(完整版)第十二章实数单元测试卷
- 格式:docx
- 大小:19.68 KB
- 文档页数:5
1 第十一章 实数(A 卷)一、填空题(每空2分,共30分)1.一个正数的正的平方根叫做这个数的___________;2.任何正数的两个平方根的和等于___________;3.若492=x ,则x=___________;4. 9的平方根是___________;5.=532___________;6.0.0001的四次方根是___________;7.75-的绝对值是___________;8.23与32的大小关系是3_2__________23;9.已知42.371402=且3742.0=x ,则x=___________;10.22)11()11(-+-等于___________。
11.如果a 的平方根是a ,则=a _______;如果a 的算术平方根是a ,则=a _______.12.当a ≥0时,2a =______;当a <0时,2a =_______.13.请你观察、思考下列计算过程:因为121112=,所以11121=,同样,因为123211112=,所以11112321=…由此猜想76543211234567898=_________________.二、选择题(每题2分,共12分)1.下列各式中正确的是()A .749±=B .864-=-C .3)3(2-=-D .283-=-2.无理数是()。
A .带根号的数B .无限循环小数C .无限不循环小数D .开不尽方的数3.下列说法正确的是()。
A .4的算术平方根是±2B .3是9的算术平方根C .0.2是0.4的平方根D .2)2(-的平方根是-24.若22)5(-=a ,33)5(-=b ,则a+b 的所有可能值是()。
A .0B .-10C .0或-10D .0或10或-105、若0)2(1)3(22=-+++-z y x 则x+y+z 等于()。
A .-4B .0C .4D .不能确定6、若52+=x ,则642+-x x 的值等于()。
第十一章 实数(A 卷)一、填空题(每空2分,共30分)1.一个正数的正的平方根叫做这个数的___________;2.任何正数的两个平方根的和等于___________;3.若492=x ,则x=___________;4. 9的平方根是___________;5.=532___________;6.0.0001的四次方根是___________;7.75-的绝对值是___________;8.23与32的大小关系是3_2__________23;9.已知42.371402=且3742.0=x ,则x=___________; 10.22)11()11(-+-等于___________。
11.如果a 的平方根是a ,则=a _______;如果a 的算术平方根是a ,则=a _______.12.当a ≥0时,2a =______;当a <0时,2a =_______.13.请你观察、思考下列计算过程:因为121112=,所以11121=,同样,因为123211112=,所以11112321=…由此猜想76543211234567898=_________________.二、选择题(每题2分,共12分)1.下列各式中正确的是()A .749±=B .864-=-C .3)3(2-=-D .283-=-2.无理数是()。
A .带根号的数B .无限循环小数C .无限不循环小数D .开不尽方的数3.下列说法正确的是()。
A .4的算术平方根是±2B .3是9的算术平方根C .0.2是0.4的平方根D .2)2(-的平方根是-24.若22)5(-=a ,33)5(-=b ,则a+b 的所有可能值是()。
A .0B .-10C .0或-10D .0或10或-105、若0)2(1)3(22=-+++-z y x 则x+y+z 等于()。
A .-4B .0C .4D .不能确定6、若52+=x ,则642+-x x 的值等于()。
第十一章实数(A卷)一、填空题(每空2分,共30分)1 .一个正数的正的平方根叫做这个数的____________ ;2.____________________________________ 任何正数的两个平方根的和等于________________________________ ;3.若9X2=4,则x= ___________ ;4.______________________ 底的平方根是;5.______________ 532= ;6.__________________________ 0.0001的四次方根是;7._________________________ 45-47的绝对值是;8.______________________________ 342与243的大小关系是342 __________________________________ 243;9 .已知J1402 =37.42 且V X = 0.3742,贝H X= _______ ;10.__________________________ (-佑)2+J(-11)2等于_____________________________________ 。
11.如果a的平方根是a,则a = _______ ;如果a的算术平方根是a ,则 a = _______ .12.当a> 0 时,J a2= ______ ;当av 0 时,Ja2= _________ .13.请你观察、思考下列计算过程:因为112 =121 ,所以"21 =11,同样,因为1 1 1 = 1 232 1所以J12321 =111 …由此猜想J12345678987654321 = _______________________ .二、选择题(每题2分,共12分)1.下列各式中正确的是()A . 、49 = -7B . 、- 64 - -8 C. ■■:/(~3)2 = -3 D. 3-8 - -2(4)(4)______ 1(3) ,.(-2)6 83 -80 .27 - 1(64)3-(4)21 113. 下列说法正确的是()。
七年级数学《实数》基础练习题姓名______ ___ 班级_____ ___ 分数一、判断题1. 3是9的算术平方根 ( ) 2. 0的平方根是0 ( ) 3. (-2)2的平方根是2- ( ) 4. -0.5是0.25的一个平方根 ( ) 5. a 是a (a >0)的算术平方根 ( ) 6. 64的立方根是4± ( ) 7. -10是1000的一个立方根 ( ) 8. -7是-343的立方根 ( ) 9. 无理数也可以用数轴上的点表示出来 ( ) 10. 有理数和无理数统称实数 ( ) 二、选择题1.列说法正确的是( ) A 、41是5.0的一个平方根 B 、 正数有两个平方根,且这两个平方根之和等于0 C 、72的平方根是7 D 、负数有一个平方根 2.如果25.0=y ,那么y 的值是( )A 、0625.0B 、5.0-C 、5.0D 、5.0± 3.如果x 是a 的立方根,则下列说法正确的是( )A 、x -也是a 的立方根B 、x -是a -的立方根C 、x 是a -的立方根D 、等于3a 4.π、722、3-、3343、1416.3、3.0&可,无理数的个数是( ) A 、1个 B 、 2个 C 、 3个 D 、 4个 5.与数轴上的点建立一一对应的是( )A 、全体有理数B 、全体无理数C 、 全体实数D 、全体整数6.如果一个实数的平方根与它的立方根相等,则这个数是( )A 、0B 、正实数C 、0和1D 、1三、填空题1.填表:2.100的平方根是 ,10的算术平方根是 . 3.3±是 的平方根;3-是 的平方根;2)2(-的算术平方根是 .4.正数有 个平方根,它们 ; 0的平方根是 ;负数 平方根. 5.125-的立方根是 ,278的立方根是 , 32的五次方根是 ,16的四次方根是 .6.正数的立方根是 数;负数的立方根是 数;0的立方根是 . 7.2的相反数是 ,π-= ,364-= .8.比较下列各组数大小:(1 (2)215- 5.0(3)π 14.3 (42四、解下列各题.1. 求下列各数的算术平方根与平方根 (1)225 (2)144121 (3)81.0 (4) 2)4(-2. 求下列各式值(1)225 (2)16.0- (3)289144±(4)364 (5) 3125- (6)327125-3. 求下列各式中的x :(1)2x 49= (2)81252=x(3)8333=-x (4)125)2(3=+x4. 计算,直接写出结果:(1)214 (2)21)2516( (3)31)8(- (4)21100-5. 利用幂的形式计算:(1)355⨯ (2)2734⨯五、计算题1.233)32(1000216-++2.23)451(12726-+-3.32716949+- 4.2336)48(1÷--- 5.0)23(32-+-七年级数学《实数》基础练习题答案一、判断题1. √2. √3. ×4. √5. √6. ×7. ×8. √9. √ 10. √ 二、选择题1. B2.A3.B4.B5.C6.A 三、填空题1.2.±10,103.3;3;24.2,互为相反数;0;没有5.-5,32,2,±2 6.正数;负数;0 7.2-,π,48.(1)< (2)> (3)> (4)< 四、1.(1)225的算术平方根是15,平方根是±15; (2)144121的算术平方根是1211,平方根是±1211(3)0.81的算术平方根0.9,平方根是±0.9 (4)2)4(-的算术平方根4,平方根是±42.(1)15 (2)-0.4 (3)±1712(4)4 (5)-5 (6)-353.(1)±7 (2)±95 (3)23(4)34.(1)2 (2)54 (3)-2 (4)1015.(1)655 (2)4333 五、1.32162.121-3.-34.32-5.123--。
实数一、填空题(每空2分,共36分)1.(2分)0.04的正的平方根是_________.2.(2分)(2010•石家庄模拟)81的平方根是_________.3.(2分)求值:=_________.4.(2分)求值:=_________.5.(2分)如果的平方根是±3,则a=_________.6.(2分)将15写成方根的形式是_________.7.(2分)一个正方体的体积扩大为原来的n倍,则它的棱长扩大为原来的_________倍.8.(4分)3.280×107精确到_________位,有_________个有效数字.9.(2分)已知数轴上A、B两点之间的距离为,点A对应的数是2,那么B对应的数是_________.10.(2分)如果一个正数的两个不同的平方根是3a﹣2和2a﹣13,那么这个正数是_________.11.(2分)设的小数部分为b,则b(b+6)的值是_________.12.(2分)|a+b|+=0,则ab+a b﹣a=_________.13.(2分)小于5﹣的最大正整数是_________.14.(2分)若+有意义,则=_________.15.(2分)比较大小:﹣5_________﹣2(“>”,“=”,“<”)16.(2分)如图:图中每一个小正方形的面积是1,请利用图中的格点,画出一个面积是5的正方形,这个正方形的边长是_________.二、选择题(每题3分,共15分)17.(3分)在实数,,,,,0.808008,0.121221222…中,无理数的个数为()A.1个B.2个C.3个D.4个18.(3分)下列说法中正确的是()A.有理数和数轴上的点一一对应B.不带根号的数是有理数C.无理数就是开方开不尽的数D.实数与数轴上的点一一对应19.(3分)下列各式中,x的取值范围是x≥0的是()A.B.x C.|x|=﹣x D.+x=020.(3分)下列说法中,错误的是()A.一个正数的两个平方根的和为零B.任意一个实数都有奇次方根C.平方根和立方根相等的数只有零D.n(n>0)的4次方根是21.(3分)a、b、c三个数在数轴上的点如图所示,|a﹣b|﹣|a﹣c|﹣|c+b|的值可能是()A.﹣2c B.2a﹣2c C.0D.2a﹣2b 三、计算题(每题4分,共20分)22.(4分).23.(4分)++.24.(4分)(+)×(﹣).25.(4分)计算:+﹣0.3﹣1.26.(4分)计算:.四、解答题(第27题4分,第28、29题6分,第30题7分,共23分)27.(4分)设=1.254,=12.54,求a÷b.28.(6分)若实数x,y使得与互为相反数,求x y的四次方根.29.(6分)若y=+16,求x2+y的立方根.30.(7分)如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是_________;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)五、尝试探索(共8分)31.(8分)(1)计算:(+1)(﹣1)=_________;(+)(﹣)=_________;(2+)(2﹣)=_________(2)由以上计算结果,可知(n≥0)的倒数是_________(3)求值+++.沪教版七年级下第12章实数考答案与试题解析一、填空题(每空2分,共36分)1.(2分)0.04的正的平方根是0.2.考点:平方根.分析:根据平方根的定义求解即可.解答:解:0.04的平方根为±0.2,则正的平方根为:0.2.故答案为:0.2.点评:本题考查了平方根的定义,注意一个非负数的平方根有两个,互为相反数.2.