全长cDNA的获得_RACE及其他方法进展
- 格式:pdf
- 大小:345.33 KB
- 文档页数:5
RACE的简介目前,全长基因的获得是生物工程及分子生物学研究的一个重点。
尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。
近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速获得全长cDNA提供了一个便捷的途径。
cDNA 末端快速扩增(rapid amplification of cDNA ends,RACE)技术是一种基于mRNA反转录和PCR技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。
简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。
因此近年来RACE技术已逐渐取代了经典的cDNA文库筛选技术,成为克隆全长cDNA序列的常用手段。
第二RACE的原理RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 又被称为锚定PCR (anchoredPCR)和单边PCR(one2side PCR)。
3’RACE的原理一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。
这样就在未知cDNA末端接上了一段特殊的接头序列。
再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA退火并延伸,产生互补的第二链(+)cDNA。
三)利用3amp和接头引物进行PCR循环即可扩增得到cDNA双链。
扩增的特异性取决于3amp的碱基只与目的cDNA分子互补.而用接头引物来取代dT17一adaptor则可阻止长(dT)碱基引起的错配。
获得真核生物cDNA全长★miRNA(金币+1):请按照版规发贴!!!以后不要求一律清除,请修改!【资源】获得真核生物cDNA全长1.获得真核生物cdna全长总的思路分离基因一般就从中心法则dna、rna、蛋白质的三个层次入手做工作。
随生物信息学的发展,电脑克隆基因也称为新兴的技术。
从题目获得全长cdna的要求上讲,即使上述几个途径得到的是基因片断,现有的途径也是可以完成cdna 全长的获得的(如下图示)。
因此,cdna全长的获得是技术上可以解决的问题,而目的基因的寻找,特别是未知功能的基因的克隆是比较关键的问题,下面就基因克隆的方法做一简要介绍:2.基因克隆的方法简介2-1.基因克隆的方法策略选择原则从表3中可见分离克隆基因基本上有三种类型:即三中不同的条件,可根据欲克隆的目的基因选择条件选择相应的方法。
类型i已知基因的序列(1)已知dna序列,包括三种情况,一是已知目的基因的dna全部或部分dna序列(与题目要求略有出入);二是已知其它物种的同类基因的dna序列(功能可能已知,与题目要求略有出入);三是已知目的基因cdna全部或部分序列(属于题目要求已达到的类型)。
(2)已知目的基因表达产物蛋白等序列。
在这两种情况下一般采用pcr技术或探针分子杂交技术分离克隆目的基因。
类型ii已有基因图位或标记,转座子等条件,分别可采用转座子标签法、t-dna标签法及图位克隆技术进行分离克隆目的基因。
类型iii为止目的基因序列(1)差异表达序列,即目的基因表达具有组织、器官等时空差异性。
可以采用随机引物多态性扩增技术,定向引物扩增技术和ddrt-pcr、ssh-pcr、rap-pcr、dna-rda、cdna捕捉法等进行克隆。
(2)无差异表达的目的基因,可采用文库筛选法、功能蛋白分离法即直接测须发等进行,是难度较大较繁琐的策略。
从基因分离克隆的方法进行分类可分为三类:一种类型是功能克隆,即根据已知基因的产物推断出其相应核苷酸序列,再根据此序列合成寡聚核苷酸探针。
RACE 的简介目前,全长基因的获得是生物工程及分子生物学研究的一个重点。
尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA 通过转录获得全长cDNA 很困难。
近年来发展成熟的cDNA 末端快速扩增(RACE)技术为从低丰度转录快速获得全长cDNA 提供了一个便捷的途径。
cDNA 末端快速扩增 (rapid amplification of cDNA ends,RACE)技术是一种基于 mRNA 反转录和 PCR 技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。
