基本图形生成算法
- 格式:ppt
- 大小:2.21 MB
- 文档页数:13
第四章、基本图形生成算法教学目的:1、知道图形生成中的基本问题;2、熟练掌握直线的扫描转换、圆与椭圆的扫描;3、掌握区域填充;4、了解线宽与线型的处理。
�在光栅显示器上显示的任何一种图形,实际上都是一些具有一种或多种颜色的象素的集合。
�生成算法即图形设备生成图形的方法,也叫光栅化或或图形的扫描转换,是确定一个象素集合及其颜色,用于显示一个图形的过程。
确定一个象素集合及其颜色,用于显示一个图形的过程,称为图形的扫描转换或光栅化。
�对图形的扫描转换分为两部分:先确定像素,再用图形的颜色或其他属性进行某种写操作。
绘图元素�构成图形的基本元素,主要有点、直线、圆和曲线等。
图形元素包含的信息:①图元的类型②图元的几何信息③图元的非几何信息;④图元的指针信息11、点22、位置33、像素44、直线55、曲线66、填充点、线图形基元包括:多边形、曲线、字符串 实心图形(或称图形填充)一级图形元素二级图形元素第一节、扫描转换算法一、坐标系1.用户坐标系�在实际世界中用来描述物体的位置、形状等。
坐标单位任意,坐标值是实数、范围不限。
2.笛卡尔坐标系(直角坐标系)�在计算机图形学中使用用来描述物体。
3.设备坐标系�在某一特定设备上用来描述物体,如显示器的屏幕坐标系,绘图仪的绘图坐标系。
坐标单位为像素、步长,即设备的分辨率。
坐标值是整数,有固定的取值范围。
4.规范坐标系�在通用图形软件包中使用的用来描述物体数据所采用的坐标系。
�目的是为了使通用图形软件包摆脱对具体物理设备的依赖性,也为了便于在不同应用和不同系统之间交换图形信息。
�坐标单位任意取,坐标取值范围是[0,1]区间。
笛卡儿坐标系与屏幕坐标系的转换�屏幕(x,y)=(x笛卡儿+x最大分辨率/2,y最大分辨率/2- y笛卡儿)二、笛卡尔坐标系和设备坐标系中相关概念的区别(1)像素点�·在几何学中,点没有准数,没有大小,只表示了在坐标系统中的一个位置。
·在图形系统中,点要由数值坐标表示。
计算机图形学实验报告学号:********姓名:班级:计算机 2班指导老师:***2010.6.19实验一、Windows 图形程序设计基础1、实验目的1)学习理解Win32 应用程序设计的基本知识(SDK 编程);2)掌握Win32 应用程序的基本结构(消息循环与消息处理等); 3)学习使用VC++编写Win32 Application 的方法。
4)学习MFC 类库的概念与结构;5)学习使用VC++编写Win32 应用的方法(单文档、多文档、对话框);6)学习使用MFC 的图形编程。
2、实验内容1)使用WindowsAPI 编写一个简单的Win32 程序,调用绘图API 函数绘制若干图形。
(可选任务)2 )使用MFC AppWizard 建立一个SDI 程序,窗口内显示"Hello,Thisis my first SDI Application"。
(必选任务)3)利用MFC AppWizard(exe)建立一个SDI 程序,在文档视口内绘制基本图形(直线、圆、椭圆、矩形、多边形、曲线、圆弧、椭圆弧、填充、文字等),练习图形属性的编程(修改线型、线宽、颜色、填充样式、文字样式等)。
定义图形数据结构Point\Line\Circle 等保存一些简单图形数据(在文档类中),并在视图类OnDraw 中绘制。
3、实验过程1)使用MFC AppWizard(exe)建立一个SDI 程序,选择单文档;2)在View类的OnDraw()函数中添加图形绘制代码,说出字符串“Hello,Thisis my first SDI Application”,另外实现各种颜色、各种边框的线、圆、方形、多边形以及圆弧的绘制;3)在类视图中添加图形数据point_pp,pp_circle的类,保存简单图形数据,通过在OnDraw()函数中调用,实现线、圆的绘制。
4、实验结果正确地在指定位置显示了"Hello,This is my first SDI Application"字符串,成功绘制了圆,椭圆,方形,多边形以及曲线圆弧、椭圆弧,同时按指定属性改绘了圆、方形和直线。
计算机图形学的基本算法计算机图形学是研究如何利用计算机生成、处理和显示图像的学科。
图形学的基本算法涵盖了多个方面,包括图像绘制、几何变换、光照和渲染等。
以下将详细介绍计算机图形学的基本算法及其步骤。
1. 图像绘制算法:- 像素绘制算法:基于像素的图形绘制算法包括点绘制、线段绘制和曲线绘制。
例如,Bresenham线段算法可用于绘制直线。
- 多边形填充算法:多边形填充算法用于绘制封闭曲线图形的内部区域。
常见的算法包括扫描线填充算法和种子填充算法。
2. 几何变换算法:- 平移变换:平移变换算法用于将图像在平面上进行上下左右的平移操作。
- 旋转变换:旋转变换算法用于将图像按照一定的角度进行旋转。
- 缩放变换:缩放变换算法用于按照一定的比例对图像进行放大或缩小操作。
- 剪切变换:剪切变换算法用于按照一定的裁剪方式对图像进行剪切操作。
