高考数学二轮复习专题三三角函数、平面向量2.3.3平面向量学案理
- 格式:pdf
- 大小:103.52 KB
- 文档页数:3
专题二 三角函数、三角变换、解三角形、平面向量第一讲 三角函数的图象与性质1.角的概念.(1)终边相同的角不一定相等,相等的角终边一定相同(填“一定”或“不一定”). (2)确定角α所在的象限,只要把角α表示为α=2k π+α0[k ∈Z,α0∈[0,2π)],判断出α0所在的象限,即为α所在象限.2.诱导公式.诱导公式是求三角函数值、化简三角函数的重要依据,其记忆口诀为:奇变偶不变,符号看象限.1.三角函数的定义:设α是一个任意大小的角,角α的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx.2.同角三角函数的基本关系. (1)sin 2α+cos 2α=1. (2)tan α=sin αcos α.判断下面结论是否正确(请在括号中打“√”或“×”).(1)角α终边上点P 的坐标为⎝ ⎛⎭⎪⎫-12,32,那么sin α=32,cos α=-12;同理角α终边上点Q 的坐标为(x 0,y 0),那么sin α=y 0,cos α=x 0.(×)(2)锐角是第一象限角,反之亦然.(×) (3)终边相同的角的同一三角函数值相等.(√)(4)常函数f (x )=a 是周期函数,它没有最小正周期.(√) (5)y =cos x 在第一、二象限上是减函数.(×) (6)y =tan x 在整个定义域上是增函数.(×)1.(2015·某某卷)若sin α=-513,且α为第四象限角,则tan α的值等于(D )A.125 B .-125 C.512 D .-512解析:解法一:因为α为第四象限的角,故cos α=1-sin 2α=1-(-513)2=1213,所以tan α=sin αcos α=-5131213=-512. 解法二:因为α是第四象限角,且sin α=-513,所以可在α的终边上取一点P (12,-5),则tan α=y x =-512.故选D.2.已知α的终边经过点A (5a ,-12a ),其中a <0,则sin α的值为(B ) A .-1213 B.1213 C.513 D .-5133.(2014·新课标Ⅰ卷)在函数①y =cos|2x |,②y =|cos x |,③y =cos ⎝⎛⎭⎪⎫2x +π6,④y=tan ⎝⎛⎭⎪⎫2x -π4中,最小正周期为π的所有函数为(A ) A .①②③ B .①③④C .②④D .①③解析:①中函数是一个偶函数,其周期与y =cos 2x 相同,T =2π2=π;②中函数y =|cos x |的周期是函数y =cos x 周期的一半,即T =π;③T =2π2=π;④T =π2.故选A.4.(2015·某某卷)如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin(π6x +φ)+k .据此函数可知,这段时间水深(单位:m)的最大值为(C )A .5B .6C .8D .10解析:根据图象得函数的最小值为2,有-3+k =2,k =5,最大值为3+k =8.一、选择题1.若sin(α-π)=35,α为第四象限角,则tan α=(A )A .-34B .-43C.34D.43 解析:∵sin(α-π)=35,∴-sin α=35,sin α=-35.又∵α为第四象限角, ∴cos α= 1-sin 2α= 1-⎝ ⎛⎭⎪⎫-352=45, tan α=sin αcos α=-3545=-34.2. 定义在R 上的周期函数f (x ),周期T =2,直线x =2是它的图象的一条对称轴,且f (x )在[-3,-2]上是减函数,如果A ,B 是锐角三角形的两个内角,则(A )A .f (sin A )>f (cosB ) B .f (cos B )>f (sin A )C .f (sin A )>f (sin B )D .f (cos B )>f (cos A )解析:由题意知:周期函数f (x )在[-1,0]上是减函数,在[0,1]上是增函数.又因为A ,B 是锐角三角形的两个内角,A +B >π2,得:sin A >cos B ,故f (sin A )>f (cos B ).综上知选A.3.函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为(A )A .2- 3B .0C .-1D .