多旅行商问题模型
- 格式:doc
- 大小:144.50 KB
- 文档页数:2
关于旅行商问题的数学模型旅行商问题(TravelingSalesmanProblem,TSP)是著名的组合优化问题,它的目标是找到一条路径,使得一个旅行商可以经过所有给定的城市,路径总长度最短。
这个问题在实际生活中有着广泛的应用,例如物流配送、电路板布线、DNA序列比对等领域。
本文将介绍旅行商问题的数学模型和解法。
1. 问题描述假设有n个城市,它们的位置分别为(xi,yi),i=1,2,...,n。
旅行商要从一个城市出发,经过所有城市恰好一次,最后回到出发城市。
城市之间的距离可以用欧几里得距离表示:d(i,j) = sqrt((xi-xj)^2 + (yi-yj)^2)旅行商问题的目标是找到一条路径,使得路径总长度最短。
2. 数学模型2.1 定义变量我们定义变量xij表示从城市i到城市j的路径是否被选择,如果被选择则xij=1,否则xij=0。
例如,x12表示从城市1到城市2的路径是否被选择。
2.2 目标函数旅行商问题的目标是找到一条路径,使得路径总长度最短。
因此,我们可以定义目标函数为:minimize ∑i∑j d(i,j)xij其中,i,j表示城市的编号,d(i,j)表示城市i和城市j之间的距离,xij表示从城市i到城市j的路径是否被选择。
2.3 约束条件旅行商需要经过所有城市恰好一次,因此我们需要添加以下约束条件:1. 每个城市只能被经过一次:∑j xij = 1, i=1,2,...,n2. 每个城市离开后只能到达一个城市:∑i xij = 1, j=1,2,...,n3. 不能出现子回路:∑i∈S ∑j∈S xij ≤ |S|-1, S{1,2,...,n}, |S|≥2其中,第一个约束条件表示每个城市只能被经过一次,第二个约束条件表示每个城市离开后只能到达一个城市,第三个约束条件表示不能出现子回路。
3. 解法旅行商问题是一个NP难问题,没有多项式时间算法可以求解。
因此,我们需要使用一些启发式算法来求解这个问题。
图算法--旅⾏商问题旅⾏商问题的描述试想⼀下,⼀个业务员因⼯作需要必须访问多个城市。
他的⽬标是每个城市只访问⼀次,并且尽可能地缩短旅⾏的距离,最终返回到他开始旅⾏的地点,这就是旅⾏商问题的主要思想。
在⼀幅图中,访问每个顶点⼀次,并最终返回起始顶点,这个访问的轨迹称为哈密顿圈。
要解决旅⾏商问题,需要⽤图G=(V,E)作为模型,寻找图中最短的哈密顿圈。
G是⼀个完整的、⽆⽅向的带权图,其中V代表将要访问的顶点的集合,E为连接这些顶点的边的集合。
E中每条边的权值由顶点之间的距离决定。
由于G中⼀个完整的、⽆⽅向的图,因此E包含V(V-1)/2条边。
事实上,旅⾏商问题是⼀种特殊的⾮多项式时间问题,称为NP完全问题。
NP完全问题是指那些多项式时间算法未知,倘没有证据证明没有解决的可能性的问题。
考虑到这种思想,通常⽤⼀种近似算法来解决旅⾏商问题。
最近邻点法的应⽤⼀种近似的计算旅⾏商路线的⽅法就是使⽤最近邻点法。
其运算过程如下:从⼀条仅包含起始顶点的路线开始,将此顶点涂⿊。
其他顶点为⽩⾊,在将其他顶点加⼊此路线中后,再将相应顶点涂⿊。
接着,对于每个不在路线中的顶点v,要为最后加⼊路线的顶点u与v之间的边计算权值。
在旅⾏商问题中,u与v之间边的权值就是u到v 之间的距离。
这个距离可以⽤每个顶点的坐标计算得到。
两个点(x1,y1)与(x2,y2)之间距离的计算公式如下:r = √(x2 - x1)2 + (y2 - y1)2 (注意是求和的平⽅根)利⽤这个公式,选择最接近u的顶点,将其涂⿊,同时将其加⼊路线中。
接着重复这个过程,直到所有的顶点都涂成⿊⾊。