(2分)(2010•石家庄模拟)81的平方根是±9.考点:平方根.分析:直接根据平方根的定义即可求解.解答:解:∵(±9)2=81,∴81的平方根是±9.故答案为:±9.点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.注意:1或0平方等于它的本身.3.(2分)求值:=﹣0.5.考点:立方根.分析:根据(﹣0.5)3=﹣0.125求出即可.解答:解:=﹣0.5,故答案为:﹣0.5.点评:本题考查了立方根的应用,主要考查学生的计算能力.4.(2分)求值:=.考点:算术平方根.分析:根据二次根式的性质,求出算术平方根即可.解答:解:原式=.故答案为:.点评:此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.5.(2分)如果的平方根是±3,则a=81.考点:算术平方根;平方根.分析:首先根据算术平方根的定义求出,然后利用平方根的定义即可求出a.解答:解:∵(±3)2=9,92=81,∴a=81故填81.点评:此题主要考查了算术平方根、平方根的定义,解题的关键是知道的平方根是±3,所以=9,所以a=81,注意这里的根号的双重概念.6.(2分)将15写成方根的形式是.考点:分数指数幂.分析:根据分数指数幂的意义直接解答即可.解答:解:15=.故答案为:.点评:此题考查了分数指数幂,分数指数幂是根式的另一种表示形式,即n次根号(a的m次幂)可以写成a的次幂,(其中n是大于1的正整数,m是整数,a大于等于0).7.(2分)一个正方体的体积扩大为原来的n倍,则它的棱长扩大为原来的倍.考点:立方根.专题:计算题.分析:根据正方体的体积公式得到棱长扩大为原来的倍时,正方体的体积扩大为原来的n倍.解答:解:一个正方体的体积扩大为原来的n倍,则它棱长扩大为原来的倍.故答案为:.点评:本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.8.(4分)3.280×107精确到万位,有四个有效数字.考点:近似数和有效数字.分析:近似数精确到哪一位,应当看末位数字实际在哪一位.解答:解:近似数3.280×107精确到万位,有效数字是3,2,8,0四个.故答案是:万;四.点评:考查了近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.9.(2分)已知数轴上A、B两点之间的距离为,点A对应的数是2,那么B对应的数是2+或2﹣.考点:实数与数轴.分析:设B点对应的数是x,再根据两点间的距离公式求出x的值即可.解答:解:设B点对应的数是x,∵数轴上A、B两点之间的距离为,点A对应的数是2,∴|x﹣2|=,解得x=2+或x=2﹣.故答案为:2+或2﹣.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.10.(2分)如果一个正数的两个不同的平方根是3a﹣2和2a﹣13,那么这个正数是49.考点:平方根.分析:根据一个正数的平方根互为相反数可得出a的值,代入后即可得出这个正数.解答:解:由题意得,3a﹣2+2a﹣13=0,解得:a=3,∴这个正数为:(3a﹣2)2=49.故答案为:49.点评:此题考查了平方根及解一元一次方程的知识,难度一般,解答本题的关键是掌握一个正数的平方根有两个,且互为相反数.11.(2分)设的小数部分为b,则b(b+6)的值是2.考点:估算无理数的大小.分析:求出的范围,即可求出b的值,最后代入求出即可.解答:解:∵3<<4,∴b=﹣3,∴b(b+6)=(﹣3)×(﹣3+6)=﹣3)×(+3)=11﹣9=2.故答案为:2.点评:本题考查了估算无理数大小和二次根式的混合运算的应用,关键是求出b的值.12.(2分)|a+b|+=0,则ab+a b﹣a=﹣12.考点:非负数的性质:算术平方根;非负数的性质:绝对值.专题:计算题.分析:根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.解答:解:∵|a+b|+=0,∴a+b=0,3﹣b=0,∴a=﹣3,b=3;∴ab+a b﹣a=(﹣3)×3+(﹣3)=﹣9﹣3=﹣12.故答案为﹣12.点评:本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.13.(2分)小于5﹣的最大正整数是2.考点:估算无理数的大小.分析:根据的范围求出5﹣的范围,即可得出答案.解答:解:∵2<<3,∴﹣2>﹣>﹣3,∴5﹣2>5﹣>5﹣3,∴2<5﹣<3,∴小于5﹣的最大正整数是2,故答案为:2.点评:本题考查了估算无理数的大小的应用,关键是确定5﹣的范围.14.(2分)若+有意义,则=1.考点:二次根式有意义的条件.分析:根据二次根式的被开方数是非负数得到x=0,由此可以求得的值.解答:解:由题意,得,解得x=0,则==1.故答案是:1.点评:考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.15.(2分)比较大小:﹣5<﹣2(“>”,“=”,“<”)考点:实数大小比较.分析:先将两数平方,然后再比较.解答:解:∵(﹣5)2=50,(﹣2)2=20,∴5>2,∴﹣5<﹣2.故答案为:<.点评:本题考查了实数的大小比较,解答本题的关键是掌握实数的大小比较法则.16.(2分)如图:图中每一个小正方形的面积是1,请利用图中的格点,画出一个面积是5的正方形,这个正方形的边长是.考点:勾股定理.专题:作图题.分析:面积为5的正方形的边长为,画出正方形即可.解答:解:面积为5的正方形的边长为,画出图形如下:.故答案为:.点评:本题考查了勾股定理的知识,解答本题的关键是根据正方形的性质求出边长,在格点三角形中利用勾股定理.二、选择题(每题3分,共15分)17.(3分)在实数,,,,,0.808008,0.121221222…中,无理数的个数为()A.1个B.2个C.3个D.4个考点:无理数.分析:根据无理数的概念进行解答即可.解答:解:∵实数,,,,,0.808008,0.121221222…中是开方开不尽的数;,0.121221222…是无限不循环小数故这三个数是无理数.故选C.点评:本题考查的是无理数的概念,即初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.18.(3分)下列说法中正确的是()A.有理数和数轴上的点一一对应B.不带根号的数是有理数C.无理数就是开方开不尽的数D.实数与数轴上的点一一对应考点:实数与数轴;实数.分析:根据实数与数轴的关系对各选项进行逐一分析即可.解答:解:A、实数和数轴上的点一一对应关系,故本选项错误;B、带根号的数不一定是无理数,例如,故本选项错误;C、开方开不尽的数是无理数,故本选项错误;D、实数和数轴上的点一一对应,符合实数与数轴的关系,故本选项正确.故选D.点评:本题考查的是实数与数轴,熟知实数和数轴上的点是一一对应关系是解答此题的关键.19.(3分)下列各式中,x的取值范围是x≥0的是()A.B.x C.|x|=﹣x D.+x=0考点:立方根;绝对值;算术平方根;分数指数幂.分析:根据立方根的定义对A进行判断;根据分数指数幂的意义和算术平方根的定义对B进行判断;根据绝对值的意义对C进行判断;根据二次根式的性质对D进行判断.解答:解:A、x为全题实数,所以A选项错误;B、=,则x≥0,所以B选项正确;C、|x|=﹣x,则x≤0,所以C选项错误;D、=|x|=﹣x,则x≤0,所以D选项错误.故选B.点评:本题考查了立方根:若一个数的立方等于a,那么这个数叫a的立方根,记作.也考查了分数指数幂.20.(3分)下列说法中,错误的是()A.一个正数的两个平方根的和为零B.任意一个实数都有奇次方根C.平方根和立方根相等的数只有零D.n(n>0)的4次方根是考点:实数.分析:根据平方根、立方根、开方的定义和性质对每一项分别进行分析即可.解答:解:A、一个正数的两个平方根的和为零,故本选项正确;B、任意一个实数都有奇次方根,故本选项正确;C、平方根和立方根相等的数只有零,故本选项正确;D、n(n>0)的4次方根是±,故本选项错误;故选D.点评:此题考查了实数,用到的知识点是平方根、立方根、开方,熟练掌握课本中的有关定义和性质是本题的关键.21.(3分)a、b、c三个数在数轴上的点如图所示,|a﹣b|﹣|a﹣c|﹣|c+b|的值可能是()A.﹣2c B.2a﹣2c C.0D.2a﹣2b考点:整式的加减;数轴;绝对值.分析:根据数轴可知a<c<0<b,|a|>|b|>|c|,推出﹣(a﹣b)﹣(c﹣a)﹣(c+b),去括号后合并即可.解答:解:∵根据数轴可知:a<c<0<b,|a|>|b|>|c|,∴|a﹣b|﹣|a﹣c|﹣|c+b|=﹣(a﹣b)﹣(c﹣a)﹣(c+b)=﹣a+b﹣c+a﹣c﹣b=﹣2c,故选A.点评:本题考查了数轴,绝对值,整式的化简的应用,关键是能把原式得出﹣(a﹣b)﹣(c﹣a)﹣(c+b).三、计算题(每题4分,共20分)22.(4分).考点:算术平方根.分析:先将根式里面的数合并,继而进行二次根式的化简即可.解答:解:原式===.点评:本题考查了算术平方根的知识,注意掌握:一个正数的算术平方根只有一个,负数没有算术平方根.23.(4分)++.考点:实数的运算.分析:先进行二次根式的化简,然后合并运算即可.解答:解:原式=++=﹣7+49=43.点评:本题考查了实数的运算,属于基础题,关键是进行二次根式的化简.24.(4分)(+)×(﹣).考点:分数指数幂.分析:先把(+)×(﹣)变形为[(+)×(﹣)],再进行计算即可.解答:解:(+)×(﹣)=[(+)×(﹣)]==1.点评:此题考查了分数指数幂,用到的知识点是分数指数幂和平方差公式,关键是把要求的式子进行变形.25.(4分)计算:+﹣0.3﹣1.考点:分数指数幂.专题:计算题.分析:根据幂的乘方得到原式=+﹣0.3﹣1,进行指数运算后得到原式=0.3﹣1+23﹣0.3﹣1,然后进行加减运算.解答:解:原式=+﹣0.3﹣1=0.3﹣1+23﹣0.3﹣1=8.点评:本题考查了分数指数幂:=(m与n都为正整数).也考查了负整数指数幂.26.(4分)计算:.考点:分数指数幂.分析:先把开方运算表示成分数指数幂的形式,再根据同底数乘法、除法法则计算即可.解答:解:原式=×÷=22=4.点评:本题考查了分数指数幂.解题的关键是知道开方和分数指数幂之间的关系.四、解答题(第27题4分,第28、29题6分,第30题7分,共23分)27.(4分)设=1.254,=12.54,求a÷b.考点:实数的运算.分析:根据a÷b=()2,进行运算即可.解答:解:a÷b=()2=()2=()2=.点评:本题考查了实数的运算,解答本题关键是掌握二次根式的除法运算法则.28.(6分)若实数x,y使得与互为相反数,求x y的四次方根.考点:算术平方根;非负数的性质:绝对值.分析:根据互为相反数的两数之和为0,及绝对值、算术平方根的非负性,可得出x、y的值,代入运算即可.解答:解:∵与互为相反数,∴+=0,∴,解得:.∴x y=16,16的四次方根为2.点评:本题考查了算术平方根及绝对值的非负性,解答本题的关键是根据相反数的定义得出方程.29.(6分)若y=+16,求x2+y的立方根.考点:二次根式有意义的条件;立方根.分析:根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的值,进而得到y 的值,从而求得x2+y的立方根.解答:解:根据题意得:,解得:x=﹣2,则y=4,故x2+y=8,则x2+y的立方根是2.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.30.(7分)如图所示,已知正方形ABCD的边长是7,AE=BF=CG=DH=2(1)四边形EFGH的形状是正方形;(2)求出四边形EFGH的面积;(3)求出四边形EFGH的周长(结果精确到十分位,参考数值:≈1.703,)考点:正方形的判定与性质;算术平方根.分析:(1)根据正方形性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,求出AH=DG=CF=BE=5,证△AEH≌△DHG≌△CGF≌△BFE,推出EH=EF=FG=HG,∠AHE=∠DGH,证出∠EHG=90°,即可得出答案.(2)在Rt△AEH中,由勾股定理求出EH=,根据正方形面积公式求出即可.(3)四边形EFGH的周长是×4,求出即可.解答:解:(1)四边形EFGH是正方形,理由是:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=AD=7,∵AE=BF=CG=DH=2,∴AH=DG=CF=BE=5,∴△AEH≌△DHG≌△CGF≌△BFE(SAS),∴EH=EF=FG=HG,∠AHE=∠DGH,∵∠A=∠D=90°,∴∠DGH+∠DHG=90°,∴∠AHE+∠DHG=90°,∴∠EHG=180°﹣90°=90°,∴四边形EFGH是正方形,故答案为:正方形.(2)在Rt△AEH中,AE=2,AH=5,由勾股定理得:EH==,∵四边形EFGH是正方形,∴EF=FG=GH=EH=,∴四边形EFGH的面积是()2=29.(3)四边形EFGH的周长是×4=4≈4×5.39≈21.56.点评:本题考查了正方形性质,全等三角形的性质和判定,三角形内角和定理,正方形判定的应用,关键是推出四边形EFGH是正方形.五、尝试探索(共8分)31.(8分)(1)计算:(+1)(﹣1)=1;(+)(﹣)=1;(2+)(2﹣)=1(2)由以上计算结果,可知(n≥0)的倒数是﹣(3)求值+++.考点:分母有理化.专题:规律型.分析:(1)根据平方差公式求出即可;(2)根据(1)中的结果求出即可;(3)分别求出每一部分的值,再代入合并同类二次根式即可.解答:解:(1)(+1)×(﹣1)=2﹣1=1,(+)(﹣)=3﹣2=1,(2+)(2﹣)=4﹣3=1;(2)从上面的结果可以看出(n≥0)的倒数是(﹣,(3)从(1)知:=﹣1,=﹣,=2﹣,=3﹣∴+++=﹣1+﹣+2﹣+3﹣=﹣1+﹣+2﹣+3﹣2=4﹣2.故答案为:1,1,1;﹣.点评:本题考查了分母有理数,平方差公式的应用,关键是能根据求出得出规律.参与本试卷答题和审题的老师有:caicl;yangwy;lantin;zjx111;gsls;haoyujun;开心;zhjh;CJX;zcx;疯跑的蜗牛;117173;sjzx;ZJX;dbz1018(排名不分先后)菁优网2014年2月11日。