3. 光照和渲染算法:- 光照模型:光照模型用于模拟物体与光源之间的相互作用。
常见的光照模型有Lambert模型和Phong模型等。
- 阴影生成算法:阴影生成算法用于在渲染过程中生成逼真的阴影效果。
例如,阴影贴图和阴影体积等算法。
- 光线追踪算法:光线追踪算法通过模拟光线的路径和相互作用,实现逼真的光影效果。
常见的光线追踪算法包括递归光线追踪和路径追踪等。
4. 图像变换和滤波算法:- 傅里叶变换算法:傅里叶变换算法用于将图像从时域转换到频域进行分析和处理。
- 图像滤波算法:图像滤波算法用于对图像进行平滑、锐化、边缘检测等操作。
常见的滤波算法包括均值滤波、高斯滤波和Sobel算子等。
5. 空间曲线和曲面生成算法:- Bézier曲线和曲面算法:Bézier算法可用于生成平滑的曲线和曲面,包括一阶、二阶和三阶Bézier曲线算法。
- B样条曲线和曲面算法:B样条算法可用于生成具有更高自由度和弯曲度的曲线和曲面。
以上列举的是计算机图形学中的一些基本算法及其应用。
图像生成和处理的算法和应用随着计算机技术的发展,图像生成和处理一直是研究的热点之一。
图像生成和处理是对数字图像进行操作、改变和转换,以达到特定的目的。
它不仅在计算机图形学、计算机视觉等学科中起着重要作用,同时也在众多领域应用广泛,如医学图像分析、图像识别、视频游戏、电影特效、物体跟踪等等。
本文将介绍几种常用的图像生成和处理的算法和应用。
一、图像生成算法1、深度学习深度学习是一种用于图像处理和实现人工智能的技术,目前被广泛应用于图像生成。
深度学习的核心思想是搭建神经网络,利用大量的数据训练模型,从而使模型具有较强的图像生成能力。
其中,生成对抗网络(GAN)是深度学习中最流行的图像生成算法之一。
GAN的基本结构是由一个生成器和一个判别器构成,通过反复训练生成器和判别器,不断提高生成器的生成能力。
2、卷积神经网络卷积神经网络(CNN)是一种用于处理图像的神经网络,在图像分类、图像分割、目标检测等方面有着广泛的应用。
CNN最常用的结构是卷积层、池化层和全连接层。
卷积层用于提取图像的特征,池化层用于缩小特征图的尺寸,全连接层用于分类等任务。
在图像生成方面,CNN可以通过反向传播算法训练生成器,从而实现图像生成。
3、自编码器自编码器是一种基于神经网络的图像生成算法,它的基本思想是将输入映射到隐藏层,然后再将隐藏层映射回输出。
自编码器的训练过程是将原始图像输入自编码器,将输出与目标图像进行比较,通过不断调整权重,使自编码器能够更精确地重构输入图像。
二、图像生成和处理应用1、图像变换图像变换包括图像旋转、平移、缩放和扭曲等操作。
在实际应用中,图像变换可以用于调整图像大小、合成多张图像等任务。
图像变换技术可以通过深度学习等算法实现。
2、图像修复图像修复是指对有缺损、噪声或损坏的图像进行修复、恢复的操作。
图像修复技术可以采用多种算法,如基于统计学的方法、基于采样的方法、基于分类的方法等。
在实际应用中,图像修复主要用于修复老照片、复原古迹等任务。
基本图形生成算法原理现在的计算机能够生成各种复杂的图形,但无论其多么复杂,它都是由一些基本图形组合而成的。
因此,学习基本图形的生成算法是掌握计算机图形的基础。
本章就主要讨论一些基本图形的生成原理,如点、直线、椭圆生成。
如前面所述,目前我们使用的主要图形输出设备显示器(一般为光栅图形显示器)和打印机(喷墨、激光打印机)本质上是一种画点设备,是由一定数量的网络状细小光点(即像素)组成,使某些像素亮(将帧缓存中对应位置的值为1)和某些像素不亮(将帧缓存中对应位置的值为0)来显示图形。
因此,基本图形生成的原理是指在点阵输出设备的情况下,如何尽可能地输出最接近于原图形(理想图形)的直线或曲线图形,即以最快的速度确定最佳逼近于图形的像素集。
确定图形的像素集合并显示的过程常称之为图形的扫描转换或光栅化。
这一过程使用的计算方法称之为图形生成算法。
1 点2 直线段的生成直线是点的集合,几何学中的一条直线是由两点决定,直线在数学上可以有多种表示方法,而在计算机图形学里,直线是由离散的像素点逼近理想直线段的点的集合。
数学上的直线是没有宽度的,而计算机图形学中显示出的直线的宽度与像素点的大小有关,一个像素宽的直线的线粗为像素的边长。
由计算机生成的图形中有大量的直线段,而且曲线也是由一系列短直线段逼近生成的。
因此,研究直线生成的方法是计算机图形学的基本问题之一。
对计算机生成直线的一般要求是:线段端点的位置要准确;构成线段的像素点的集合应尽可能分布均匀,其密度应该与线段的方向及长度无关;线段生成的速度要快。
生成直线的算法有多种,这里仅介绍两种方法,即DDA 算法和Bresenham 算法。
2.1 直线DDA 算法该直线生成算法称为数值微分算法(Digital Differential Analyzer 简称DDA )。
它是一种根据直线的微分方程来产生直线的方法。
设直线的起点坐标为),(s s y x ,终点坐标为),(e e y x ,则=dx dy k xy x x y y s e s e =∆∆=-- (3-1)k 是直线的斜率。