-1- 3解析:用五点作图法画出函数y =2sin ⎝⎛⎭⎪⎫πx 6-π3(0≤x ≤9)的图象,注意0≤x ≤9知,函数的最大值为2,最小值为- 3.故选A.4. 把函数y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移 1个单位长度,得到的图象是(A )解析:y =cos 2x +1的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),然后向左平移1个单位长度,再向下平移1个单位长度,得到的解析式为y =cos (x +1).故选A.5.(2015·新课标Ⅰ卷)函数f (x )=cos(ωx +φ)的部分图象如图所示,则f (x )的单调递减区间为(D )A.⎝⎛⎭⎪⎫k π-14,k π+34,k ∈ZB.⎝⎛⎭⎪⎫2k π-14,2k π+34,k ∈Z C.⎝ ⎛⎭⎪⎫k -14,k +34,k ∈ZD.⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z 解析:由图象知周期T =2⎝ ⎛⎭⎪⎫54-14=2,∴2πω=2,∴ω=π.由π×14+φ=π2+2k π,k ∈Z ,不妨取φ=π4,∴f (x )=cos ⎝⎛⎭⎪⎫πx +π4.由2k π<πx +π4<2k π+π,得2k -14<x <2k +34,k ∈Z ,∴f (x )的单调递减区间为⎝⎛⎭⎪⎫2k -14,2k +34,k ∈Z.故选D.6.已知函数f (x )=A sin(ωx +φ)(x ∈R,A >0,ω>0,|φ|<π2)的图象(部分)如图所示,则f (x )的解析式是(A )A .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π6(x ∈R)B .f (x )=2sin ⎝ ⎛⎭⎪⎫2πx +π6(x ∈R)C .f (x )=2sin ⎝ ⎛⎭⎪⎫πx +π3(x ∈R)D .f (x )=2sin ⎝⎛⎭⎪⎫2πx +π3(x ∈R) 解析:由图象可知其周期为:4⎝ ⎛⎭⎪⎫56-13=2,∵2πω=2,得ω=π,故只可能在A ,C 中选一个,又因为x =13时达到最大值,用待定系数法知φ=π6.二、填空题7.若sin θ=-45,tan θ>0,则cos θ=-35.8.已知角α的终边经过点(-4,3),则cos α=-45.解析:由题意可知x =-4,y =3,r =5,所以cos α=x r =-45.三、解答题9. (2014·某某卷)已知函数f (x )=2cos x (sin x +cos x ). (1)求f ⎝⎛⎭⎪⎫5π4的值;(2)求函数f (x )的最小正周期及单调递增区间.分析:思路一 直接将5π4代入函数式,应用三角函数诱导公式计算.(2)应用和差倍半的三角函数公式,将函数化简2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 得到T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.思路二 先应用和差倍半的三角函数公式化简函数f (x )=2sin x cos x +2cos 2x =2sin ⎝⎛⎭⎪⎫2x +π4+1.(1)将5π4代入函数式计算;(2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,解得k π-3π8≤x ≤k π+π8,k ∈Z.解析:解法一 (1)f ⎝⎛⎭⎪⎫5π4=2cos 5π4⎝ ⎛⎭⎪⎫sin 5π4+cos 5π4=-2cos π4⎝ ⎛⎭⎪⎫-sin π4-cos π4=2.(2)因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1. 所以T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.解法二 因为f (x )=2sin x cos x +2cos 2x =sin 2x +cos 2x +1 =2sin ⎝ ⎛⎭⎪⎫2x +π4+1.(1)f ⎝⎛⎭⎪⎫5π4=2sin 11π4+1=2sin π4+1=2. (2)T =2π2=π.由2k π-π2≤2x +π4≤2k π+π2,k ∈Z ,得k π-3π8≤x ≤k π+π8,k ∈Z ,所以f (x )的单调递增区间为⎣⎢⎡⎦⎥⎤k π-3π8,k π+π8,k ∈Z.10.