正电子湮没谱学-0017
- 格式:docx
- 大小:30.92 KB
- 文档页数:7
正电子湮没谱实验数据处理方法陈志权1. 正电子寿命谱分析方法:通常正电子湮没的寿命谱可以写为一到几个指数成分之和:∑==ni i I t L 1i(1) texp(-)(τ其中τi 及I i 为正电子在处于不同湮没态时的湮没寿命及其强度。
上式是在理想情况下的正电子寿命谱表达式。
在实际测量中,由于仪器存在时间分辨率,我们测量所得到的寿命谱变成了理想寿命谱与谱仪时间分辨函数的卷积:∑∫=∞′−′′−=ni t i t t d e t t R I N t Y i 1(2) )()(λN t 为实验测量寿命谱的总计数。
R(t)为谱仪的时间分辨函数。
通常认为是高斯函数形式:(3) 2log 2,1)(2)/(FWHM e t R t ==−σπσσ其中FWHM 为高斯函数的半高宽(Full Width at Half Maximum),σ为标准偏差。
则Y(t)可变换成如下的形式:(4) )/2/(21)(2)2/(1σσλσλλt erfc e I N t Y i t n i i t i i −=+−=∑其中,erfc(x)称为误差余函数,它的定义为:(5) 21)(1)(02dt e x erf x erfc xt∫−−=−=π在正电子寿命谱中,时间零点不是在t=0,而是在t 0处。
因此上式实际上为:(6) 2(21)(0)2/()(120σσλσλλt t erfc e I N t Y i t t n i i t i i −−=+−−=∑另外,在实际的正电子寿命谱测量中,Y(t)通常是以多道分析器(MCA)中每一道的计数来表示的。
为考虑道宽的影响,应建立每道中计数的数学表达式,即第j 道的计数Y j 应为从时间t j-1到t j 的积分,即为:(7) )(1dt t Y Y jj t t j ∫−=(8) )]()([201101,,σσλt t erf t t erf Y Y I Y j ni j j i j i iij −+−−−=−=−∑ 式中: (9) 2()2/()(,20σσλσλλt t erfc eY j i t t j i i j i −−=+−−利用高斯-牛顿非线性拟合算法,对实验测量的正电子寿命谱进行拟合,即可得到正电子在各个湮没态下的寿命τi及其强度I i。
正电子湮没寿命测量刘家威黄永明唐奥(四川大学物理科学与技术学院核物理专业四川成都610065)摘要:本实验利用22Na衰变放出的1.28MeV的γ射线及其放出的正电子在样品中湮灭放出的0.511MeV的γ射线测量正电子在样品中的寿命。
实验中使用快符合电路及恒比微分甄别器电路对两种γ射线的时间和能量信息进行甄别符合,采用时幅转换电路(TAC)将获得的时间信息转换为幅度信息,并输入到多道分析器中。
最后,利用POSFIT软件对获得的谱线进行解谱得到正电子在样品中的湮灭寿命。
关键词:正电子湮没寿命谱符合法恒比微分甄别器能窗调节Positron annihilation lifetime measurementLiu JiaWei Huang YongMing Tang Ao(Sichuan University,college of physical science and technology,in Chengdu,Sichuan610065) Abstract:Through utilizing theγradiation of22Na and theγradiation generated by the annihilation of positrons which is radiated by22Na,this experiment measures the annihilation lifetime of positrons in the sample material.In this experiment,the instruments of Fast Coincidence and CFD are used to analyze the timing and energy