第十二章《实数》基础练习一、填空1、_______________________________________统称为实数。
2、16的平方根是________,根号25的平方根是__________。
3、2又九分之七的平方根是_______,121分之根号81的平方根是_____4、27的立方根是_____,-125的立方根是_______。
5、0.027立方根是________,1又64分之61的立方根是_______。
6、若X ²等于九分之四,那么X=____,若根号X=九分之四那么X=_______。
7、________的立方根是-6,______的五次方根是-2.8、计算:根号(-5)²=_______, 三次根号(-8)²=_________9、正数a的两个平方根的和是_______,积是________10、一个正方体的体积是17cm³,则这个正方体的棱长是__________11、根号十的整数部分是________,小数部分是____________.12、已知根号2≈1.414 ,求根号200≈_______,根号0.02约等于________.二、选择题1、在实数根号4,根号3,三分之一,0.3 3循环,π,2.123456……(按自然数增加)三次根号-8中,无理数有()A 、2个B、3个C、4个D、5个2、与数轴上的点一一对应的是()A、整数B、有理数C、无理数D、实数3、下列语句中正确的是()A、两个无理数的和不一定是无理数B、两个无理数的积一定是无理数C、两个无理数的商一定是无理数D、一个无理数的相反数不一定是无理数4、下列说法正确的是()A、1的偶次方根是1B、负数有一个负的平方根C、正数的N次方根有2个D、0的N次方根=0三、计算题1、负根号负三分之一的平方+三次根号负二十一分之七2、根号-81的绝对值- 三次根号216²3、负根号-5的平方+负根号二的平方-三次根号-84、三次根号135×25四、解答题1、已知a三次方=-8,b的平方=四分之一,求b分之a的值2、若2x+1与3x+4是同一个数的两个不同的平方根,求x的值3、已知:|x-1|+|y+3|=0,求:x2010次方+y的平方的值4、若根号x-3 +根号3-x+2y=4,求y分之x的值五、附加题1、已知P=a+3b-2次根号a+3是a+3的正平方根,Q=a+b+1次根号b-2是b-2的立方根,求P-Q的平方根2、设根号11的小数部分是a,求(6+a)a的值答案:填空1、有理数、无理数2、±4、±根号53、±三分之五、±十一分之三4、3、-55、0.3、四分之五6、±三分之二、八十一分之十六7、-216、-328、5、49、0、-a10、三次根号十七CM 11、3、根号十再减三12、14.14、0.141413、0.5477选择题1、B2、D3、A4、D计算题1、负三分之二2、-273、-14、15解答题1、4、-42、-13、104、二分之三附加题1、±根号32、2。
数学七年级下 第十二章 实数12.1 实数的概念(1)一、选择题1.|-32| 的值是 ( )A .-3 B. 3 C .9 D .-92.下列说法不正确的是 ( ) A .没有最小的有理数 B .没有最大的有理数C .有绝对值最小的有理数D .有最大的负数 3.在3.0,2,2313,1010010001.0,4,0,)3(0π-,这七个数中,无理数有 ( ) A .1个 B .2个 C .3个 D .4个4.下列命题中正确的是 ( ) A .数轴上的点与有理数一一对应 B .有限小数是有理数 C .数轴上的点与实数一一对应 D .无限小数是无理数5.下列说法:①无限小数都是无理数;②正数、负数统称为有理数;③无理数的相反数还是无理数; ④无理数与有理数的和一定是无理数;⑤无理数与无理数的和一定还是无理数;⑥无理数与有理数的积一定仍是无理数。
其中正确的有 ( ) A .2个 B.3个 C .4个 D .5个6. 下列计算中,正确的是 ( )A .222)(y x y x -=- B. 313)14.3(10=+--π C .2)2(2-=- D .m m mx x x =÷322)(7.边长为3的正方形的对角线长为 ( ) A .有理数 B. 无理数 C .整数 D .分数8.下列计算结果中,正确的是 ( ) A .20397≈ B. 078.056.0≈ C .703400≈ D .408003≈二、填空题9. 小数叫做无理数。
10. 和 统称为实数。
11. 实数和 的点一一对应。
12.实数的分类:实数()()()()()()()()()()()())⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎭⎬⎫⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎭⎪⎪⎪⎬⎫⎩⎨⎧⎪⎩⎪⎨⎧13.下列各数中:12-,-1,3125-2π,1.1010016.0, ,210-,12-,722,2,π-722.有理数集合{ }; 正数集合{ };整数集合{ }; 自然数集合{ }; 分数集合{ }; 无理数集合{ };绝对值最小的数的集合{ }。
数学七年级下 第十二章 实数12.6 实数的运算(1)一、选择题 1.下列计算:①1271144491=;②3)3(2±=-;③44422-=-=-;④127413116191=+=+;其中错误的有 ( )A. 1个B. 2个C. 3个D. 4个2. 2)7(-的平方根是 ( ) A .7± B. 7±C. 7D. -73. 下列等式中,正确的是 ( ) A.3322--=- B. 3322=- C. 3322-=- D. 33|2|2-=-4. 下列计算中,错误的是 ( )A. 5)5(2=- B. 31227=-C. 3313=5. 在下列计算中,正确的是 ( ) A.1553=⋅ B. 3+3227= D. 339=÷6. 实数53-、0、π2、3.14159、75、2、55-中,无理数有 ( ) A. 1个 B. 2个 C. 3个 D. 4个7. 下列计算中,错误的是 ( ) A.31312-=+ B. 2818=-C. 5515= D. 55)5(3-=- 8. 要使32+x 有意义,字母x 必须满足的条件是 ( ) A. 23≥x B. 23-≥x C. 23>x D. 23->x二、填空题9. 49的平方根是 ,81的正平方根是 . 10、-8的立方根是,=-364.11、36-的相反数是 ,绝对值等于2的数是 . 12、=--3)3(3。
13.、=27 ,=51. 14、如果0)3(52=++-y x ,那么=+y x .15、如果a 的平方根是3±,那么=a 。
16、如果a 、b ,且539922++-+-=a a ab ,则a+b 的值为 .17. 当2,3==b a 时,aba b a a --2224的值为 .18. 计算:=-+656463 。
19.计算:=÷⨯÷5323253。
20. 计算:-+)53)(53(21. 计算:.=-)727(7. 22. 计算:=+-322216)11()7(。
第十二章 实数 单元测试卷一.选择题(共6小题) 1.下列各数中是无理数的( )A B .2C .0.25D .0.2022.已知a 是实数,下列各式一定表示正数的是( )A .aB .|2|a +CD .2a3.下列选项正确的是( )A 1=±B 2=-C 5=-D 1=4和( ) A .互为倒数 B .互为相反数 C .互为负倒数 D .以上都不对5.下列说法正确的是( ) A .81-平方根是9-B 的平方根是9±C .平方根等于它本身的数是1和0D6.已知面积为10的正方形的边长为x ,那么x 的取值范围是( ) A .13x <<B .23x <<C .34x <<D .45x <<二.填空题(共12小题)7= .81-= .9= .10.在数轴上和3的点是 .11= . 12.实数81的平方根是 .13.在0.3,3-,0,这四个数中,最小的是 .14.比较大小:33- 27-(填“<”或“>” ).15.若一个数的算术平方根与它的立方根相等,那么这个数是 . 16.一个数的两个不同的平方根是22a b +和2610a b -+,那么这个数是 .17.在数轴上,如果点A 、点B 所对应的数分别是37-、272-,那么A 、B 两点的距离AB = .18.对于任意实数m 、n ,都有m ▲32n m n =+,m △23n m n =-,则2▲(3)-△(1)-的值为 .三.解答题(共8小题) 19.解方程:25(2)15x -= 20.计算:223(5)(13)125-+. 21.计算:220203127(2)(1)81+-+-+- 22.计算:0118|12|(2020)()2π-+-+-+.23.已知5的整数部分是a ,小数部分是b ,求a b 的值.24.已知318a =,3216b =,c 是100的算术平方根,求()a b c +的值.25.已知点A 是164的算术平方根,点B 的立方是827-,在数轴上描出点A 和点B ,并求出A 与B 两点的距离.26.先计算下列各式:11=,132+=,135++= ,1357+++= ,13579++++= .(1135(21)n +++⋯+-= . (2261014102++++⋯+= .参考答案一.选择题(共6小题) 1.下列各数中是无理数的( )A B .2C .0.25D .0.202解:2,0.25,0.202是有理数,故选:A .2.已知a 是实数,下列各式一定表示正数的是( )A .aB .|2|a +CD .2a解:A 、a 可以表示正数,也可以表示负数,还可以表示0,故本选项错误; B 、2a =-时,|2|0a +=,故本选项错误;C 、20a ,211a ∴+是正数,故本选项正确;D 、0a =时,20a =,故本选项错误.故选:C .3.下列选项正确的是( )A 1=±B 2=-C 5=-D 1=解:A 1=,故选项不符合题意;B 2==,故选项不符合题意;C 5==-,选项符合题意;D 没有意义,选项不符合题意.故选:C .4和( ) A .互为倒数 B .互为相反数 C .互为负倒数 D .以上都不对解:(=(1=-,∴与 故选:C .5.下列说法正确的是( ) A .81-平方根是9-B 的平方根是9±C .平方根等于它本身的数是1和0D解:A 、81-没有平方根,故原题错误;B 9=的平方根是3±,故原题错误;C 、平方根等于它本身的数是0,故原题错误;D故选:D .6.已知面积为10的正方形的边长为x ,那么x 的取值范围是( ) A .13x <<B .23x <<C .34x <<D .45x <<解:91016<<,34∴<<.故选:C .二.填空题(共12小题)7= 10 .10===. 故答案为:10.81-= 8 .1918=-=, 故答案为:8.9=235.235=,故答案为:235.10.在数轴上和3的点是3+-解:在数轴上和33或3,故答案为:33-.11=3.23=-.12.实数81的平方根是9±.解:实数81的平方根是:9=±.故答案为:9±.13.在0.3,3-,0,这四个数中,最小的是3-.解:3300.3-<-<<∴最小为3-故答案为:3-.14.比较大小:--<”或“>”).解:33=,=∴->-故答案为:>.15.若一个数的算术平方根与它的立方根相等,那么这个数是0和1.解:0的算术平方根和立方根都是0,1的算术平方根和立方根都是1,故答案为:0和1.16.一个数的两个不同的平方根是22a b+和2610a b-+,那么这个数是100.解:根据题意得:22(2610)0a b a b++-+=,即2221690a ab b+++-+=,22(1)(3)0a b ∴++-=,10a ∴+=,30b -=,解得:1a =-,3b =则这个数是2222()(19)100a b +=+=. 故答案是:100.17.在数轴上,如果点A 、点B 所对应的数分别是3-2-,那么A 、B 两点的距离AB = 5- .解:|(32)|AB =--|32|=-|5|=-5=-故答案为5-.18.对于任意实数m 、n ,都有m ▲32n m n =+,m △23n m n =-,则2▲(3)-△(1)-的值为 3 .解:m ▲32n m n =+,m △23n m n =-, 2∴▲(3)-△(1)- [322(3)]=⨯+⨯-△(1)- 0=△(1)-203(1)=⨯-⨯- 3=故答案为:3.三.解答题(共8小题) 19.解方程:25(2)15x -= 解:25(2)15x -=,2(2)3x ∴-=,。