函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π6+1(A >0,ω>0)的最大值为3, 其图象相邻两条对称轴之间的距离为π2.(1)求函数f (x )的解析式;word(2)设α∈⎝ ⎛⎭⎪⎫0,π2,则f ⎝ ⎛⎭⎪⎫α2=2,求α的值. 解析:(1)∵函数f (x )的最大值为3,∴A +1=3,即A =2.∵函数图象的相邻两条对称轴之间的距离为π2, ∴最小正周期为 T =π,∴ω=2,故函数f (x )的解析式为y =2sin ⎝ ⎛⎭⎪⎫2x -π6+1. (2)∵f ⎝ ⎛⎭⎪⎫α2=2sin ⎝⎛⎭⎪⎫α-π6+1=2, 即sin ⎝⎛⎭⎪⎫α-π6=12, ∵0<α<π2,∴-π6<α-π6<π3. ∴α-π6=π6,故α=π3. 11.(2015·卷)已知函数f (x )=2sin x 2cos x 2-2sin 2x 2. (1)求f (x )的最小正周期;(2)求f (x )在区间[-π,0]上的最小值.解析:(1)由题意得f (x )=22sin x -22(1-cos x )=sin ⎝ ⎛⎭⎪⎫x +π4-22,所以f (x )的最小正周期为2π.(2)因为-π≤x ≤0,所以-3π4≤x +π4≤π4. 当x +π4=-π2,即x =-3π4时,f (x )取得最小值. 所以f (x )在区间[-π,0]上的最小值为f ⎝ ⎛⎭⎪⎫-3π4=-1-22.。
2012江苏省南京市东山外语国际学校高三数学二轮专题复习《三角函数的图像和性质》导学案(无答案)近几年向量与三角相结合的试题较多.向量与三角的整合主要考查三角函数两角和(差)的公式、三角函数的图象与性质、向量的数量积等,特别是利用二倍角公式和辅助角公式sin cos )A x B x x ϕ+=+转化三角函数关系应用较多;向量与三角的整合题是近几年小题或解答题第一题的热点. 1.在ABC ∆中,角,,A B C 所对的边分别是,,a b c ,),3(a c b m -= ,)cos ,(cos C A n -= ,若0.=n m,则cos A = 2.设向量)sin ,cos 4(αα=a ,)cos 4,(sin ββ=b ,)sin 4,(cos ββ-=c .①若a 与c b 2-垂直,求)tan(βα+的值为______________.②求c b +的最大值为__________________3.已知向量)sin ,(cos θθ=m 和)cos ,sin 2(θθ-=n )2,(ππθ∈,且528=+n m ,求)82cos(πθ+的值____________ 4. 在ABC ∆中,角A 、B 、C 的对边长分别为a 、b 、c ,设向量)sin ,(sin C B x =,向量cos)(cos,=y ,向量cos)(cos,-=z ,若y x z +//,求C B tan tan +的值为__________.例1.已知点A ,B ,C 的坐标分别为)0,4(A ,)4,0(B ,)sin 3,cos 3(ααC .⑴若)0,(πα-∈,α的值.⑵若0.=BC AC ,求αααtan 1sin sin 22++的值.例 2.已知ABC ∆的角A 、B 、C 的对边长分别为a 、b 、c ,设向量),(b a m = ,)sin ,(sin A B n = ,)2,2(--=a b p )2,2(--=a b p .⑴若n m //,求证:ABC ∆为等腰三角形;⑵若p m ⊥,2=c ,3π=C ,求ABC ∆的面积.例3.已知向量)1,4sin3(x m = ,)4cos ,4(cos 2x x n = .(Ⅰ)若1.=n m ,求2cos()3x π-的值; (Ⅱ)记n m x f.)(=,在ABC ∆中,角,,A B C 的对边分别是,,a b c ,且满足(2)cos cos a c B b C -=,求函数()f A 的取值范围.1、已知)1,(sin α=a ,)2,(cos α=b ,)4,0(πα∈. ①若b a //,则αtan 的值为__________________. ②若817.=b a ,)42sin(πα+的值为_________________. 2、已知)23,21(-=a ,b a OA -=,b a OB +=,若OAB ∆是以O 为直角顶点的等腰直角三角形,则OAB ∆的面积是_______________.3、已知M 是ABC ∆内一点,且32.=AC AB ,030=∠BAC .若MBC ∆,MCA ∆,和MAB ∆的面积分别为21,x ,y ,则yx 41+的最小值是_____________. 4、已知)23sin ,23(cos θθ=a ,)2sin ,2(cos θθ-=b 且⎥⎦⎤⎢⎣⎡∈3,0πθ.⑴求b a b a +.的最值;⑵若b k a b a k -=+3)(R k ∈,求k 的取值范围.。