information of the two types ofγradiations.And the time information is finally changed to amplitude information by TAC and input into the Multi-channel Analyzer.The annihilation lifetime positrons can be gained through spectrum unfolding in POSFIT.Keywords:Positron annihilation Fast coincidence method Lifetime spectrum Constant ratio differential discriminator Energy window regulator引言:1928年,狄拉克发表论文称,电子能够具有正电荷与负电荷。
正电子湮灭谱测试
正电子湮灭谱(PES)测试是一种量子化学的实验,用于研究分子的电子结构和化学反应机理。
它通过检测正电子湮灭事件发生的能量和角度,可以测量分子电子态的能量和振动结构。
正电子湮灭谱测试的原理是,当一个正电子与分子中的核碰撞时,电子会从分子中湮灭,释放出能量。
这些能量,即电子湮灭的能量,是由正电子的能量转变为电子湮灭的角度和能量组成的。
正电子湮灭谱测试可以检测电子湮灭过程中释放的能量和角度,从而测量分子电子态的能量和振动结构。
正电子湮灭谱测试的典型实验装置包括一个正电子源,用于产生撞击分子的正电子;一个电子检测器,用于检测湮灭电子的能量和角度;一个谱仪,用于计算和显示湮灭电子的能量和角度;以及一个控制系统,用于控制测试过程。
正电子湮灭谱测试的结果可以用来研究分子的电子结构和化学反应机理。
它可以用来检测分子的振动模式,从而推断分子的结构和反应机理,以及研究物质的性质。
此外,正电子湮灭谱测试还可用于探索物质结构的变化,以及研究新的材料和分子的性质。
总之,正电子湮灭谱测试是一种量子化学的实验,用于研究分子的电子结构和化学反应机理。
它可以检测电子湮灭的能
量和角度,从而测量分子电子态的能量和振动结构。
研究人员可以利用正电子湮灭谱测试探索分子的结构和反应机理,以及研究新的材料和分子的性质。
正电子湮灭谱一种研究物质微观结构的方法。
正电子是电子的反粒子,两者除电荷符号相反外,其他性质(静止质量、电荷的电量、自旋)都相同。
正电子进入物质在短时间内迅速慢化到热能区,同周围媒质中的电子相遇而湮没,全部质量(对应的能量为2meс2)转变成电磁辐射──湮没γ光子(见电子对湮没)。
50年代以来对低能正电子同物质相互作用的研究,表明正电子湮没特性同媒质中正电子-电子系统的状态、媒质的电子密度和电子动量有密切关系。
随着亚纳秒核电子学技术、高分辨率角关联测量技术以及高能量分辨率半导体探测器的发展,可以对正电子的湮没特性进行精细的测量,从而使正电子湮没方法的研究和应用得到迅速发展。
现在,正电子湮没谱学已成为一种研究物质微观结构的新手段。
实验测量方法主要有正电子寿命测量、湮没γ角关联测量和湮没谱线多普勒增宽测量三类。
正电子寿命谱通常用22Na作正电子源,源强为几微居里到几十微居里。
测量设备类似核能谱学中常用的符合系统,称之为正电子寿命谱仪(见彩图),图1是快-快符合系统方框图。
谱仪时间分辨率一般为3×10-10s左右,最好的已达1.7×10-10s。
22Na放射的正电子入射到测试样品中,同其中的电子发生湮没,放出γ射线。
用1.27MeV的γ光子标志正电子的产生,并作为起始信号,511keV的湮没辐射γ光子标志正电子的“死亡”,并作为终止信号。
两个信号之间的时间就是正电子的寿命。
在凝聚态物体中,自由正电子湮没的平均寿命在(1~5)×10-10s范围内。
正电子湮没寿命谱(PALS)常被用来研究固体中的缺陷,尤其是半导体中的空位型缺陷。
邻位正电子的寿命取决于184个邻位正电子的寿命,而邻位正电子的寿命受邻位正电子周围空位缺陷的影响。
因此,PALS可以看作是一种时域特征描述技术。
