平移的距离,就是平移前后两点横(纵)坐标差的绝对值.三、板书设计图形在坐标系中的平移⎩⎪⎨⎪⎧沿x 轴平移⎩⎪⎨⎪⎧纵坐标不变横坐标加上一个正数⇔向右平移横坐标减去一个正数⇔向左平移沿y 轴平移⎩⎪⎨⎪⎧横坐标不变纵坐标加上一个正数⇔向上平移纵坐标减去一个正数⇔向下平移本节课的教学过程中,无论是从情境中引入,还是对新知的探究及拓展,始终在努力调动学生学习的积极性.通过探究归纳出点或图形的平移引起的点的坐标的变化规律,积累数学活动经验,提高学生科学思维素养;体验数学活动充满探索性与创造性,激发学生学习数学的兴趣,使学生经历数学思维过程获得成功体验.。
八年级数学上册导学案目录11.1 第1课时平面直角坐标系及点的坐标11.1 第2课时坐标平面内的图形11.2 图形在坐标系中的平移12.1 第1课时变量与函数12.1 第2课时函数的表示方法12.2 第1课时正比例函数的图象和性质12.2 第2课时一次函数的图象和性质12.2 第3课时用待定系数法求一次函数的解析式12.2 第4课时一次函数的应用——分段函数12.2 第5课时一次函数的应用——方案决策12.2 第6课时一次函数与一元一次方程、一元一次不等式12.3 一次函数与二元一次方程12.4 综合与实践一次函数模型的应用13.1.1 三角形中边的关系13.1.2 三角形中角的关系13.1.3 三角形中几条重要线段13.2 第1课时命题13.2 第2课时证明13.2 第3课时三角形内角和定理的证明及推论1、213.2 第4课时三角形的外角14.1 全等三角形14.2.1 两边及其夹角分别相等的两个三角形14.2.2 两角及其夹边分别相等的两个三角形14.2.3 三边分别相等的两个三角形14.2.4 其他判定两个三角形全等的条件14.2.5 两个直角三角形全等的判定14.2.6 全等三角形的判定方法的综合运用15.1 第1课时轴对称图形与轴对称15.1 第2课时平面直角坐标系中的轴对称15.2 线段的垂直平分线15.3 第1课时等腰三角形的性质定理及推论15.3 第2课时等腰三角形的判定定理及推论15.3 第3课时直角三角形中30°角的性质定理15.4 第1课时角平分线的尺规作图15.4 第2课时角平分线的性质及判定第11章平面直角坐标系11.1 平面内点的坐标第1课时平面直角坐标系及点的坐标学习目标:1.认识平面直角坐标系、原点、横轴、纵轴和象限;会由点写出坐标,由坐标描点.2.能正确画出平面直角坐标系,经历由点写出坐标,由坐标描点,体会数形结合的数学思想.学习重点:正确认识直角坐标系,会准确地由点写出坐标,由坐标描点.学习难点:平面内点的坐标的有序性.☆自主学习☆一、链接:1.什么叫数轴?它有哪三要素?实数与数轴有怎样的关系?2.请你试着画一条数轴,并把下列各数在数轴上表示出来.﹣4,0.3,,,0,﹣0.3…(表示2, 的点可以近似标出)二、导读:认真阅读课本,解答下面的问题:1.你的班级里面的座位,如果以前后为排数,左右为列数,那么你的座位是在第排第列;那么教室中吴小明的座位是在第排第列;王健的座位是在第排第列.思考:确定一个点在直线上的位置,只需一个数据,确定平面内一个点的位置需要什么条件?2.平面直角坐标系的概念:在平面内画的数轴,水平的数轴叫或,取向为正方向;垂直的数轴叫或,取向为正方向;两轴交点O为。
《平面直角坐标系》导学案
教学思路
(纠错栏)
第十一章平面直角坐标系(复习课)
复习目标:
1.知识与技能:掌握平面直角坐标系的概念和有关知识,会在坐标系中描出点的位置,
同时会由点的位置写出它的坐标。
2.过程与方法:经历探究平面直角坐标系的过程,掌握物体位置的描述,以及与坐标
相对应的图形及变化规律。
3.情感态度与价值观:发展学生“从数探形”以及“由形索数”的思维,激发学生“再
创造”的潜力,使学生对数行结合思想有着更深刻的理解。
复习重点:直角坐标系的实际应用。
复习难点:坐标对称及图形的平移变化问题,直角坐标系中的图形面积计算问题。
☆知识系统回顾☆
1.平面直角坐标系是由构成的.
2.平面直角坐标系中的点与有序实数对(x,y).
3.坐标轴把坐标平面分为__ _个象限,________上的点,不属于任何一个象限.填空:
点的位置横坐标符号纵坐标符号
第一象限
第二象限
第三象限
第四象限
在x轴上在正半轴上在负半轴上
在y轴上在正半轴上
在负半轴上
4.在平面直角坐标系中,把图形向左右平移,点的坐标不变;
向上下平移,点的坐标不变;
所得图形与原图形相比.
☆知识整合提升☆
例1.点P到x轴的距离是2,到y轴的距离是3,且在y轴的左侧。
(1)到x轴距离为2的点有多少?假如能把它们画完,这些点组成什么样的图形?(2)到y轴距离为3的点有多少?假如能把它们画完,这些点组成什么样的图形?(3)根据题目中的已知条件(所求点在y轴左侧)能求得P的坐标吗?
教学思路(纠错栏)例2.如图,已知三角形ABCD中点A(1,2),B(3,5),C(4,3),小张同学在画完图后不小心把坐标轴给擦掉了,请你帮他画出x轴,y轴及原点,并计算三角形ABC 的面积.
☆达标检测☆
一、选择题
1.已知坐标平面内点A(m,n)在第四象限,那么点B(n,m)在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
2.三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()
A、(2,2)(3,4)
B、(3,4)(1,7)
C、(-2,2)(1,7)
D、(3,4)(2,-2)
3.一个长方形在平面直角坐标系中三个顶点的坐标为(–1,–1)、(–1,2)、(3,– 1),则第四个顶点的坐标为()
A、(2,2)
B、(3,2)
C、(3,3)
D、(2,3)
二、填空题
4.直角坐标系中,第四象限内的点M到x轴的距离为3,到y轴的距离为2, 则点M的坐标是________.
5.已知点P在第二象限,且横坐标与纵坐标的和为1,试写出一个符合条件的点P ;点K在第三象限,且横坐标与纵坐标的积为8,写出两个符合条件的点 .
三、如图,四边形ABCD各个顶点的坐标分别为(-2,8),(-11,6),(-14,0),(0,0). (1)确定这个四边形的面积,你是怎么做的?
(2)如果把原来ABCD各个顶点纵坐标保持不变,横坐标都增加2,所得的四边形
面积又是多少?
B
C
A。