沪教版(上海)七年级数学第二学期第十二章实数章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1,0.123,π,2271中间依次多1个0)中,无理数有( ). A .2个B .3个C .4个D .5个2 )A B CD .33、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( ) A .2B .4C .8D .64、4的平方根是( ) A .2B .﹣2C .±2D .没有平方根5、a 为有理数,定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.根据这种运算,则▽[4+▽(2-5)]的值为( ) A .1-B .7C .7-D .1640b -=,那么a b -=( ) A .1B .-1C .-3D .-57、一个几何体由几个大小相同的小立方块搭成,从上面观察这个几何体,看到的形状如图所示,其中小正方形中的数字表示在该位置的小立方块的个数.若每个小立方块的体积为216cm³,则该几何体的最大高度是( )A .6cmB .12cmC .18cmD .24cm8 )A B .-2C .2±D .29、16的平方根是( ) A .±8B .8C .4D .±410、一个正方体的体积是5m 3,则这个正方体的棱长是( )A B C .25mD .125m第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1(填“>”或“<”或“=”) 2、计算下列各题: (1)|3﹣4|﹣1=_____;(2_____;(3)30=_____;(4)32y xy x+=_____.3、一列数按某规律排列如下1121231234,,,,,,,,,1213214321,…若第n 个数为56,则n =_____.42,则x =___.5、对于实数a ,b ,定义运算“*”如下:a *b =(a +b )2﹣(a ﹣b )2.若(m +2)*(m ﹣3)=24,则m 的值为______.三、解答题(10小题,每小题5分,共计50分) 1、求下列各式中的x : (1)()2264x +=; (2)381250x +=.2、求下列各数的算术平方根: (1)0.64 (2)49813、众所周知,所有实数都可以用数轴上的点来表示.其中,我们将数轴上表示正整数的点称为“正点”.取任意一个“正点”P ,该数轴上到点P 距离为1的点所对应的数分别记为a ,b (a <b ).定义:若数m =b 3﹣a 3,则称数m 为“复合数”.例如:若“正点”P 所表示的数为3,则a =2,b =4,那么m =43﹣23=56,所以56是“复合数”.(提示:b 3﹣a 3=(b ﹣a )(b 2+ab +a 2).)(1)请直接判断12是不是“复合数”,并且证明所有的“复合数”与2的差一定能被6整除; (2)已知两个“复合数”的差是42,求这两个“复合数”.4、已知24a +的立方根是2,31a b +-算术平方根是4,求4a b +的算术平方根.5、阅读下面的文字,解答问题.现规定:分别用[]x 和x 〈〉表示实数x 的整数部分和小数部分,如实数3.14的整数部分是[3.14]3=,小数部分是3.140.14〈〉=2-,小数部分是无限不循环小数,无法写完整,2的小数部分,所以2=.(1)= ,= ;= ,= .(2)如果a =,b =,求a b + 6、如图是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为______;(2)是否存在输入有意义的x 值后,却始终输不出y 值?如果存在,写出所有满足要求的x 值;如果不存在,请说明理由;(3)如果输入x 值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x 值可能是什么情况?(4)当输出的y x 值是否唯一?如果不唯一,请写出其中的三个. 7、计算(1(2(32-8、已知x-2的平方根是±2,x+2y+7的立方根是3,求3x+y的算术平方根.9、阅读下列材料:①11111111 1,, 12223233434 =-=-=-⨯⨯⨯…②111111111111,, 13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭…③111111111111,, 1434473477103710⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯-⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭…根据你观察到的规律,解决下列问题:(1)写出①组中的第5个等式;(2)写出②组的第n个等式,并证明;(3)计算:1111 1559913397401 ++++⨯⨯⨯⨯.10、计算题(1)1)+;(2)(﹣1)2021-参考答案-一、单选题1、D【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】=-是有理数,30.123是无限循环小数,是有理数,22是分数,是有理数,7π1中间依次多1个0)是无理数,共5个,故选:D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、A【分析】根据只有符号不同的两个数互为相反数,可得一个数的相反数.【详解】故选:A.【点睛】此题主要考查相反数,解题的关键是熟知实数的性质.3、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n 的个位数字是2,4,8,6循环, 所以810÷4=202…2, 则2810的末位数字是4. 故选:B . 【点睛】本题考查了与实数运算相关的规律题,找到2n 的末位数的循环规律是解题的关键. 4、C 【分析】根据平方根的定义(如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可. 【详解】 解:4的平方根,即:2=±, 故选:C . 【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键. 5、A 【分析】定义运算符号▽:当a >-2时,▽a =-a ;当a <-2时,▽a = a ;当a =-2时,▽a = 0.先判断a 的大小,然后按照题中的运算法则求解即可. 【详解】解:2532,-=-<-且当a 2<-时,▽a =a ,∴▽(-3)=-3,4+▽(2-5)=4-3=1>-2, 当a >-2时,▽a =-a ,∴▽[4+▽(2-5)]=▽1=-1,故选:A . 【点睛】此题主要考查了定义新运算,以及有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算. 6、D 【分析】由非负数之和为0,可得10a +=且40b -=,解方程求得a ,b ,代入-a b 问题得解. 【详解】解:40b -=,∴ 10a +=且40b -=,解得,14a b =-=,, 145a b ∴-=--=-,故选:D 【点睛】本题考查了代数式的值,正确理解绝对值及算数平方根的非负性是解答本题的关键. 7、D 【分析】由每个小立方体的体积为216cm3,得到小立方体的棱长6cm==,再由三视图可知,最高处有四个小立方体,则该几何体的最大高度是4×6=24cm.【详解】解:∵每个小立方体的体积为216cm3,∴小立方体的棱长6cm==,由三视图可知,最高处有四个小立方体,∴该几何体的最大高度是4×6=24cm,故选D.【点睛】本题主要考查了立方根和三视图,解题的关键在于能够正确求出小立方体的棱长.8、D【分析】4的算术平方根,由此即可得到结果.【详解】解:∵4的算术平方根为2,的值为2.故选D.【点睛】此题主要考查了算术平方根的定义,算术平方根的概念易与平方根的概念混淆而导致错误.弄清概念是解决本题的关键.9、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D.【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.10、B【分析】根据正方体的体积公式:V=a3,把数据代入公式解答.【详解】5(立方米),故选:B.【点睛】此题主要考查正方体体积公式的灵活运用,关键是熟记公式.二、填空题1、>【分析】根据2=【详解】∵2=<2>,故答案为:>.【点睛】本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.2、0 3 1 5 x【分析】(1)先化简绝对值,再计算减法运算即可得;(2)先计算有理数的乘方,再计算算术平方根即可得;(3)计算零指数幂即可得;(4)根据分式的加法运算法则即可得.【详解】解:(1)原式11110=--=-=,故答案为:0;(2)原式3==,故答案为:3;(3)原式1=,故答案为:1;(4)原式325x x x+==,故答案为:5x.【点睛】本题考查了零指数幂、算术平方根、分式的加法等知识点,熟练掌握各运算法则是解题关键.3、50【分析】根据题目中的数据可以发现,分子变化是1,(1,2),(1,2,3),…,分母变化是1,(2,1),(3,2,1),…,从而可以求得第n个数为56时n的值,本题得以解决.【详解】解:1121231234 ,,,,,,,,,, 1213214321∴可写成1121231234 ,,,,,,,,,, 1213214321⎛⎫⎛⎫⎛⎫⋯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∴分母为10开头到分母为1的数有10个,分别为12345678910,,,,,,,,,, 10987654321∴第n个数为56,则n=1+2+3+4+…+9+5=50,故答案为50.【点睛】本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律.4、8【分析】根据立方根的性值计算即可;【详解】2,∴8x=;故答案是8.【点睛】本题主要考查了立方根的性质,准确分析计算是解题的关键.5、3-或4【分析】先根据新运算的定义可得一个关于m 的方程,再利用平方根解方程即可得.【详解】解:由题意得:22(23)(23)24m m m m ++--+-+=,即2(21)2524m --=,2(21)49m -=,217m -=或217m -=-,解得4m =或3m =-,故答案为:3-或4.【点睛】本题考查了利用平方根解方程,掌握理解新运算的定义是解题关键.三、解答题1、(1)6x =或10x =-(2)5=2x -【分析】(1)根据平方根定义开方,求出两个方程的解即可;(2)先移项,再根据立方根定义得出一个一元一次方程,求出方程的解即可.(1)()2264x +=开平方得,28x +=±∴28,28x x +=+=-解得,6x =或10x =-(2)381250x +=移项得,382=15x -方程两边同除以8,得,35=128x - 开立方,得,5=2x -【点睛】本题考查了平方根和立方根的应用,主要考查学生的理解能力和计算能力.2、 (1) 0.8; (2) 79【分析】根据算术平方根的定义求解即可.【详解】解:(1)因为0.82=0.64,所以0.64的算术平方根是0.8.(2)因为2749()981=,所以4981的算术平方根是7979. 【点睛】本题考查了算术平方根,熟练掌握算术平方根的定义是解答本题的关键, 正数有一个正的算术平方根,0的平方根是0,负数没有算术平方根.3、(1)12不是复合数;证明见解析;(2)98和56.【分析】(1)直接利用定义进行判断12不是复合数,利用定义对复合数进行变形即可证明;(2)借助(1)的证明,所有的复合数都可以写成6x 2+2,设出两个复合数进行转化.【详解】(1)12不是复合数,∵找不到两个整数a ,b ,使a 3﹣b 3=12,故12不是复合数,设“正点”P 所表示的数为x (x 为正整数),则a =x ﹣1,b =x +1,∴(x +1)3﹣(x ﹣1)3=(x +1﹣x +1)(x 2+2x +1+x 2﹣1+x 2﹣2x +1)=2(3x 2+1)=6x 2+2,∴6x 2+2﹣2=6x 2一定能被6整除;(2)设两个复合数为6m 2+2和6n 2+2(m ,n 都是正整数),∵两个“复合数”的差是42,∴(6m 2+2)﹣(6n 2+2)=42,∴m2﹣n2=7,∵m,n都是正整数,∴71m nm n+=⎧⎨-=⎩,∴43mn=⎧⎨=⎩,∴6m2+2=98,6n2+2=56,这两个“复合数”为98和56.【点睛】本题考查关于实数的新定义题型,理解新定义是解题的关键.4【分析】根据立方根、算术平方根解决此题.【详解】解:由题意得:2a+4=8,3a+b-1=16.∴a=2,b=11.∴4a+b=8+11=19.∴4a+b【点睛】本题考查了立方根、算术平方根,熟练掌握立方根、算术平方根是解决本题的关键.5、(1)11,33;(2)2【分析】(1的范围,再根据题目规定的表示方法写出答案即可;(2a,b的值,进一步即可求出结果.