高考数学二轮复习第三部分3回首3三角函数与平面向量教案回首 3三角函数与平面向量[ 必记知识 ]引诱公式公式 一 二 三 四 五 六角2k π+π+α-απ- απ π- α+ αα(k ∈ Z )22正弦 sin α - sin α - sin α sin α cos α cos α余弦 cos α - cos α cos α -cos α sin α-sin α正切tan αtan α- tan α-tan α函数名改变,符号看象口诀 函数名不变,符号看象限限[提示 ]奇变偶不变,符号看象限π “奇、偶 ”指的是 的倍数是奇数,仍是偶数,“ 变与不变 ”指的是三角函数名称的变化,2π“变 ”是指正弦变余弦 (或余弦变正弦) .“符号看象限 ”的含义是: 把角 α看作锐角, 看 n ·2±α (n ∈ Z )是第几象限角,进而获得等式右边是正号仍是负号.三种三角函数的性质函数 y = sin x y = cos x y = tan x图象在 -ππ + 2k π ,+ 2k π22单(k ∈ Z )上单一递加;调π在+ 2k π,性23π+2k π (k ∈ Z )上单一递减2在 [ - π +2k π , 2kπ ](k ∈ Z )上单一递加;在 [2k π, π + 2kπ ](k ∈ Z )上单一递减π在 - 2 + k π ,π2 + k π (k ∈ Z )上单一递加对称中心: (k π, 0)(k ∈ Z );对对称中心: 对称中心: k π, 0对称性ππ2 称轴: x = +k π (k ∈ Z ) + k π, 0 (k ∈ Z );2 2 (k ∈ Z )高考数学二轮复习第三部分3回首3三角函数与平面向量教案对称轴:x= kπ (k∈Z )[提示 ])求函数f(x)=Asin(ωx+φ)的单一区间时,要注意 A 与ω的符号,当ω<0 时,需把ω的符号化为正当后求解.三角函数图象的变换由函数 y= sin x 的图象变换获得y= sin( ωx+φ)(A>0,ω> 0)的图象的两种方法[提示 ]图象变换的本质是点的坐标的变换,所以三角函数图象的伸缩、平移变换能够利用两个函数图象上的特点点之间的对应确立变换的方式,一般选用离 y 轴近来的最高点或最低点,自然也能够选用在原点左边或右边的第一个对称中心点,依据这些点的坐标即可确定变换的方式、平移的单位与方向等.两角和与差的正弦、余弦、正切公式sin(α±β)= sin αcos β±cos αsin β.cos(α±β)= cos αcos β? sin αsin β.tan(α±β)=tanα±tanβ. 1? tan αtan βsin(α+β)sin(α-β)= sin2α- sin2β(平方正弦公式 ).22cos(α+β)cos(α-β)= cos α- sin β.二倍角、协助角及半角公式(1)二倍角公式sin 2α= 2sin αcos α.2222α.cos 2α= cosα- sin α=2cos α-1= 1- 2sin2tan αtan 2α=2.1- tan α①1+ sin 2α= (sin α+cos α)2.②1- sin 2α= (sin α-cos α)2.(2)协助角公式y= asin x+ bcos x= a2+ b2(sin xcos φ+ cos xsin φ)=a2+ b2sin(x+φ),此中角φ的终边所在象限由 a, b 的符号确立,角φ的值由 tan φ=b(a≠ 0)确立.a正、余弦定理及其变形定理内容正弦定理a=b=c= 2R sin Asin B sin C(1)a= 2Rsin A,b= 2Rsin B,c=2Rsin C;余弦定理a2= b2+ c2- 2bccos A;b2= a2+ c2- 2accos B;222- 2abcos Cc= a+ b变形a b(2)sin A=2R,sin B=2R,sin C=c ;2R(3)a∶ b∶c= sin A∶ sin B∶sin C;(4) asin B=bsin A, bsin C=cos A=222b +c - acos B=222c + a - bcos C=;;csin B,asin C= csin A;a+b+ c a(5)s in A+ sin B+ sin C=sin A=2Ra2+ b2- c22ab[提示 ])在已知两边和此中一边的对角时,要注意查验解能否知足“大边对大角”,防止增解 .