简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA 简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。
因此近年来RACE 技术已逐渐取代了经典的cDNA 文库筛选技术,成为克隆全长 cDNA 序列的常用手段。
第二 RACE 的原理RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’ 末端,是一种简便而有效的方法,又被称为锚定PCR (anchoredPCR)和单边 PCR(one2side PCR)。
3’RACE 的原理一)加入 oligo(dT)17 和反转录酶对 mRNA 进行反转录得到(-)cDNA;二)以 oligo(dT)l7 和一个 35bp 的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组 DNA 中罕见的限制酶的酶切位点。
这样就在未知cDNA 末端接上了一段特殊的接头序列。
再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA 退火并延伸,产生互补的第二链(+)cDNA。
三)利用 3amp 和接头引物进行 PCR 循环即可扩增得到 cDNA 双链。
扩增的特异性取决于 3amp 的碱基只与目的 cDNA 分子互补.而用接头引物来取代 dT17 一 adaptor 则可阻止长(dT)碱基引起的错配。
RACE技术第一 RACE的简介目前,全长基因的获得是生物工程及分子生物学研究的一个重点。
尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。
近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速获得全长cDNA提供了一个便捷的途径。
cDNA 末端快速扩增(rapid amplification of cDNA ends,RACE)技术是一种基于mRNA 反转录和PCR技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。
简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。
因此近年来RACE技术已逐渐取代了经典的cDNA文库筛选技术,成为克隆全长cDNA序列的常用手段。
随着分子生物学技术的发展,科学家结合其他不同的分子生物学技术对最初的RACE 技术进行了改进,从而丰富了RACE技术的类型。
目前使用的RACE技术包括:经典RACE、Adapter Ligated RACE、RLM-RACE、Cap-switching RACE、环形RACE、RAC-RACE和T-RACE等等,但没有一种RACE技术适合克隆所有类型的RNA。
因此,本文将通过介绍各种RACE技术的发展、原理及应用,比较认识各种RACE技术的优缺点,并对RACE的前景进行讨论。
第二RACE的原理1.经典RACERACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 又被称为锚定PCR (anchoredPCR)和单边PCR(one2side PCR)。
①3’RACE的原理一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。
RACE的简介目前,全长基因的获得是生物工程及分子生物学研究的一个重点。
尽管已经有多种方法可以获得基因的全长序列,但在很多生物研究中,由于所研究的目的基因丰度较低,从而使得由低丰度mRNA通过转录获得全长cDNA很困难。
近年来发展成熟的cDNA末端快速扩增(RACE)技术为从低丰度转录快速获得全长 cDNA 提供了一个便捷的途径。
cDNA 末端快速扩增 (rapid amplification of cDNA ends,RACE)技术是一种基于mRNA反转录和 PCR技术建立起来的、以部分的已知区域序列为起点,扩增基因转录本的未知区域,从而获得mRNA(cDNA)完整序列的方法。
简单的说就是一种从低丰度转录本中快速增长cDNA5’和cDNA3’末端,进而获得获得全长cDNA简单而有效的方法,该方法具有快捷、方便、高效等优点,可同时获得多个转录本。
因此近年来RACE技术已逐渐取代了经典的cDNA文库筛选技术,成为克隆全长cDNA序列的常用手段。
第二 RACE的原理RACE 是采用PCR 技术由已知的部分cDNA 顺序来扩增出完整cDNA5’和3’末端,是一种简便而有效的方法, 又被称为锚定 PCR (anchoredPCR)和单边PCR(one2side PCR)。