【详解】(1<2,34,=11,]=33,故答案为:11,33;(23,1011,a2,=b=10,∴2108+=+=,a b∴a b+2.【点睛】本题考查了估算无理数的大小和平方根的意义,能够估算出无理数的范围是解决问题的关键.6、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解:x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.7、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)1=+--0.5(2)2=-;2(2)-3(232=+=.1【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.8、5【分析】根据题意直接利用平方根以及立方根的性质得出x,y的值,进而利用算术平方根的定义得出答案.【详解】解:∵x-2的平方根是±2,∴x-2=4,解得:x=6,∵x+2y+7的立方根是3,∴6+2×y+7=27,解得:y=7,∴3x+y=25,∴3x+y的算术平方根是5.【点睛】本题主要考查平方根以及立方根的性质、算术平方根,正确得出x ,y 的值是解题的关键. 9、(1)1115656=-⨯; (2)1111)21)(2122121n n n n =--+-+((),证明见解析; (3)100401 【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n 个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可.(1) 解:∵111111111111,,122232334344545=-=-=-=-⨯⨯⨯⨯,, ∴第5个等式为1115656=-⨯; (2) 解:∵111111111111,,13233523557257⎛⎫⎛⎫⎛⎫=⨯-=⨯-=⨯- ⎪ ⎪ ⎪⨯⨯⨯⎝⎭⎝⎭⎝⎭, ∴第n 个等式为1111)21)(2122121n n n n =--+-+((), 证明:右边=1(21)(21)121221)(21221)(2121)(21n n n n n n n n +--⋅=⋅=-+-+-+()()(), 左边=121)(21n n -+(), ∵右边=左边,∴1111) 21)(2122121 n n n n=--+-+(();(3)解:∵115⨯=11(1)45⨯-,159⨯=111()459⨯-,1913⨯=111()4913⨯-,∴1111) 43)(4144341 n n n n=--+-+((),∴1111 1559913397401 ++++⨯⨯⨯⨯=11111111111(1)()()() 4545949134397401⨯-+⨯-+⨯-++⨯-=11111111(1) 4559913397401⨯-+-+-++-=11(1) 4401⨯-=1400 4401⨯=100 401.【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键.10、(1)2;(2)4【分析】(1)原式利用立方根性质及绝对值的代数意义化简,合并即可得到结果;(2)原式利用乘方的意义,算术平方根定义计算即可得到结果.【详解】解:(1)原式=2+|﹣4|=2+4=2;(2)原式=﹣1+5=4.【点睛】本题考查了实数的混合运算,正确的求得立方根和算术平方根是解题的关键.。
沪教版(上海)七年级数学第二学期第十二章实数专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、点A在数轴上的位置如图所示,则点A表示的数可能是()AB C D2、64的立方根为().A.2 B.4 C.8 D.-23、在下列四个实数中,最大的数是()A.0 B.﹣2 C.2 D4、116的算术平方根是()A.14B.14-C.14±D.185、下列说法正确的是()A B .2是4的平方根CD 3- 6、下列四个数中,最小的数是( )A .﹣3BC .0D .﹣π7) A .12 B .4 C .﹣4 D .﹣128、下列说法正确的是( )A .5-是25的平方根B .4±是16的算术平方根C .2是-4的算术平方根D .1的平方根是它本身9 )A .2B .2±CD .10、4的平方根是( )A .2B .﹣2C .±2D .没有平方根第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1x <<,则|x ﹣3|+|x ﹣1|=___.2、0.064的立方根是______.3、下列各数:-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1),其中无理数的个数是______.4、计算:201(2π-⎛⎫-= ⎪⎝⎭__________.5=_______.三、解答题(10小题,每小题5分,共计50分)1、计算题:(1)()224332a a a ⋅+-;(2())1012312-⨯+--. 2、计算(1(2(32-3、计算 ()202112-4、已知x ,y 满足2(2316)0x y +-,求x 、y 的值.5()20152π-⎛⎫-+ ⎪⎝⎭. 6、计算下列各题:(1)0320211(2021)()(1)|3|2π--+---+-;(2)22345(3)(6)(9)xy x y x y -⋅-÷.(3)233222(86)2x y x y z x y -÷.7、(1)计算:﹣32﹣(2021)0+|﹣2|﹣(13)﹣2×(﹣19);(2)解方程:164x x +-=﹣1. 8、已知a 2=16,b 3=27,求a b 的值.9、(11(2)求式中的x :(x +4)2=81.102021(1)π+--参考答案-一、单选题1、A【分析】根据数轴上表示的数在4至4.5之间,再估算各选项的取值,即可得解.【详解】解:观察得到点A 表示的数在4至4.5之间,A ,故该选项符合题意;B <4,故该选项不符合题意;C ,故该选项不符合题意;D ,故该选项不符合题意;故选:A .【点睛】本题考查了实数与数轴,无理数的估算,根据数形结合的思想观察数轴确定点的位置是解题的关键.2、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64,故选:B.【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.3、C【分析】先根据正数大于0,0大于负数,排除A,B,然后再用平方法比较2【详解】解:正数0>,0>负数,∴排除A,B,=,224=,23∴>,43∴>2∴最大的数是2,故选:C.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.4、A【分析】根据算术平方根的定义即可完成.【详解】∵211= 416⎛⎫⎪⎝⎭∴116的算术平方根是1414故选:A【点睛】本题考查了算术平方根的计算,掌握算术平方根的定义是关键.5、B【分析】根据立方根和平方根以及相反数和实数的定义进行判断即可得出答案.【详解】解:A.A错误;B.22=4,故2是4的平方根,B正确;C是有理数,故C错误;D.,故D错误;故选B.【点睛】本题考查了相反数,平方根,立方根、实数的知识点,解题的关键是熟练掌握相反数,平方根,立方根的定义.6、D【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断出各数中最小的是哪个即可.【详解】解:∵ππ-=,=33-=,3π>>∴30π-<-<,∴最小的数是π-,故选D .【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.7、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】844-=,故选B .【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.8、A【分析】根据平方根的定义及算术平方根的定义解答.【详解】解:A、5-是25的平方根,故该项符合题意;B、4是16的算术平方根,故该项不符合题意;C、2是4的算术平方根,故该项不符合题意;D、1的平方根是±1,故该项不符合题意;故选:A.【点睛】此题考查了平方根的定义及算术平方根的定义,熟记定义是解题的关键.9、A【分析】根据算术平方根的定义即可求出结果.【详解】,4的算术平方根是2.故选:A.【点睛】此题主要考查了算术平方根的定义.一个正数的算术平方根就是其正的平方根.10、C【分析】根据平方根的定义(如果一个数x的平方等于a,那么这个数x就叫做a的平方根)和性质(一个正数有两个实平方根,它们互为相反数)直接得出即可.【详解】解:4的平方根,即:2=±,故选:C.【点睛】题目主要考查平方根的定义和性质,熟练掌握其性质及求法是解题关键.二、填空题1、2【分析】得出x-3<0,x-1>0,再利用绝对值的代数意义去括号合并即可得到结果.【详解】<<12,23,x∴x-3<0,x-1>0,∴|x﹣3|+|x-1|=3-x+(x-1)=3-x+x-1=2.故答案为:2.【点睛】本题考查了整式的加减运算,涉及的知识有:无理数的估算,绝对值的代数意义,数轴,去括号法则,以及合并同类项法则,熟练掌握法则是解本题的关键.2、0.4【分析】根据立方根的定义直接求解即可.【详解】解:∵30.40.064=,∴0.064的立方根是0.4.故答案为:0.4.【点睛】本题考查了立方根,解决本题的关键是熟记立方根的定义.3、3【分析】无理数就是无限不循环小数;有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,由此即可判定.【详解】在-1、2π227,0.1010010001…(相邻两个1之间0的个数增加1)中,无理数有2π1之间0的个数增加1)共3个. 故答案为:3.【点睛】本题考查了实数的分类,理解有理数与无理数的概念是解题的关键.4、3【分析】根据实数的运算法则即可求出答案.【详解】解:原式41=-3=.【点睛】本题考查了实数的运算法则,掌握负整指数幂,零指数幂的运算性质是解本题的关键.5、1【分析】根据算术平方根的计算方法求解即可.【详解】211-=.故答案为:1.【点睛】此题考查了求解算术平方根,解题的关键是熟练掌握算术平方根的计算方法.三、解答题1、(1)67a(2)0【分析】(1)先用同底数幂、幂的乘方、积的乘方运算,然后再合并即可;(2)先运用算术平方根、负整数次幂、绝对值、零次幂的知识化简各数,然后再计算即可.(1)解:原式=666347a a a +=;(2)解:原式=2-223-10.⨯+=【点睛】本题主要考查了整式的运算、实数的运算等知识点,灵活运用相关运算法则成为解答本题的关键.2、(1)-2(2)1【分析】(1)先分别计算开平方和开立方,再进行有理数的加、减混合计算即可;(2)先去绝对值,去括号,再进行实数的加、减混合计算即可;(1)1=+--0.5(2)2=-;2(2)-3(232=+=.1【点睛】本题考查实数的混合运算.掌握运算方法与运算顺序是解出本题的关键.3、4-【分析】直接根据有理数的乘方,算术平方根,立方根以及绝对值的性质化简各项,再进行加减运算得出答案.解:()202112-=1322---+=4-【点睛】本题主要考查了实数的运算,正确化简各数是解题的关键.4、x=5;y=2【分析】根据非负数的性质可得关于x 、y 的方程组,求解可得其值;【详解】解:由题意可得23160x y +-=,30x y --=联立得26163x y x y +=⎧⎨-=⎩ , 解方程组得:52x y =⎧⎨=⎩, ∴x 、y 的值分别为5、2.【点睛】此题考查的是非负数的性质,解二元一次方程组,掌握绝对值及算术平方根的非负性是解决此题的关键.5、1【分析】分别根据数的开方法则、0指数幂及负整数指数幂的计算法则计算出各数,再进行加减运算即可.()20152π-⎛⎫-+ ⎪⎝⎭214=--+1=【点睛】本题考查的是实数的运算,熟知数的开方法则、0指数幂及负整数指数幂的计算法则是解答此题的关键.6、(1)-3(2)-6x(3)4y-3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(1)解:原式18(1)3=---+1813=-++3=-;(2)解:原式243459(6)(9)x y x y x y=⋅-÷234415(969)x y+-+-=-⨯÷(3)解:233222(86)2x y x y z x y-÷232232228262x y x y x y z x y=÷-÷43y xz=-.【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab)n=a n b n运算法则,整式的除法,理解a0=1(a≠0),1ppaa-=(a≠0),牢记法则是解题关键.7、(1)-7;(2)x=9.【分析】(1)直接利用绝对值的性质、零指数幂的性质、负整数指数幂的性质分别化简得出答案;(2)直接去分母,移项合并同类项解方程即可.【详解】解:(1)原式=﹣9﹣1+2﹣9×(﹣19)=﹣9﹣1+2+1=﹣7;(2)去分母得:2x﹣3(1+x)=﹣12,去括号得:2x﹣3﹣3x=﹣12,移项得:2x﹣3x=﹣12+3,合并同类项得:﹣x=﹣9,系数化1得:x=9.【点睛】此题主要考查了实数运算以及一元一次方程的解法,正确掌握相关运算法则是解题关键. 8、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a 2=16,b 3=27,∴a =±4,b =3.当a =4,b =3时,a b =43=64.当a =﹣4,b =3时,a b =(﹣4)3=﹣64.综上:a b =64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.9、(1(2)5x =或13x =-【分析】(1)分别计算算术平方根、立方根、绝对值,再进行加减即可;(2)根据平方根的意义,计算出x 的值.【详解】解:(1)原式321=-+=(2)由平方根的意义得:49x +=或4-9x +=∴5x =或13x =-.【点睛】本题考查了平方根意义和实数的运算.题目难度不大,掌握平方根、立方根、绝对值的意义是解决本题的关键.10、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】2021π+--2(1)=3﹣(π﹣+(﹣1)﹣=3﹣π+1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.。