平面向量数目积的坐标表示已知非零向量a=( x1,y1), b=(x2,y2),θ为向量 a,b 的夹角.结论几何表示坐标表示模|a|=a·a|a|= x12+y12数目积a·b=|a||b|cosθa·b=x1x2+y1y2夹角cos θ=a·b x1x2+ y1y2cos θ=|a||b|x12+ y12· x22+ y22续表结论几何表示坐标表示a⊥ b 的充要条件a·b=0x1x2+ y1y2= 0|a·b|与 |a||b|的关系|a·b| ≤|a||b|(当且仅当a∥b时|x1x2+ y1y2|≤等号建立 )x12+ y12· x22+ y22[提示 ] ( 1)要特别注意零向量带来的问题:0 的模是 0,方向随意, 其实不是没有方向;0 与随意非零向量平行 .,( 2)a ·b > 0 是〈 a ,b 〉为锐角的必需不充足条件; ,a ·b < 0 是〈 a ,b 〉为钝角的必需不充足条件.[ 必会结论 ]降幂、升幂公式 (1)降幂公式21- cos 2α2① sin α=;② cos α=2(2)升幂公式2α① 1+ cos α=2cos 2;② 1- cos1+ cos 2α1 ;③ sin αcos α= sin 2α.222α αα= 2sin 2;③ 1+ sin α= sin + cos2α22;④ 1- sin α=αα2sin - cos2.2常有的协助角结论π (1)sin x ±cos x =2sin x ± .4π(2)cos x ±sin x =2cos x? 4 .π (3)sin x ± 3cos x = 2sin x ± .3π(4)cos x ± 3sin x = 2cos x? 3 .π(5) 3sin x ±cos x = 2sin x ± . 6π(6) 3cos x ±sin x = 2cos x? 6 .[ 必练习题 ]cos ( π- α)1.已知 tan α=3,则π的值为 ( )cosα-21B .- 3A .- 31C.3D . 3分析: 选 A. cos ( π- α) = - cos α 1 =-1 .=-cos α- π sin α tan α 322.已知 x ∈ (0, π),且 cos 2x - π = sin 2x ,则 tan x - π等于 ()241 1A. 3B .- 3C.3D.- 3分析:选 A. 由 cos 2x-π2= sin 2x 得 sin 2 x= sin 2x,由于 x∈ (0,π),所以 tan x= 2,所以π= tan x- 1= 1tan x-41+ tan x3.3.函数 y= cos 2x+ 2sin x 的最大值为 ()3A. 4B. 13C.2D. 2分析:选 C. y= cos 2x+ 2sin x=- 2sin2x+ 2sin x+ 1.21 231设 t= sin x(- 1≤t≤1),则原函数能够化为y=- 2t + 2t+ 1=- 2t-2+2,所以当 t=2时,函数获得最大值32.4.已知函数 f(x)= Asin(ωx+φ)(A> 0,ω> 0,0<φ<π ) ,其导函数 f′(x)的图象如图所π示,则 f2的值为()A.2 2 B.222C.-2D.-42π分析:选 D. 依题意得 f′(x)= Aωcos(ωx+φ),联合函数y= f′(x)的图象可知,T=ω=43π π=π,ω= 2.又 Aω= 1,所以A=1.由于3π 3π7π3π=8-20<φ<π,4<+φ<,且f′8 8443π3ππ1π π1π 1 2cos4+φ=- 1,所以4+φ=π,所以φ=4,f(x)=2sin 2x+4,f 2=2sinπ+4=-2×2=-2,应选 D.4π5.已知 x=12是函数 f( x)= 3sin(2 x+φ)+ cos(2x+φ)(0 <φ< x)图象的一条对称轴,将函数 f(x)的图象向右平移3πg(x)的图象,则函数g(x) 在π π4个单位长度后获得函数-,上的最4 6小值为 ()A.- 2B.- 1 C.-2D.- 3ππππ分析: 选 B. 