此时再将起始顶点加⼊路线中,从⽽形成⼀个完整的回路。
下图展⽰了使⽤最近邻点法来解决旅⾏商问题的⽅法。
通常,在为旅⾏商问题构造⼀个图时,每个顶点之间相连的边不会显⽰表⽰出来,因为这种表⽰会让图不清晰了,也没有必要。
在图中,每个顶点旁边都显⽰其坐标值,虚线表⽰在此阶段需要⽐较距离的边。
基于动态规划的旅行商问题优化模型旅行商问题是一个经典的组合优化问题,目的是找到一条最短的路径,使得旅行商能够恰好访问每个城市一次后回到起始城市。
这个问题的算法复杂度随着城市数量的增加而指数级增长,在实际应用中往往需要找到一种高效的解决方法。
为了优化旅行商问题,可以采用动态规划的方法来求解。
动态规划是一种将问题拆分成子问题并存储中间结果,以避免重复计算的算法思想。
在旅行商问题中,动态规划可以用来计算城市间的最短路径以及最优解。
首先,我们需要定义一个状态转移方程来描述问题的最优解。
设dp[i][j]表示从起始城市出发,经过城市集合i后到达城市j的最短路径长度。
我们可以利用子问题的最优解来计算整体问题的最优解。
状态转移方程如下:dp[i][j] = min{dp[i\j][k] + dist(k, j)},其中i\j表示从i中去掉城市j后的城市集合,dist(k, j)表示从城市k到城市j的距离。
基于此状态转移方程,我们可以采用动态规划的方法求解旅行商问题。
具体步骤如下:1. 初始化二维数组dp,并将初始状态设置为无穷大。
2. 对于每个子问题(i, j),遍历城市k,找到dp[i\j][k] + dist(k, j)的最小值。
3. 更新dp[i][j]的值为上一步骤中求得的最小值。
4. 重复步骤2和步骤3,直到遍历完所有的子问题。
5. 最后,dp[0][0]即为最优解,表示从起始城市出发经过所有城市一次后回到起始城市的最短路径长度。
除了动态规划方法外,还可以使用其他的优化策略来解决旅行商问题。
例如,遗传算法、模拟退火算法等启发式算法。
这些算法通常通过随机搜索的方式来找到较优解,虽然不能保证找到全局最优解,但在实际问题中具有较高的效率。
除了以上提到的求解方法,我们对于旅行商问题还可以做一些限定条件的优化。
例如,通过对城市进行聚类,可以先将城市分为若干组,再分别求解每个组内的最优路径。
这样可以减少计算量,提高求解效率。
以点0表示旅行商的出发城市,称为源点,点1,2,,l 表示m 个旅行商需访问的城市。
MTSP 问题的数学模型可以表示为: 令10ij x ⎧=⎨⎩弧(i,j)在线路上 弧(i,j)不在线路上模型表示如下:0000min 10,1,,10,1,,()01,0,1,,R R ij iji j R ij i R ij j ij ij z d x x j R x i R X x Sx i j R====⎧=⎪⎪⎪==⎪⎪⎨⎪==⎪⎪=∈⎪⎪==⎩∑∑∑∑或 式中:1;ij R m l d =+-为增广费用。
若用(,1,,)ij c i j l =表示旅行商经过对应弧度(,)i j 所花的费用,如时间、距离、花费等,那么给ij c 增加(1)m -行和(1)m -列,每一新的行或列是ij c 的最后一行或列的复制,增广矩阵的其他元素为无穷大,由此构成了增广费用ij d 。
一般MTSP 中,旅行商访问l 个城市必须满足以下2个条件。
条件1:从指定城市出发,对其他所有城市严格访问一次后返回原出发城市。
条件2:一条有效路径严格由m 条非平凡子路径(Nontrivial Subtours)组成。
所谓非平凡子路径是指该路径中除出发城市外,至少访问一个其他城市。
用遗传算法求解MTSP ,可通过附加虚拟城市的方法把MTSP 转化为TSP 。