沪教版(上海)七年级数学第二学期第十二章实数章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1) A .12 B .4 C .﹣4 D .﹣122、在下列四个实数中,最大的数是( )A .0B .﹣2C .2 D3、估计1的值在( )A .5到6之间B .6到7之间C .7到8之间D .8到9之间4、64的立方根为( ).A .2B .4C .8D .-25、在0(2)-,38, 0, 9, 34, 0.010010001……, 2π, -0.333…, 5, 3.1415,2.010101…(相邻两个1之间有1个0)中,无理数有( )A .2个B .3个C .4个D .5个6、100的算术平方根是( )A .10B .10-C .10±D .107、若|321|a b --a 、b 的值为( )A .14a b =⎧⎨=⎩B .20a b =⎧⎨=⎩C .02a b =⎧⎨=⎩D .11a b =⎧⎨=⎩ 8、16的平方根是( )A .±8B .8C .4D .±49、如果x >1,那么x ﹣1,x ,x 2的大小关系是( )A .x ﹣1<x <x 2B .x <x ﹣1<x 2C .x 2<x <x ﹣1D .x 2<x ﹣1<x10、观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…根据上述算式中的规律,你认为2810的末位数字是( )A .2B .4C .8D .6第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD 是由四个长都为a ,宽都为b (a >b )的小长方形拼接围成的.已知每个小长方形的周长为18,面积为454,我们可以通过计算正方形ABCD 面积的方法求出代数式a ﹣b 的值,则这个值为 _____.2_____,127的立方根是__________.3、若a b <,且a ,b 是两个连续的整数,则a b +的值为______.4、若规定“※”的运算法则为:1a b ab =-※,例如:23231 5.=⨯-=※则(1)1-※ =_________.5、已知a ,b 是有理数,且满足()220ab -,那么a =________,b =________.三、解答题(10小题,每小题5分,共计50分)1、已知a ,b 互为相反数,c ,d 互为倒数,x 的立方等于﹣8,求3(a +b )+cd +x 的值.2、计算:()0226π-++3、如果一个自然数M 的个位数字不为0,且能分解成A B ⨯,其中A 与B 都是两位数,A 与B 的十位数字相同,个位数字之和为8,则称数M 为“风雨数”,并把数M 分解成M A B =⨯的过程,称为“同行分解”.例如:5722226=⨯,22和26的十位数字相同,个位数字之和为8,572∴是“风雨数”.又如:2341813=⨯,18和13的十位数字相同,但个位数字之和不等于8,234∴不是“风雨数”.(1)判断195,621是否是“风雨数”?并说明理由;(2)把一个“风雨数”M 进行“同行分解”,即M A B =⨯,A 与B 之和记为()P M ,A 与B 差的绝对值记为()Q M ,令()()()P M G M Q M =,当()G M 能被8整除时,求出所有满足条件的M .4、如图,数轴的原点为O ,点A 、B 、C 是数轴上的三点,点B 对应的数是1,AB =6,BC =2,动点P 、Q 同时分别从A 、C 出发,分别以每秒3个单位长度和每秒1个单位长度的速度沿数轴正方向运动.设运动时间为t 秒(t >0).(1)点A 表示的数为 ,点C 表示的数为 ;(2)求t 为何值时,点P 与点Q 能够重合?(3)是否存在某一时刻t ,使点O 平分线段PQ 且点P 与点Q 在原点的异侧?若存在,请求出满足条件的t 值.若不存在,请说明理由.5、现有两种给你钱的方法:第一种方法是每天给你1元,一直给你10年;第二种方法是第一天给你1分钱,第2天给你2分钱,第3天给你4分钱,第4天给你8分钱,第5天给你16分钱,以此类推,给你20天.哪一种方法得到的钱数多?请说明理由.(1年按365天计算)6、求下列各数的立方根:(1)729(2)10227- (3)125216- (4)3(5)-7、计算:0120161)()(1)2π----.8、计算:(12(2)2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭9、如图是一个无理数筛选器的工作流程图.(1)当x 为16时,y 值为______;(2)是否存在输入有意义的x值后,却始终输不出y值?如果存在,写出所有满足要求的x值;如果不存在,请说明理由;(3)如果输入x值后,筛选器的屏幕显示“该操作无法运行”,请你分析输入的x值可能是什么情况?(4)当输出的y x值是否唯一?如果不唯一,请写出其中的三个.10、计算:(1)3173 ()()()5454 ---+--;(22)2.-参考答案-一、单选题1、B【分析】根据算术平方根和立方根的计算法则进行求解即可.【详解】844-=,故选B.【点睛】本题主要考查了求算术平方根和立方根,解题的关键在于能够熟练掌握立方根和算术平方根的求解方法.2、C【分析】先根据正数大于0,0大于负数,排除A,B,然后再用平方法比较2【详解】解:正数0>,0>负数,∴排除A,B,=,224=,23∴>,432∴>∴最大的数是2,故选:C.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.3、C【分析】将根号部分平方后得44即可看出364449<<,由此可判断其在6到7之间,再利用不等式的性质进行求解判断即可.【详解】∵244=,∴364449<<,∴67<,∴718<<.故选:C.【点睛】本题考查二次根式的估值,关键在于利用平方法找到其大概的取值范围.4、B【分析】根据立方根的定义进行计算即可.【详解】解:∵43=64,∴实数64,故选:B .【点睛】本题考查立方根,理解立方根的定义是正确解答的关键.5、C【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】解:0(=1,,2π1之间有1个0)共4个. 故选:C .【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.6、A【分析】 根据算术平方根的概念:一个正数x 的平方等于a ,即2x a =,那么这个正数x 就叫做a 的算术平方根,即可解答.【详解】解:∵2(10)100±=,100>,100-<(舍去)∴100的算术平方根是10,故选A .【点睛】本题考查了算术平方根,解题的关键是熟练掌握算术平方根的概念.7、D【分析】首先根据绝对值的性质和二次根式的性质得到3210,20a b a b --=+-=,然后解方程组求解即可.【详解】解:∵|321|a b --∴|321|a b --0,∴321020a b a b --=⎧⎨+-=⎩①②, 2⨯②得:2240a b +-=③,①+③得:550a -=,解得:1a =,将1a =代入①得:31210b ⨯--=,解得:1b =.故选:D .【点睛】此题考查了绝对值的性质,二次根式的性质,相反数的性质以及解二元一次方程组等知识,解题的关键是根据题意得出关于a 、b 的方程组321020a b a b --=⎧⎨+-=⎩并求解. 8、D【分析】根据平方根可直接进行求解.【详解】解:∵(±4)2=16,∴16的平方根是±4.故选:D .【点睛】本题主要考查平方根,熟练掌握求一个数的平方根是解题的关键.9、A【分析】根据1x >,即可得到111x x-=<,2x x >,由此即可得到答案. 【详解】解:∵1x >, ∴111x x-=<,2x x >, ∴12x x x -<<,故选A.【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法.10、B【分析】经过观察如果2的次数除以4,余数为1,那末尾数就是2;如果余数是2,那末尾数是4;如果余数为3,那末尾数是8;如果余数是0,那末尾数是6.用810÷4=202…2,余数是2故可知,末尾数是4.【详解】2n的个位数字是2,4,8,6循环,所以810÷4=202…2,则2810的末位数字是4.故选:B.【点睛】本题考查了与实数运算相关的规律题,找到2n的末位数的循环规律是解题的关键.二、填空题1、6【分析】先求出小正方形面积=大正方形的面积减去4个长方形的面积,然后进行计算即可.【详解】解:由题意得:2(a+b)=18,ab=454,∴a+b=9,∴(a ﹣b )2=(a +b )2﹣4ab=81﹣45=36,又∵a >b ,∴a ﹣b =6,故答案为:6.【点睛】本题考查乘法公式的变形计算,平方根计算,掌握公式变形的方法用面积法,利用数形结合思想将问题简单化是解题关键2、9【分析】根据相反数,算术平方根,立方根,平方根,倒数,绝对值的定义求出即可.【详解】的算术平方根是9,127=31()3的立方根是132=,故答案为:-9,13 【点睛】 本题考查了算术平方根,立方根,平方根,倒数等知识点的应用,主要考查学生的理解能力和计算能力.3、7【分析】a 和b 的值,即可求解.【详解】解:∵34,∴a =3,b =4,∴a +b =7.故答案为:7.【点睛】的取值范围是解题关键.4、-2【分析】依据定义的运算法则列式计算即可.【详解】(1)1-※=(1)11-⨯-=-2故答案为:-2.【点睛】本题考查了新定义下的实数运算,理解新定义的运算法则并列式是解题的关键.5、-2 -1【分析】利用平方与算术平方根的非负性即可解决.【详解】∵2(2)0ab -≥0≥,且()220ab -=∴20-=ab ,10b +=∴2a =-,1b =-故答案为:-2,-1【点睛】本题考查了有理数的平方的非负性质及算术平方根的非负性质,即几个非负数的和为零,则这几个数都为零.掌握这个性质是本题的关键.三、解答题1、-1【分析】由题意可知0a b +=,1cd =,38x =-,2x =-,将值代入即可.【详解】解:由题意得:0a b +=,1cd =;38x =-解得2x =-∴()330121a b cd x +++=⨯++-=-.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.2、3【分析】利用零指数幂的意义、绝对值的意义、立方根的意义计算即可.【详解】解:原式=1243++=【点睛】此题考查了实数的混合运算,掌握相应的运算法则和运算顺序是解答此题的关键.3、(1)195是“风雨数”,621不是“风雨数”,理由见解析;;(2)567或575或4092或4095【分析】()1根据新定义的“风雨数”即可得出答案;()2设A 的十位数为a ,个位数为b ,则B 为108a b +-,根据()G M 能被8整除求出a 的可能的值,再由a 的值求出b 的值即可得出答案.【详解】解:()11951315=⨯,且358+=,195∴是“风雨数”,6212327=⨯,378+≠,621∴不是“风雨数”;()2设10A a b =+,则108B a b =+-,208A B a ∴+=+,28A B b -=-, A B A B+-能被8整除, 208828a kb +∴=-,k 为整数, ()5244a b k ∴+=-,52a ∴+是4的倍数,∴满足条件的a 有2,6,若2a =,则48828k b =-,k 为整数, 34k b ∴=-,4b ∴-是3的因数,43b ∴-=-,1-,1,3,∴满足条件的b 有1,3,5,7,21A ∴=,27B =或23A =,25B =或25A =,23B =或27A =,21B =,567A B ∴⨯=或575,若6a =,则128828k b =-,k 为整数, 84k b ∴=-, 4b ∴-是8的因数,48b ∴-=-,4-,2-,1-,1,2,4,8,∴满足条件的b 有2,3,5,6,62A ∴=,66B =或63A =,65B =或65A =,63B =或66A =,62B =,62664092A B ∴⨯=⨯=或4095,综上,M 的值为567或575或4092或4095.