双γ角关联图2是一维长狭缝角关联测量系统示意图。
正电子源通常为64Cu、22Na、Co,测量时相对于固定探头以z方向为轴转动另一探头,测出符合计数率随角度的分布,就可以得到电子在某个方向上的动量分布。
正电子湮没技术什么是正电子湮没技术?正电子湮没技术是一种用于研究材料结构和性质的重要实验手段,它利用正电子(也称作反电子)与电子相遇并湮灭的现象,通过观察湮没产生的γ射线和湮没产物的运动信息,来获取有关材料的相关信息。
正电子湮没的基本原理正电子是带有正电荷的电子,它与电子相遇后会发生湮灭现象。
在湮灭过程中,正电子和电子的质量全部转换为能量,直接以γ射线的形式释放出来。
正电子湮没技术利用γ射线的特性,通过测量γ射线的能谱和湮没产物的动量信息,来研究材料的物理和化学性质。
正电子湮没技术的应用正电子湮没技术在材料科学和物理学的研究中有着广泛的应用。
材料表面和界面研究正电子湮没技术可以用来研究材料的表面和界面性质。
通过测量湮没产生的γ射线能谱和湮没产物的动量信息,可以确定材料表面的电子态密度和表面缺陷的分布情况。
这对于了解材料的物理和化学性质,以及表面缺陷对材料性能的影响具有重要的意义。
密封材料研究正电子湮没技术可以用来研究密封材料的性能。
密封材料在各种工程应用中起着关键的作用,因此了解其性能和结构非常重要。
正电子湮没技术可以通过测量材料中正电子的湮没行为,来获取关于材料母体结构和密封性能的信息。
纳米材料研究正电子湮没技术在纳米材料研究中有着重要的应用。
纳米材料具有独特的物理和化学性质,其性能受到尺寸效应和界面效应的影响。
正电子湮没技术可以用来研究纳米材料的电子态密度分布、表面缺陷、界面结构等相关信息,进而揭示纳米材料的特殊性质和性能。
正电子湮没实验的步骤正电子湮没实验通常包括以下几个步骤:1.正电子产生:通过激光或者放射性同位素的衰变,产生正电子。
2.正电子注入材料:将产生的正电子注入到待研究的材料中。
3.正电子湮没:正电子与材料中的电子相遇并湮灭,在湮灭过程中产生γ射线。
4.γ射线测量:通过γ射线探测器测量湮没产生的γ射线的能谱。
5.动量分辨:通过动量分辨设备测量湮没产物的动量信息。
6.数据分析:对测量到的能谱和动量信息进行分析,提取材料的相关性质。
正电子湮没寿命谱测量1930年Dirac 从理论上预言了正电子的存在和1932年Anderson 在观察宇宙线中发现了正电子之后,揭开了研究物质和反物质相互作用的序幕。
1951年Deutsch 发现了正电子和电子构成的束缚态—正电子素的存在更加深了对正电子物理的研究工作,同时,也开展了许多应用研究工作,形成了一门独立的课题正电子湮没谱学。
随着对正电子和正电子素及其与物质相互作用特性的深入了解,使正电子湮没技术在原子物理、分子物理、固态物理、表面物理、化学及生物学、医学等领域得到广泛应用,并取得独特的研究成果。
它在诸如检验量子电动力学基本理论、研究弱相互作用、基本对称性及天体物理等基础科学中也发挥了重要作用。
同时,随着人们对正电子湮没技术方法学上研究的深入进展,使这一门引人注目的新兴课题得到更快的发展。
经过本实验的训练,可望初步掌握基本原理、实验测量技术、数据处理和分析,以利今后应用正电子湮没技术于实践中去。
一 实验目的1. 了解正电子湮没寿命谱的形成原理,学会测量仪器的使用和获取正电子湮没寿命谱。
2. 初步掌握使用计算机解谱的数学方法和应用解谱结果来分析样品的微观结构。
二 实验原理1.正电子与正电子湮没正电子(+e )是电子的反粒子,它的许多基本属性与电子对称。
它与电子的质量相等,带单位正电荷,自旋为 21。
它的磁矩与电子磁矩大小相等,符号相反;正电子遇到物质中的电子会发生湮没。
这时,电子与正电子消失,产生若干γ射线。
湮没过程是一个量子电动力学过程,这里只列出若干要点和主要的结果。
正电子与电子湮没时,主要有三种方式:单光子湮没、双光子湮没和三光子湮没。
设上述三种湮没过程的截面分别为γσ、γσ2和γσ3,它们之间的关系为 a ≈γγσσ23; 42a r ≈γσσ (1)其中a 是精细结构常数⎪⎪⎭⎫ ⎝⎛==13712hc e a 。
由此可见,双光子湮没的概率远远大于三光子湮没和单光子湮没的概率。