将另外(1)m -个旅行商理解为(1)m -个虚拟城市,这(1)m -个虚拟城市标号分别为1,2,,1,l l l m +++-,它们与城市0具有相同的坐标(即相同位置)。
在旅行商访问路径中出现的每一个虚拟城市均表示旅行商返回出发城市,从而组成一个回路。
每个回路表示MTSP 中一个旅行商的旅行路径。
需注意的是,为了避免出现平凡子路径,必须假设(1)m -个虚拟城市到原点的距离为00(,0,1,,1),ij c M i j l l m M ==++-为一无穷大的正数(即永远不能达到),到其他各点距离与原点一致,这样遗传算法就不会出现0-0-0的途径。
基于蚁群算法的旅行商问题模型研究随着旅游业的发展,旅游成了人们生活中不可或缺的一部分。
为了提高旅游质量,降低旅游成本和难度,我们需要解决旅行商问题。
什么是旅行商问题?旅行商问题(TSP)是指一名旅行商人要拜访n个城市,每个城市只能拜访一次,然后回到起点。
每个城市之间的距离是已知或可以计算的。
旅行商人的目标是找到一条最短路径,使他能够顺序地拜访每个城市一次,最后回到出发点。
TSP是一个非常重要的组合优化问题,它在物流、工程、制造和导航中都有应用。
TSP的解决方案对TSP问题进行求解是一个NP难问题,即非确定性多项式完全问题。
但是,如今已发展出多种算法来解决TSP问题。
经典的解决TSP问题的方法有两种:全排列法和近似算法。
全排列法是将n个城市按照顺序排列,然后枚举这n个城市的所有排列,最终从中选择一条路径最短的路线作为最优解。
但是,这种方法的计算成本非常高,在大规模问题上不实用。
近似算法是对全排列方法的改进。
它采用启发式搜索,在计算复杂度可接受的情况下找到近似最优解。
近似算法包括分支限界法、模拟退火算法和遗传算法等。
蚁群算法:一种解决TSP问题的有效算法蚁群算法(ACO)是一种模拟蚂蚁探索食物的启发式优化算法,是解决TSP问题的一种有效方法。
它的基本思想是模拟蚂蚁在食物搜索中的行为,通过搜寻信息素来选择路径。
在ACO算法中,将每只蚂蚁看作一个搜索代理,通过释放信息素来传递经验。
该算法首先随机产生一群蚂蚁,它们在不同的城市中进行随机移动,每一只蚂蚁在选择下一个城市时根据当前所在城市和可选择城市的信息素含量作出选择。
蚂蚁根据选择的路径,释放信息素,并在路径上留下新的信息素。
当所有蚂蚁都完成了路径选择时,根据释放的信息素,更新信息素的含量。
ACO算法的核心是信息素的积累和传递过程,信息素的释放和更新过程,并且不断调整选择策略。
ACO算法的优点ACO算法的优点是可以有效地解决TSP问题,尤其是在大规模问题上。
旅⾏商问题+背包问题--经典问题问题描述:旅⾏商问题(Traveling Salesman Problem,TSP)是旅⾏商要到若⼲个城市旅⾏,各城市之间的费⽤是已知的,为了节省费⽤,旅⾏商决定从所在城市出发,到每个城市旅⾏⼀次后返回初始城市,问他应选择什么样的路线才能使所⾛的总费⽤最短?此问题可描述如下:设G=(V,E)是⼀个具有边成本cij的有向图,cij的定义如下,对于所有的i和j,cij>0,若<i,j>不属于E,则cij=∞。
令|V|=n,并假设n>1。
G的⼀条周游路线是包含V中每个结点的⼀个有向环,周游路线的成本是此路线上所有边的成本和。
旅⾏商问题(Traveling Saleman Problem,TSP)⼜译为旅⾏推销员问题、货郎担问题,简称为TSP问题,是最基本的路线问题,该问题是在寻求单⼀旅⾏者由起点出发,通过所有给定的需求点之后,最后再回到原点的最⼩路径成本。
最早的旅⾏商问题的数学规划是由Dantzig(1959)等⼈提出。
TSP问题在物流中的描述是对应⼀个物流配送公司,欲将n个客户的订货沿最短路线全部送到。
如何确定最短路线。