【点睛】本题是新定义题,主要考查了列代数式,一元一次方程的应用,关键是准确理解“风雨数”含义,能把A 和B 用含a 和b 的式子表示出来.4、(1)-5,3;(2)t =4;(3)存在,t =0.5,理由见解析.【分析】(1)由点B 对应的数及线段AB 、BC 的长,可找出点A 、C 对应的数;(2)根据点P 、Q 的出发点、速度及方向,由追击的等量关系列出含t 的方程,解方程即可;(3)由题意得OP =OQ ,据此列一元一次方程,解此方程即可.【详解】解:(1)1-6=-5,1+2=3即点A表示的数为 -5,点C表示的数为3,故答案为:-5,3;(2)若点P与点Q能够重合,则AP-CQ=AC,即3t-t=82t=8t=4答:当t=4时,点P与点Q能够重合.(3)存在,理由如下:若点O为PQ中点,且点P与点Q在原点的异侧,即OP=OQ5-3t=3+t4t=2t=0.5答:当t=0.5时,点O平分线段PQ且点P与点Q在原点的异侧.【点睛】本题考查一元一次方程的应用、数轴等知识,难度一般,是重要考点,掌握相关知识是解题关键.5、第二种,理由见解析【分析】根据题意,先计算第一种方法给的钱数,即每天的钱数乘以天数;再计算第二种方法给的钱数,但要总结规律可得第n天可得2n-1元钱.即可得总数,然后比较大小即可知哪种方案得到的多.【详解】解:第一种方法:1×10×365=3650元第二种方法:1+2+22+23+24+…+219=220-1=1048575分=10485.75元∵10485.75>3650∴第二种方法得到的钱多.【点睛】本题考查了数字的规律,以及有理数的混合运算,涉及到比较数的大小.考查了找数字的规律的问题,做此类问题,需要认真审题,找出规律,从特殊到一般,归纳总结规律,是解决此类问题的关键所在.6、(1)9;(2)43-;(3)56-;(4)-5【分析】根据立方根的定义,找到一个数,使其立方等于已知的数,从而可得答案.【详解】解:(1)因为93=729,所以729的立方根是9;(2)106422727-=-,因为3464()327-=-,所以6427-的立方根是43-43=-; (3)因为35125()6216-=-,所以125216-的立方根是56-56=-;(45=-.【点睛】本题考查的是求解一个数的立方根,掌握“利用立方根的含义求解一个数的立方根”是解本题的关键.7、1【分析】直接利用零指数幂的性质以及立方根的性质、负整数指数幂的性质、有理数的乘方运算法则分别化简,再利用有理数的加减运算法则计算得出答案.【详解】解:0120161)()(1)2π---- =1+3﹣2﹣1=1.【点睛】本题主要考查了实数的混合运算,熟练掌握相关运算法则是解答本题的关键.8、(1)2;(2)1x -【分析】(1)原式先化简绝对值、二次根式以及立方根,然后再进行外挂;(2)原式先计算括号内的,再把除法转化为乘法,再进行约分即可.【详解】解:(12=2)|3|(3)-----=233-+=2;(2)2111x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭=2211 x x xx x -+-÷=2 (1)1 x xx x--=1x-.【点睛】本题主要考查了实数的混合运算以及分式的加减乘除混合运算,掌握运算法则是解答本题的关键.9、(1(2)0,1(3)x<0(4)x=3或x=9或x=81.【分析】(1)根据运算规则即可求解;(2)根据0的算术平方根是0,即可判断;(3)根据二次根式有意义的条件,被开方数是非负数即可求解;(4)根据运算法则,进行逆运算即可求得无数个满足条件的数.(1)解:当x=162,则y;.(2)解:当x=0,1时,始终输不出y值.因为0,1的算术平方根是0,1,一定是有理数;(3)解:当x<0时,导致开平方运算无法进行;(4)解:x的值不唯一.x=3或x=9或x=81.【点睛】本题考查了算术平方根及无理数,正确理解给出的运算方法是关键.10、(1)52-(2)8-【分析】(1)根据有理数的混合运算进行计算即可;(24-,进而根据有理数的混合运算进行计算即可【详解】(1)原式37135544⎡⎤⎛⎫⎛⎫=-+-+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦15222=--=-(2)原式4164448=--÷=--=-【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.。
第十一章 实数(A 卷)一、填空题(每空2分,共30分)1.一个正数的正的平方根叫做这个数的___________;2.任何正数的两个平方根的和等于___________;3.若492=x ,则x=___________;4. 9的平方根是___________;5.=532___________;6.0.0001的四次方根是___________;7.75-的绝对值是___________;8.23与32的大小关系是3_2__________23;9.已知42.371402=且3742.0=x ,则x=___________; 10.22)11()11(-+-等于___________。
11.如果a 的平方根是a ,则=a _______;如果a 的算术平方根是a ,则=a _______.12.当a ≥0时,2a =______;当a <0时,2a =_______.13.请你观察、思考下列计算过程:因为121112=,所以11121=,同样,因为123211112=,所以11112321=…由此猜想76543211234567898=_________________.二、选择题(每题2分,共12分)1.下列各式中正确的是()A .749±=B .864-=-C .3)3(2-=-D .283-=-2.无理数是()。
A .带根号的数B .无限循环小数C .无限不循环小数D .开不尽方的数3.下列说法正确的是()。
A .4的算术平方根是±2B .3是9的算术平方根C .0.2是0.4的平方根D .2)2(-的平方根是-24.若22)5(-=a ,33)5(-=b ,则a+b 的所有可能值是()。
A .0B .-10C .0或-10D .0或10或-105、若0)2(1)3(22=-+++-z y x 则x+y+z 等于()。
A .-4B .0C .4D .不能确定6、若52+=x ,则642+-x x 的值等于()。
沪教版(上海)七年级数学第二学期第十二章实数章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在下列四个实数中,最大的数是()A.0 B.﹣2 C.2 D2、下列各数中,最小的数是()A.0 B C.π-D.﹣33、下列说法正确的是()A B.绝对值最小的实数不存在C.两个无理数的和不一定是无理数D.有理数与数轴上的点一一对应4a a的值不可能为()A.2 B.3 C.4 D.55、若一个数的算术平方根与它的立方根的值相同,则这个数是()A.1 B.0和1 C.0 D.非负数6、下列语句正确的是()A .8的立方根是2B .﹣3是27的立方根C .125216的立方根是±56D .(﹣1)2的立方根是﹣17、3的算术平方根为( )A B .9 C .±9 D 8、对于两个有理数a 、b ,定义一种新的运算:1b a b a ab ⊕=++,若20m ⊕=,则2m ⊕的值为( )A .32-B .3-C .0D .12- 9、下列说法中,正确的是( )A .无限小数都是无理数B .数轴上的点表示的数都是有理数C .任何数的绝对值都是正数D .和为0的两个数互为相反数10 )A .2B .3C .4D .5第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、实数16的平方根是___,5的立方根记作___.2、在实数范围内因式分解:y 2﹣2y ﹣1=__________________.3、2_____________.4、已知a 、b 两个实数在数轴上的对应点如上图所示:请你用“>”或“<”完成填空:(1)a ________b ;(2)a ________b ;(3)a b +________0;(4)b a -________0;(5)a b +________-a b ;(6)⋅a b ________b5、若a 、b 为实数,且满足|a-=0,则a-b 的值为_____三、解答题(10小题,每小题5分,共计50分)12021(1)π+-2、如图1,依次连接2×2方格四条边的中点,得到一个阴影正方形,设每一方格的边长为1个单(1)图1中阴影正方形的边长为 ;点P 表示的实数为 ;(2)如图2,在4×4方格中阴影正方形的边长为a .①写出边长a 的值.②请仿照(1)中的作图在数轴上表示实数﹣a +1.3、已知a ,b 互为相反数,c ,d 互为倒数,x 的立方等于﹣8,求3(a +b )+cd +x 的值.4、计算:(1)3173()()()5454---+--;(22)2.5、(1)计算:3;(2)求x 的值:239x = .6、已知a 2=16,b 3=27,求a b 的值.7、阅读材料,回答问题.下框中是小马同学的作业,老师看了后,找来小马.问道:“小马同学,你标在数轴上的两个点对应题中两个无理数,是吗?”小马点点头.老师又说:“你这两个无理数对应的点找得非常准确,遗憾的是没有完成全部解答.”请把实数|﹣12|,﹣π,﹣42表示在数轴上,并比较它们的大小(用<号连接). 解:请你帮小马同学将上面的作业做完. 8、计算下列各题:(1)0320211(2021)()(1)|3|2π--+---+-;(2)22345(3)(6)(9)xy x y x y -⋅-÷.(3)233222(86)2x y x y z x y -÷.9、已知一个正数x 的平方根是a +3和2a -15,求a 和x 的值10、(1(2+(3)解方程)(2924x -=(4)解方程组22225x yx y-=⎧⎨+=⎩-参考答案-一、单选题1、C【分析】先根据正数大于0,0大于负数,排除A,B,然后再用平方法比较2【详解】解:正数0>,0>负数,∴排除A,B,224=,23=,43∴>,2∴>∴最大的数是2,故选:C.【点睛】本题考查了实数的大小比较,算术平方根,熟练掌握用平方法来比较大小是解题的关键.2、C【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】 解:30π-<-<∴所给的各数中,最小的数是π-.故选:C .【点睛】本题主要考查了有理数大小比较的方法,解题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.3、C【分析】利用正无理数,绝对值,以及数轴的性质判断即可.【详解】解:A 、不存在最小的正无理数,不符合题意;B 、绝对值最小的实数是0,不符合题意;C 、两个无理数的和不一定是无理数,例如:()0ππ+-=,符合题意;D 、实数与数轴上的点一一对应,不符合题意.故选:C .【点睛】本题考查了实数的运算,实数与数轴,解题的关键是熟练掌握各自的性质.4、D【分析】a 可能的值,判断求解即可.【详解】,a,∴整数a可能的值为:2,3,4,∴整数a的值不可能为5,故选:D.【点睛】此题考查了无理数的估算,解题的关键是熟练掌握无理数的估算方法.5、B【分析】根据立方根和算术平方根的性质可知,立方根等于它本身的实数0、1或-1,算术平方根等于它本身的实数是0或1,由此即可解决问题.【详解】解:∵立方根等于它本身的实数0、1或−1,算术平方根等于它本身的数是0和1,∴一个数的算术平方根与它的立方根的值相同的是0和1,故选B.【点睛】主要考查了立方根,算术平方根的性质.牢牢掌握立方根和算术平方根等于它本身的实数是解答本题的关键点.6、A【分析】利用立方根的运算法则,进行判断分析即可.【详解】解:A 、8的立方根是2,故A 正确.B 、3是27的立方根,故B 错误.C 、125216的立方根是56,故C 错误.D 、(﹣1)2的立方根是1,故D 错误.故选:A .【点睛】本题主要是考查了立方根的运算,注意一个数的立方根只有一个,不是以相反数形式存在的.7、A【分析】利用算术平方根的定义求解即可.【详解】3故选:A .【点睛】本题考查的是算术平方根的概念,属于基础题目,掌握算术平方根的概念是解题的关键.8、D【分析】根据新定义的运算法则得到()210m +=,求解m 的值,再按照新定义对2m ⊕进行运算即可.【详解】 解: 1b a b a ab ⊕=++,∴ 22210m m m ⊕=++=,210m ,解得:1,m =-()()111=2122111.222m -⊕⊕-=+⨯-+=-=-∴ 故选D【点睛】本题考查的是新定义运算,完全平方公式的应用,负整数指数幂的含义,理解新定义,按照新定义的运算法则进行运算是解本题的关键.9、D【分析】根据实数的性质依次判断即可.【详解】解:A.∵无限不循环小数才是无理数.∴A 错误.B.∵数轴上的点也可以表示无理数.∴B 错误.C.∵0的绝对值是0,既不是正数也不是负数.∴C 错误.D.∵和为0的两个数互为相反数.∴D 正确.故选:D .【点睛】本题考查了无理数的定义,实数与数轴的关系,绝对值的性质,以及相反数的定义,熟练掌握各知识点是解答本题的关键.10、A【分析】根据无理数的估算先判断23< 2.5=,6.255> 2.5<,即可求得答案【详解】解:23< 2.5=,6.255>,∴2< 2.5< 2故选A【点睛】本题考查了无理数的估算,掌握无理数的估算是解题的关键.