正电子湮没技术基本原理2.1前言在20世纪30年代发现了正电子,40年代起人们把它应用于固体物理研究,60年代末又将它广泛应用于材料科学,80年代又把它应用于表层和表面研究。
正电子湮没谱学实验技术主要有三种:多普勒能谱、寿命谱和角关联(其装置分别简称为多普勒仪、寿命谱仪和角关联装置)。
PAT之所以能得到迅速的发展是由于它具有许多独特的优点:(1)PAT研究是样品中原子尺度缺陷,这些缺少原子的缺陷在X衍射、电镜中研究颇为困难。
(2)PAT对样品的温度几乎是没有限制,如可以跨越材料的熔点或凝固点,而信息又是通过贯穿能力很强的γ射线携带出来的,因此易于对样品作高低温的动态原位测量,即一面升降温一面测量,或在测量时施加电场、真空、磁场、高气压等特殊环境。
(3)它对样品材料种类没有什么限制,可以是固、液或气,可以是金属、半导体、高分子或绝缘体,可以是多、单晶、液晶或非晶等,总而言之,凡是与材料电子密度及电子的动量有关的问题,理论上都可用PAT来研究。
(4)室温测量下的PAT的制样方法简便易行,仪器也不太复杂,使它容易得到推广。
2.2正电子和正电子湮没2.2.1物理量上表列出了正电子与电子的一些物理属性。
2.2.2正电子湮没正电子遇到物质中的电子时会发生湮没,这时正电子、电子的质量全都转变为γ光子的能量,湮没时主要发射2个γ光子,称为2γ湮没或双光子湮没。
对于实验室,用的最多是放射性同位素源,而其中最广泛使用的是Na 22,Na 22相对于其他正电子源有几个优点:①其半衰期长达2.6a ;②正电子产率高达90%;③在发射正电子的同时,还会伴随发射一个能量约为1.28MeV 的γ光子。
它的衰变方程为:ν++→+*+e Ne Na 2222 (1) )28.1(2222MeV Ne Ne γ+→* (2) 第(1)个方程衰变后的几个皮秒内,第(2)方程便衰变了。
一般从放射源发射出的正电子能量大约在几百千电子伏特到几兆电子伏特之间,正电子进入物质后,大约在s 1210-量级内动量降至kT 量级(室温下约为0.025eV )。
正电子湮灭技术正电子湮没技术(Positron Annihilation Technique-PAT)是一门把核物理和核技术应用于固体物理与材料科学研究的新技术,近20多年来该技术得到了迅速发展。
正电子湮没技术包括多种实验方法,其中最常用的主要有3种,即正电子湮没寿命谱测量、2γ湮没角关联和湮没能量的Doppler展宽。
简言之,正电子湮没技术是通过入射正电子与材料中电子结合湮没来反映材料中微结构状态与缺陷信息的。
与其他现代研究方法相比,正电子湮没技术具有许多独特的优点。
首先,它对样品的种类几乎没有什么限制,可以是金属、半导体,或是绝缘体、化合物、高分子材料;可以是单晶、多晶、纳米晶、非晶态或液晶,只要是与材料的电子密度、电子动量密度有关的问题,原则上都可以用正电子湮没的方法进行研究。
第二,它所研究的样品一般不需要特殊制备,其制样方法简便易行。
另外,正电子湮没技术对材料中原子尺度的缺陷和各种相变非常灵敏。
如今正电子湮没技术作为一种新型的应用核分析技术,已广泛应用于材料科学、物理、化学、生物、医学、天文等领域,本文仅就正电子湮没技术在测试领域研究中的一些基本应用(原理)作一介绍。
正电子湮没无损测试技术是一种研究物质微观结构的方法,一种先进的材料微观结构-自由体积的探测和表征技术,可用于固体物理晶体缺陷与材料相结构与相结构转变的研究,目前已成为一种研究物质微观结构、缺陷、疲劳等的新技术与手段。
检测实施过程中,放射源作用材料时会产生带有正电荷的、尺寸与电子相当的质点,这种正电子可以被纳米大小的缺陷吸引而与电子相撞击。
在正负电子撞击过程中,两种质点湮没,从而放出一种伽玛射线。
伽玛射线能谱显示出一种清晰可辨的有关材料中的缺陷大小、数量以及型别的特征。
显然,这些特征可以标识最早阶段的损伤,即裂纹尚未出现的损伤;同时可以在不分解产品的情况下定量地评估其剩余寿命,笔者对该技术的原理及其应用进行了介绍。
正电子湮没无损测试所采用的正电子源最初来自于放射源的β+源,通过放射源的作用在材料中产生正电子。