TSP问题最简单的求解⽅法是枚举法。
它的解是多维的、多局部极值的、趋于⽆穷⼤的复杂解的空间,搜索空间是n个点的所有排列的集合,⼤⼩为(n-1)。
可以形象地把解空间看成是⼀个⽆穷⼤的丘陵地带,各⼭峰或⼭⾕的⾼度即是问题的极值。
求解TSP,则是在此不能穷尽的丘陵地带中攀登以达到⼭顶或⾕底的过程。
问题分析旅⾏商问题要从图G的所有周游路线中求取最⼩成本的周游路线,⽽从初始点出发的周游路线⼀共有(n-1)!条,即等于除初始结点外的n-1个结点的排列数,因此旅⾏商问题是⼀个排列问题。
排列问题⽐⼦集合的选择问题通常要难于求解得多,这是因为n个物体有n!种排列。
通过枚举(n-1)!条周游路线,从中找出⼀条具有最⼩成本的周游路线的算法,其计算时间显然为O(n!)。
一、问题描述TSP ,即Traveling Saleman Problem ,也就是旅行商问题,又译为旅行推销员问题、货郎担问题,简称为TSP 问题,是最基本的路线问题。
TSP 的历史很久,最早的描述是1759年欧拉研究的骑士周游问题,即对于国际象棋棋盘中的64个方格,走访64个方格一次且仅一次,并且最终返回到起始点。
TSP 问题指一个旅行商,n 个城市。
旅行商要从这一个出发地出发,择一条路径(哈密顿回路),对n 个城市中的每一个城市进行一次且仅一次的访问,最后回到出发地.其目标是得到所有可行路径之中的最小路径,或旅行时间最短,或旅行费用最少等。
如图1,图2所示,为一个5个城市的TSP 问题描述(仅画出两种方案),显然图1和图2的路线都满足遍及所有城市的要求,但是图2的路线长度要远小于图1的路线长度,而解TSP 问题的目的就是求出遍及所有城市的长度最短的路线方案。
该问题的模型可以表示为下述0/1整数规划模型:2 4 1 图13 5 1 24 35 图2{}(,j)A {:(,)}{j:(,)}{(,):,}min(1)..1(2)1(3)||12|U |||2(4)0,1ij ij i ij i i j A ij i j A ij i j A i U j U ij c x st x j Vx i Vx U V x ∈∈∈∈∈∈=∈=∈≤-≤≤-∈∑∑∑∑n :所要访问的城市数目。
V :所有访问的城市集。
.U :所有访问的城市集的真子集,即V U ⊂。
A :连接任意两个点的弧组成的集合。
()j i :所要访问的第()j i 个城市,即V j i ∈,。
ij c :相邻两个城市间距离。
如果 j i =,则0=ij c 。
()⎩⎨⎧=其他城市城市后紧接着访问如果访问01,j i j i X二、总结和展望禁忌搜索算法是对人类思维过程本身的一种模拟,其特点是采用了禁忌技术,它通过对一些局部最优解的禁忌达到接纳一部分较差解,从而跳出局部搜索的目的。
文章编号:1001-4098(2005)02-0019-03任务均分的多旅行商问题X卢厚清,王辉东,黄 杰,李 波(解放军理工大学工程兵工程学院,江苏南京 210007)摘 要:多旅行商问题是单旅行商问题的扩展,具有更广泛的实际意义。
在研究M T SP解的特点的基础上,提出了最小化总行程和均分多个旅行商访问点数、最小化总行程及均分访问路程的两个多目标的M T SP问题,并分别给出了相应的数学模型、求解算法和应用实例,实例表明模型的正确性。
关键词:M T SP;算法;多目标中图分类号:O22 文献标识码:A 多旅行商回路(M T SP)是旅行商问题(T SP)的扩展。
M T SP是指给出N个城市的集合,M个推销商从各自所在的城市出发,分别走一条旅行路线,使得每个城市有且仅有一个推销商走过,最后回到原来的出发城市,且总旅程最短。