二、填空题1、4± 13【分析】分别根据平方根、算术平方根、立方根的定义依次可求解.【详解】解:实数16的平方根是4±,13,5故答案为:4±,13【点睛】本题主要考查了立方根、平方根、算术平方根的定义.用到的知识点为:一个正数的正的平方根叫做这个数的算术平方根;一个正数的平方根有2个;任意一个数的立方根只有1个.2、(y ﹣1)(y ﹣1)【分析】变形整式为y2﹣2y+1﹣2,前三项利用完全平方公式,再利用平方差公式因式分解.【详解】解:y2﹣2y﹣1=y2﹣2y+1﹣2=(y﹣1)22=(y﹣1)(y﹣1).故答案为:(y﹣1(y﹣1.【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式因式分解的方法是解题的关键.3、3【分析】【详解】解:132<<,2∴3,故答案为3.【点睛】本题考查了估算无理数的大小,解题的关键是熟练掌握求一个数的平方.4、<><>><【分析】根据数轴可知:b>0,a<0,根据绝对值的非负性得|a|>|b|,即可得.【详解】解:∵由数轴可知:b>0,a<0,|a|>|b|,∴(1)a<b,(2)|a|>|b|,(3)a+b<0,(4)b−a>0,(5)a+b>a−b,(6)a b b<,故答案为:(1)<;(2)>;(3)<;(4)>;(5)>;(6)<.【点睛】本题考查了数轴与实数,绝对值的非负性,解题的关键是掌握绝对值的非负性.5、2【分析】根据非负性的性质解答,当两个非负数相加,和为0时,必须满足其中的每一项都等于0.【详解】解:∵|a-,∴a-3=0,b-1=0,∴a=3,b=1,∴a-b=3-1=2.故答案为2.【点睛】本题考查了非负数的性质,涉及绝对值的性质,算术平方根的性质,有理数的减法.掌握几个非负数的和为0时,这几个非负数都为0是解题的关键.三、解答题1、2﹣π.【分析】根据题意利用算术平方根性质和去绝对值以及乘方运算先化简各式,然后再进行计算.【详解】20212(1)π+--=3﹣(π﹣+(﹣1)﹣=3﹣π+1﹣=2﹣π.【点睛】本题考查含乘方和算术平方根的实数运算,熟练掌握利用算术平方根性质和去绝对值以及乘方运算法则进行化简是解题的关键.2、(1;(2【分析】(1)先利用大正方形的面积减去四个三角形的面积可得正方形ABCD 的面积,再求其算术平方根即可得;(2)①先利用大正方形的面积减去四个三角形的面积可得阴影部分正方形的面积,再求其算术平方根即可得;②由数轴上表示1的点为圆心画弧,与数轴负半轴的交点表示的数即为1a -+.【详解】解:(1)正方形ABCD 的面积为:12241122⨯-⨯⨯⨯=,正方形ABCD ,AB =AP AB ∴==由题意得:点P 表示的实数为:1,1(2)①阴影部分正方形面积为:144413102⨯-⨯⨯⨯=,求其算术平方根可得:a =②如图所示:点M 表示的数即为1a -+.【点睛】本题考查了割补法求面积以及实数与数轴等知识,熟练掌握割补法求面积是解题的关键.3、-1【分析】由题意可知0a b +=,1cd =,38x =-,2x =-,将值代入即可.【详解】解:由题意得:0a b +=,1cd =;38x =-解得2x =-∴()330121a b cd x +++=⨯++-=-.【点睛】本题考查了相反数,倒数,立方根等知识点.解题的关键在于正确理解相反数,倒数,立方根的概念与应用.4、(1)52-(2)8-【分析】(1)根据有理数的混合运算进行计算即可;(24-,进而根据有理数的混合运算进行计算即可【详解】(1)原式37135544⎡⎤⎛⎫⎛⎫=-+-+-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦15222=--=-(2)原式4164448=--÷=--=-【点睛】本题考查了求一个数的立方根,有理数的混合运算,正确的计算是解题的关键.5、(1)0;(2)x=【分析】(1)根据立方根和平方根的性质化简,再计算加法,即可求解;(2)先将系数化为1,再利用平方根的性质,即可求解.【详解】解:(1)3.原式=-2+2=;(2)239x=∴23x=解得:x=.【点睛】本题主要考查了立方根和平方根的性质,熟练掌握()230,a a a >== 是解题的关键.6、64或﹣64【分析】根据平方根、立方根、有理数的乘方解决此题.【详解】解:∵a 2=16,b 3=27,∴a =±4,b =3.当a =4,b =3时,a b =43=64.当a =﹣4,b =3时,a b =(﹣4)3=﹣64.综上:a b =64或﹣64.【点睛】本题主要考查立方根、平方根及有理数的乘方运算,熟练掌握立方根、平方根及有理数的乘方运算是解题的关键.7、图见解析,﹣4<﹣π<|﹣12|<2【分析】根据π-【详解】把实数|12-|,π-,4-2表示在数轴上如图所示,4-<π-<|12-|<2 【点睛】本题考查用数轴比较点的大小,根据题意先确定原点是解题的关键.8、(1)-3(2)-6x(3)4y -3xz【分析】(1)先化简零指数幂,负整数指数幂,有理数的乘方,绝对值,然后再计算;(2)先利用积的乘方运算法则计算乘方,然后利用整式乘除法运算法则从左往右依次计算.(3)根据多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加.(1)解:原式18(1)3=---+1813=-++3=-;(2)解:原式243459(6)(9)x y x y x y =⋅-÷234415(969)x y +-+-=-⨯÷6x =-;(3)解:233222(86)2x y x y z x y -÷232232228262x y x y x y z x y =÷-÷【点睛】本题考查整式的混合运算,负整数指数幂,零指数幂,掌握积的乘方(ab )n =a n b n 运算法则,整式的除法,理解a 0=1(a ≠0),1p paa -=(a ≠0),牢记法则是解题关键. 9、4,49【分析】根据一个正数有2个平方根,它们互为相反数,再列方程,解方程即可得到答案.【详解】解:∵正数有2个平方根,它们互为相反数,∴32150a a ++-=,解得4a =,所以2(3)49x a =+=.【点睛】本题考查的是平方根的含义,掌握“一个正数有两个平方根且两个平方根互为相反数”是解本题的关键.10、(1)4-;(2)(3)72x =或12x =;(4)321x y ⎧=⎪⎨⎪=⎩. 【分析】(1)先计算算术平方根与立方根,再计算加减法即可得;(2)先化简绝对值,再计算实数的加减法即可得;(3)利用平方根解方程即可得;(4)利用加减消元法解二元一次方程组即可得.解:(1)原式()23=+-233=--4=-;(2)原式==(3))(2924x -=, 322x -=±, 322x =±, 72x =或12x =; (4)22225x y x y -=⎧⎨+=⎩①②, 由②-①得:33y =,解得1y =,将1y =代入①得:212x -=, 解得32x =, 故方程组的解为321x y ⎧=⎪⎨⎪=⎩. 【点睛】本题考查了算术平方根与立方根、实数的加减、解二元一次方程组等知识点,熟练掌握各运算法则和方程组的解法是解题关键.。
第十一章 实数(A 卷)一、填空题(每空2分,共30分)1.一个正数的正的平方根叫做这个数的___________;2.任何正数的两个平方根的和等于___________;3.若492=x ,则x=___________;4. 9的平方根是___________;5.=532___________;6.0.0001的四次方根是___________;7.75-的绝对值是___________;8.23与32的大小关系是3_2__________23;9.已知42.371402=且3742.0=x ,则x=___________;10.22)11()11(-+-等于___________。
11.如果a 的平方根是a ,则=a _______;如果a 的算术平方根是a ,则=a _______.12.当a ≥0时,2a =______;当a <0时,2a =_______.13.请你观察、思考下列计算过程:因为121112=,所以11121=,同样,因为123211112=,所以11112321=…由此猜想76543211234567898=_________________.二、选择题(每题2分,共12分)1.下列各式中正确的是()A .749±=B .864-=-C .3)3(2-=-D .283-=-2.无理数是()。
A .带根号的数B .无限循环小数C .无限不循环小数D .开不尽方的数3.下列说法正确的是()。
A .4的算术平方根是±2B .3是9的算术平方根C .0.2是0.4的平方根D .2)2(-的平方根是-24.若22)5(-=a ,33)5(-=b ,则a+b 的所有可能值是()。
A .0B .-10C .0或-10D .0或10或-105、若0)2(1)3(22=-+++-z y x 则x+y+z 等于()。
A .-4B .0C .4D .不能确定6、若52+=x ,则642+-x x 的值等于()。
第十二章实数单元测试卷
一、选择题(每题3分,满分18 分)
1. 若一个数的平方根等于它的立方根,则这个数是 ................ ( )
A. 1
B.-1
C. 1
D.0
2. 下列说法中正确的是 ....................................... ( )
3. 下列计算中正确的是
5. 下列说法正确的是
A. 一个正数的平方根一定小于这个正数。
B. 任何非负数都有两个平方根。
C. 1的n 次方根都是1.
D. 若a 是b 的立方根,那么-a 一定是-b 的立方根
6. 有如下说法:①一个实数的立方根不是正数就是负数。
②一个数的立方根的相 反数等于这个数的相反数的立方根。
③如果一个数的立方根是它的本身,那么这 个数是1或0④一个无理数不是正数就是负数。
其中,错误的有 ……(
) A.0个 B.1 个 C.2 个 D.3
个
二、填空题:(每题2分,满分24分)
7. 屈的平方根是 3 ___________ ; ( -)2算术平方根是
2
1
A.27的立方根是3,记作27 =3
B.-25的算术平方根是5
C.a 的三次方根是 3 a
D.正数a 的算术平方根是.a
1
A. 121 2 11 B •(群 8 1
C.0.0001" 32 5
D.5 2 81 2 9
25
4.若a 为实数,且,a 2 a ,则实数a 在数轴上的对应点在
A.原点左侧
B.原点或原点左侧
C.原点右侧
D.原点或原点右侧
8. 0.064 的立方根是___0.4 _________________ .- J16 的立方根是
_ V4 __________________ .
9. 若J X的平方根是2,则x=__4 _________________ .
10. 近似数8.8 104精确到_____ 千____________ ,它有 _________ 2 ___ 有效数字。
11. 数轴上点M N所表示的数依次是和2,那么M N两点间的距离是
12. 比较大小:①2 J3 ________ 3迈②应__________ V?
13. 若V5 2.236 ,750 7.071,贝卩<0.005 _____________________ ;若站8.962 2.077,V X 20.77,贝卩x _______________________ .
14. 实数上3
分数(填“是”或“不是”);0.1010010001是
(填
7
“有理数”或“无理数”)
15. 一个正数的两个平方根分别是5a 1和a 7 ,则这个数是__________________
16. 用分数指数幕表示:①哲歹②丄=
5 73
17•①计算:(1 <2)2010(1 72)2011= ______________
②化简:J&15 4)2= __________
18. 写出两个和为6的无理数,它们可以是 ______________ (写出一组即可).
三、简答题:(每题5分,满分40分)
19. 利用幕的性质计算:2.3 31.5 6 12
1 1
20.计算:(1 . 2)2 2 441)3(27)
21.计算:(J J (、5 10)2
22. 解方程:4( x 2)225
23. 已知实数a、b在数轴上的位置如图所示:
试化简:厲(a—b)2—丨a+ b |
24. 已知2a- 1的平方根是±3, 3a+2b+4的立方根是3,求a+b的平方根.
25. 已知x、y都是实数,且y .x 2 2x4,求y x的平方根
26. 已知a是5的整数部分,b是5的小数部分,求a(b .. 5)2的值.
2
27. 已知x 3— , y 23,求x3 y3 xy 的值
128
四、解答题(每题6分,满分18分)
28. 已知:一个正方形花坛的边长为5米,扩建后的正方形花坛比原来的面积增加了65平方米,求扩建后花坛的边长比原来的边长增加了多少米("0 3.162,结果保留2个有效数字)?
29. (1)先计算:(..2 1)2(2)试用(1)的逆运算思想化简:5 2.6
30.先计算下列各式
斯___________ 八___________ ,(135 _____________
V1 3 5 7 _______________ rv;1 3 5 7 9 ___________________ ,——,通过观察并
归纳,请写出能反映这种规律的一般结论,用含n的数学式子表示出来。