3’RACE的原理一)加入oligo(dT)17和反转录酶对mRNA进行反转录得到(-)cDNA;二)以oligo(dT)l7和一个35bp的接头(dT17-adaptor)为引物,其中在引物的接头中有一在基因组DNA中罕见的限制酶的酶切位点。
这样就在未知cDNA末端接上了一段特殊的接头序列。
再用一个基因特异性引物(3 amp)与少量第一链(-)cDNA退火并延伸,产生互补的第二链(+)cDNA。
三)利用3amp和接头引物进行PCR循环即可扩增得到cDNA双链。
扩增的特异性取决于3amp的碱基只与目的cDNA分子互补.而用接头引物来取代dT17一adaptor则可阻止长(dT)碱基引起的错配。
RACE(rapid-amplificationofcDNAends)是通过PCR进行cDNA末端快速克隆的技术。
cDNA完整序列的获得对基因结构、蛋白质表达、基因功能的研究至关重要。
完整的cDNA序列可以通过文库的筛选和末端克隆技术获得。
末端克隆技术是20世纪80年代发展起来的。
编辑本段优点与筛库法相比较,有许多方面的优点1)此方法是通过PCR技术实现的,无须建立cDNA文库,可以在很短的时间内获得有利用价值的信息。
2)节约了实验所花费的经费和时间。
3)只要引物设计正确,在初级产物的基础上可以获得大量的感兴趣基因的全长。
实验室现有的RACE试剂盒的简介RACE是一种从一个相同的cDNA模板进行5‘和3‘末端快速克隆的方法。
此方法会产生较少的错误条带。
此过程中使用的酶混合物非常适合长链PCR。
使用此方法的要求是必须知道至少23-28个核苷酸序列信息,以此来设计5’末端和3‘末端RACE反应的基因特异性引物(GSPs)。
编辑本段引物的设计基因特异性引物(GSPs)应该是:23-28nt50-70%GCTm值≥65度,Tm值≥70度可以获得好的结果需要实验者根据已有的基因序列设计5‘和3‘RACE 反应的基因特异性引物(GSP1和GSP2).由于两个引物的存在,PCR的产物是特异性的。
编辑本段反应中涉及到的一些事项cDNA的合成起始于polyA+RNA。
如果使用其它的基因组DNA或总RNA,背景会很高。
RACEPCR的效率还取决于总的mRNA中目的mRNA的量和不同的引物有不同的退火和延伸温度。
在进行5‘和3’RACEPCR的时候应该使用热启动。
表4中给出了所有引物的相互关系。
重叠引物的设计会对全长的产生有帮助。
另外,重叠的引物可以为PCR 反应提供一个对照。
并不是绝对的要利用设计的引物产生重叠片段。
引物GSP中的GC含量要在50-70%之间。
这样可以使用降落PCR。
避免使用自身互补性的引物序列,否则会产生回折和形成分子内氢键。
CDNA末端快速扩增技术(RACE)简介CDNA末端快速扩增技术(RACE)是一种利用PCR技术从低丰度的转录本中快速获取CDNA的5’和3’末端序列的方法。
这种方法的优点是简单、快速、廉价,可以用于研究基因的结构和表达。
RACE技术有两种主要类型,分别是3-RACE和5-RACE,分别用于扩增CDNA的3’和5’末端序列。
3-RACE原理和步骤3-RACE原理是利用mRNA的3’末端的poly (A)尾巴作为一个引物结合位点,用一个带有SMART序列的通用接头引物Oligo(dT) 30MN作为锁定引物,反转录合成第一链cDNA。
然后用一个基因特异引物GSP1作为上游引物,用一个含有部分接头序列的通用引物UPM作为下游引物,以第一链cDNA为模板,进行PCR循环,把目的基因3’末端的DNA片段扩增出来。
3-RACE步骤如下:•从RNA样品中提取mRNA,并用Oligo(dT) 30MN作为锁定引物进行反转录反应,合成第一链cDNA。
•用GSP1和UPM作为引物进行第一轮PCR反应,扩增出包含目的基因3’末端序列和接头序列的片段。
•从第一轮PCR产物中纯化出目标片段,并用UPM和另一个靠近GSP1的内嵌引物GSP2进行第二轮PCR反应,扩增出更精确的目标片段。
•从第二轮PCR产物中纯化出目标片段,并进行克隆、测序和分析。
5-RACE原理和步骤5-RACE原理是先利用mRNA的3’末端的poly (A)尾巴作为一个引物结合位点,用oligo (dT) 30MN作为锁定引物,在反转录酶MMLV作用下,反转录合成第一链cDNA。
利用该反转录酶具有的未端转移酶活性,在反转录达到第一链的5’末端时自动加上3-5个(dC)残基,与含有SMART序列的Oligo (dG)通用接头引物配对后,继续延伸而连上通用接头。
然后用一个含有部分接头序列的通用引物UPM作为上游引物,用一个基因特异引物GSP2作为下游引物,以第一链cDNA为模板,进行PCR循环,把目的基因5’末端的cDNA片段扩增出来。