研究M T SP具有重要的现实意义,T SP是M T SP 的一个特例(M=1),M T SP是T SP的一般形式。
与T SP 相比,如今企业管理中的更多的问题属于M T SP。
M T SP 又分为从同一中心城市出发的M T SP和从不同中心城市出发的M T SP。
本文主要讨论了从同一中心城市出发的M T SP问题。
目前,关于M T SP的研究较少,已有的研究主要集中在求解算法的设计上,尚未见到对M T SP解的特点及均分各旅行商均分访问顾客数和均分各旅行商访问路程的研究。
1 一般M T SP解的特点与多目标M T SP 为了使用T SP的算法研究解决M T SP,可引入M-1个虚拟点,记为N+1,…,N+M-1。
第i(1<i≤N)个点和点j(N<j≤N+M-1)之间的距离定义为第i(1<i≤N)个点到点1(中心城市)之间的距离,虚拟点之间及其到点1之间的距离定义为无穷大。
在这样的假设下,M条线路的所经过的点至少包含除中心点之外的另一个点。
由于每一个旅行商至少要经过一个城市,这样M个旅行商所经过的总边数为N+M条。
多目标旅行商问题(MO-TSP)是指在多个目标地点之间找到最优路径,使得旅行商能够同时满足多个旅行目标的问题。
这是一个复杂的组合优化问题,涉及到时间、成本、距离等多个目标的平衡。
针对这一问题,已经有许多算法被提出,比如遗传算法、模拟退火算法、蚁群算法等。
在本文中,我将针对用于解决多目标旅行商问题的算法进行深入剖析和讨论。
1. 遗传算法遗传算法是一种模仿自然选择和遗传机制的优化方法,通过种群的进化来寻找问题的最优解。
在解决MO-TSP问题时,遗传算法可以通过不断进化种群中的路径来寻找最佳的解决方案。
在每一代进化中,选择、交叉和变异等操作都会对种群进行改进,直到找到最优的解。
2. 模拟退火算法模拟退火算法是一种启发式算法,模拟金属退火过程中的晶粒结构变化来寻找问题的最优解。
在解决MO-TSP问题时,模拟退火算法可以通过接受较差解的概率来跳出局部最优解,并在搜索空间中进行全局搜索,以找到更好的解。
3. 蚁群算法蚁群算法是一种基于蚁群寻食行为的启发式算法,模拟蚂蚁在搜索食物时释放信息素的过程。
在解决MO-TSP问题时,蚁群算法可以通过蚂蚁在路径上释放信息素的方式来寻找最优路径,蚁群不断更新信息素浓度,并通过信息素浓度来选择下一步的移动方向。
在实际应用中,这几种算法都有其优缺点,如何选择最合适的算法取决于实际问题的复杂度、目标要求和算法的性能。
在我看来,遗传算法在求解MO-TSP问题时具有良好的全局搜索能力,但对于大规模问题的收敛速度可能较慢;模拟退火算法适用于局部搜索和全局搜索的结合,但在处理多目标问题时需要合理设定参数;蚁群算法在求解路径优化问题时具有较好的鲁棒性和稳健性,但对于问题解空间的探索可能会存在过早收敛的问题。
MO-TSP问题是一个复杂的组合优化问题,需要综合运用各种启发式算法和元启发式算法,以及结合实际问题的特点和要求,才能找到最佳的解决方案。
通过对算法的深入理解和灵活运用,我们可以在实际问题中取得较好的优化效果。
多旅行商问题研究综述一、问题定义与数学模型多旅行商问题(Multiple Traveling Salesman Problem,MTSP)是旅行商问题(Traveling Salesman Problem,TSP)的扩展,是组合优化领域中的经典问题之一。
在MTSP中,有多个旅行商需要遍历各自的销售区域,并在有限的时间内完成各自的旅程。
每个旅行商的旅程起点和终点固定,且每个旅行商的路径不能交叉,也不能重复。
MTSP的目标是在满足约束条件下,最小化所有旅行商行走的总距离。
数学模型通常采用整数规划或图论表示。
对于一个具有n个顶点的完全图,每个顶点代表一个城市或客户,边代表城市之间的道路。
