最优化方法第四章B-孙文瑜
- 格式:pptx
- 大小:1.32 MB
- 文档页数:12
最优化方法孙文瑜课后答案【篇一:81010218《最优化算法》教学大纲】xt>课程编号: 81010218课程名称:最优化算法英文名称:optimization algorithm 总学时:32 学分:2适用对象: 信息与计算科学本科专业先修课程:数学分析(1-3),高等代数(1-2),运筹学一、课程性质、目的和任务《最优化算法》课程是信息与计算科学专业的一门主要专业选修课。
本课程的目的是使学生理解最优化理论与方法的基本概念,掌握最优化的基本理论和常见的优化算法,为学习后继课程和解决实际问题打下扎实的基础,培养学生用数学知识解决实际问题的兴趣、意识,以及分析问题和解决问题的能力。
二、教学内容、方法及基本要求1.非线性规划基本概念教学内容:多元函数极值理论。
基本要求:理解非线性规划问题概念,一般形式,最优解的情况。
理解梯度、海赛矩阵等概念,掌握极值点的必要条件,充分条件。
理解凸函数概念,掌握凸函数的判定条件和方法。
理解凸规划概念。
2. 一维搜索教学内容:一维搜索。
基本要求:掌握求解非线性规划问题搜索法的基本思想。
掌握一维搜索的斐波那契方法和0.618法。
3.求解无约束非线性规划问题的解析法教学内容:梯度法,广义牛顿法,共轭梯度法,变度量法。
基本要求:理解梯度法,广义牛顿法,共轭梯度法,变度量法的基本思想,掌握四种方法的迭代步骤,了解四种方法的收敛定理。
4. 求解无约束非线性规划问题的直接法教学内容:步长加速法,方向加速法,单纯形法。
基本要求:理解步长加速法,方向加速法,单纯形法的基本思想,掌握三种方法的迭代步骤,了解三种方法的收敛准则。
了解解析法与直接法的优缺点。
5. 求解约束非线性规划问题的逐步线性逼近法教学内容:逐步线性逼近法。
基本要求:理解约束非线性规划问题一般模型。
理解逐步线性逼近法基本思想,掌握逐步线性逼近法的求解步骤。
6. 求解约束非线性规划问题的拉格朗日乘子法教学内容:拉格朗日乘子法。
最优化方法
任课教师:赵俊锋
联系方式:zhaojf@
办公地点:勇字楼506
教材及主要参考书目
●实用最优化方法(第三版),唐焕文,秦学志
●应用最优化方法及MATLAB实现,刘兴高,胡云卿●最优化理论与方法,袁亚湘,孙文瑜
●非线性规划(第2版),宋士吉等译
●最优化计算方法,陈开周编
答疑安排
考核方式
学科总成绩
平时成绩
(30%)
课堂考勤(40%)平时作业
(30%)
课堂表现
(30%)
期末成绩
(70%)
课堂讨论
编程计算
闭卷考试
具体内容
●第一章绪论
●第二章无约束最优化方法●第三章约束最优化方法●第四章人工智能优化算法●第五章多目标优化算法
一
绪论最优化问题模型及分类最优化问题举例
课程简介二三四最优化问题数学基础。