MTSP可以转化为在图中寻找n个哈密尔顿回路(Hamiltonian Cycle)的问题。
由于图论表示方法具有一定的局限性,近年来研究者们提出了更复杂的数学模型,如超图、混合图等。
二、求解方法与算法设计MTSP是一个NP-hard问题,求解非常困难。
因此,研究者们提出了许多近似算法和启发式方法。
这些方法大致可以分为两类:基于贪婪策略的方法和基于元启发式的方法。
1. 基于贪婪策略的方法:这类方法通常采用局部搜索策略,从当前解出发,通过不断地进行局部搜索和改进来寻找最优解。
代表性的方法包括:最小生成树法、分支定界法、回溯法等。
2. 基于元启发式的方法:这类方法采用一些启发式策略来指导搜索过程,如遗传算法、模拟退火、粒子群优化等。
这些方法能够在较短的时间内找到可接受的解,但并不能保证找到全局最优解。
此外,近年来还出现了一些新的求解方法,如深度学习、强化学习等人工智能算法也被应用于MTSP的求解。
这些方法通常需要大量的数据和计算资源,但可以处理更大规模和更复杂的MTSP问题。
三、特定场景下的多旅行商问题随着应用领域的不断扩展,MTSP已经应用于许多特定场景中,如供应链管理、物流配送、城市规划等。
在这些场景中,MTSP需要考虑更多的实际因素和约束条件,如车辆路径限制、时间窗限制等。
一、什么是TSP问题旅行商问题,简称TSP,即给定n个城市和两两城市之间的距离,要求确定一条经过各城市当且仅当一次的最短路线。
其图论描述为:给定图G=(V,A),其中V为顶点集,A为各顶点相互连接组成的边集,设D=(dij)是由顶点i和顶点j之间的距离所组成的距离矩阵,要求确定一条长度最短的Hamilton回路,即遍历所有顶点当且仅当一次的最短距离。
旅行商问题可分为如下两类:1)对称旅行商问题(dij=dji,Πi,j=1,2,3,⋯,n);2)非对称旅行商问题(dij≠dji,ϖi,j=1,2,3,⋯,n)。
非对称旅行商问题较难求解,我们一般是探讨对称旅行商问题的求解。
若对于城市V={v1,v2,v3,⋯,v n}的一个访问顺序为T={t1,t2,t3,⋯,t i,⋯,t n},其中t i∈V(i=1,2,3,⋯,n),且记t n+1=t1,则旅行商问题的数学模型为:minL=。
TSP是一个典型的组合优化问题,并且是一个NP完全难题,是诸多领域内出现的多种复杂问题的集中概括和简化形式,并且已成为各种启发式的搜索、优化算法的间接比较标准。
因此,快速、有效地解决TSP有着重要的理论价值和极高的实际应用价值。
二、主要求解方法基于TSP的问题特性,构造型算法成为最先开发的求解算法,如最近邻点、最近合并、最近插入、最远插入、最近添加、贪婪插入等。
但是,由于构造型算法优化质量较差,迄今为止已开发了许多性能较好的改进型搜索算法,主要有:1)模拟退火算法2)禁忌搜索算法3)Hopfield神经网络优化算法4)蚁群算法5)遗传算法6)混合优化策略模拟退火算法方法1)编码选择:采用描述TSP解的最常用的一种策略——路径编码。
2)SA状态产生函数的设计:对于基于路径编码的SA状态产生函数操作,可将其设计为:①互换操作(SWAP);②逆序操作(INV);③插入操作(INS)。
3)SA状态接受函数的设计:min{1,exp(-△/t)}>random[0,1]准则是作为接受新状态的条件最常用的方案,其中△为新旧状态的目标值差,t为”温度”。
高一奥数旅行商问题(一)
高一奥数旅行商问题
问题介绍
•旅行商问题是指一个旅行商需要在多个城市之间旅行,每个城市之间的距离和旅行花费都不同,旅行商需要找到一条最短路径,将所有城市都访问一遍,并最终回到出发城市。
相关问题
1.问题一:如何表示城市之间的距离?
2.问题二:如何确定旅行商的出发城市和目的地?
3.问题三:如何计算最短路径?
4.问题四:是否存在多种最短路径?
5.问题五:如何考虑旅行的时间和花费限制?
解决方法
1.问题一的解决方法:
–使用邻接矩阵表示城市之间的距离,矩阵中的每个元素表示从一个城市到另一个城市的距离。
2.问题二的解决方法:
–可以随机选择一个城市作为出发城市,然后使用算法计算最短路径后,再将该城市作为目的地。
3.问题三的解决方法:
–使用图论中的最短路径算法,如Dijkstra算法或Floyd-Warshall算法,可以计算出最短路径和对应的总距离。
4.问题四的解决方法:
–如果存在多种最短路径,则可以选择其中任意一条路径作为解决方案,或者通过增加限制条件来确定唯一的最短路
径。
5.问题五的解决方法:
–在计算最短路径时,可以考虑各个城市之间的旅行时间和花费,并通过设置约束条件来限制旅行商在规定的时间和
花费范围内完成旅行。
总结
高一奥数旅行商问题是一个经典的数学问题,需要使用图论和算法知识来求解。
通过逐步解决相关问题,可以找到最优的旅行路径,并考虑旅行的时间和花费限制。
这个问题可以帮助学生培养数学建模和解决实际问题的能力。
以点0表示旅行商的出发城市,称为源点,点1,2,
,l 表示m 个旅行商需访问的城市。
MTSP 问题的数学模型可以表示为:
令10ij x ⎧=⎨⎩弧(i,j)在线路上 弧(i,j)不在线路上
模型表示如下:
0000min 10,1,,10,1,,()01,0,1,,R R ij ij
i j R ij i R ij j ij ij z d x x j R x i R X x S
x i j R
====⎧=⎪⎪
⎪==⎪⎪⎨⎪==⎪⎪=∈⎪⎪==⎩∑∑∑∑或 式中:1;ij R m l d =+-为增广费用。
若用(,1,
,)ij c i j l =表示旅行商经过对应弧度(,)i j 所花的费用,如时间、距离、花费等,那么给ij c 增加(1)m -行和(1)m -列,每一新的行或列是ij c 的最后一行或列的复制,增广矩阵的其他元素为无穷大,由此构成了增广费用ij d 。
一般MTSP 中,旅行商访问l 个城市必须满足以下2个条件。
条件1:从指定城市出发,对其他所有城市严格访问一次后返回原出发城市。
条件2:一条有效路径严格由m 条非平凡子路径(Nontrivial Subtours)组成。
所谓非平凡子路径是指该路径中除出发城市外,至少访问一个其他城市。
用遗传算法求解MTSP ,可通过附加虚拟城市的方法把MTSP 转化为TSP 。
将另外(1)m -个旅行商理解为(1)m -个虚拟城市,这(1)m -个虚拟城市标号分别为1,2,,1,l l l m +++-,它们与城市0具有相同的坐标(即相同位置)。
在旅行商访问路径中出现的每一个虚拟城市均表示旅行商返回出发城市,从而组成一个回路。
每个回路表示MTSP 中一个旅行商的旅行路径。
需注意的是,为了避免出现平凡子路径,必须假设(1)m -个虚拟城市到原点的距离为
00(,0,1,,1),ij c M i j l l m M ==++-为一无穷大的正数(即永远不能达到),到其他各点距离与原点一致,这样遗传算法就不会出现0-0-0的途径。
将源点0复制(1)m -个,m 个源点编号为0,1,1,l l m ++-每一个同源点0一样与其他
点相连,而m 个源点互相不连接,这样在结点集{}0,1,,,1,,1l l l m ++-上,可得到TSP 线路,然后各源点合并成一个点。
这样MTSP 线路就分解成m 个分线路。