由于 x = 12 是 f(x)= 2sin 2x + + φ图象的一条对称轴,所以3+φ= k π+ 2(k6π πππ π∈ Z ),由于 0< φ< π,所以 φ= 6,则 f(x)= 2sin 2x + 3 ,所以 g(x)=- 2sin 2x - 6 在 -4,6π上的最小值为 g 6 =- 1.6.已知 △ ABC 的内角 A ,B ,C 的对边分别为2 2,bcos A + acos Ba ,b ,c ,若 cos C = 3=2,则 △ABC 的外接圆面积为 ( )A . 4πB . 8πC .9πD . 36π分析: 选 C.由题意知 c = bcos A + acos B =2,由 cos C =2 2得 sin C = 1,再由正弦定理33c2可得 2R =sin C = 6,所以 △ ABC 的外接圆面积为πR = 9π,应选 C.7.已知非零单位向量a ,b 知足 |a + b |= |a - b |,则 a 与 b - a 的夹角可能是 ()π πA. 6B.3 π 3πC.4D. 4分析:选 D. 由 |a +b |= |a - b |可得 ( a + b ) 2= (a - b )2,即 a ·b = 0,而 a ·(b -a ) =a ·b - a 2=- |a |2< 0,即 a 与 b - a 的夹角为钝角,应选 D.8.已知向量 a = (1 ,3), b = (- 2,k),且 (a + 2b )∥ (3a - b ) ,则实数 k =________.分析: a + 2b = (- 3, 3+2k), 3a - b = (5, 9- k),由题意可得- 3(9- k)= 5(3+ 2k),解得 k =- 6.答案: -69.已知向量 a = (1, 0), |b |= 2, a 与 b 的夹角为 45°,若 c =a + b , d = a - b ,则 c 在d 方向上的投影为 ________.分析: 依题意得 |a |= 1, a ·b = 1× 2×cos 45 °=1, |d |= (a - b ) 2= a 2+ b 2- 2a ·b =1,c ·d = a 2 -b 2=- 1,所以 c 在 d 方向上的投影等于 c·d =- 1. |d |答案: -1π10.已知函数 f(x)= sin ωx+3 (ω> 0),A ,B 是函数 y = f(x)图象上相邻的最高点和最低点,若 |AB|= 2 2,则 f(1)= ________.2T2分析: 设 f(x)的最小正周期为 T ,则由题意,得 2 + 2 = 2 2,解得 T = 4,所以 ω2π 2π ππ ππ π5π 1=T =4 =2 ,所以 f(x)=sin 2x +3 ,所以 f(1) = sin += sin 6 = 2.2 3答案:12△ABC = 3,则c=______ .11.在△ABC 中, A= 60°, b= 1, S sin C分析:依题意得,133,则 c= 4.由余弦定理得a=22 bcsin A=4c= b + c - 2bccos A=2a =13=2 39 c = 239 13,所以sin A sin 60°3 .由正弦定理得sin C 3.答案:2 393。
第三讲平面向量[考情分析]平面向量的命题近几年较稳定,一般是单独命题考查平面向量的模、数量积的运算、线性运算等,难度较低,有时也与三角函数、解析几何综合命题,难度中等.[真题自检]1.(2017·高考全国卷Ⅱ)设非零向量a,b满足|a+b|=|a-b|,则( )B.|a|=|b|A.a⊥bD.|a|>|b|C.a∥b解析:依题意得(a+b)2-(a-b)2=0,即4a·b=0,a⊥b,选A.答案:A 2.(2015·高考全国卷Ⅱ)向量a=(1,-1),b=(-1,2),则(2a+b)·a=( )B.0A.-1D.2C.1 解析:法一:∵a=(1,-1),b=(-1,2),∴a2=2,a·b=-3,从而(2a+b)·a=2a2+a·b=4-3=1.法二:∵a=(1,-1),b=(-1,2),∴2a+b=(2,-2)+(-1,2)=(1,0),从而(2a+b)·a=(1,0)·(1,-1)=1,故选C.答案:C 3.(2016·高考全国卷Ⅱ)已知向量a=(m,4),b=(3,-2),且a∥b,则m=________.解析:∵a=(m,4),b=(3,-2),a∥b,∴-2m-4×3=0.∴m=-6.答案:-6 4.(2017·高考全国卷Ⅰ)已知向量a=(-1,2),b=(m,1).若向量a+b与a垂直,则m=________.解析:因为a +b =(m -1,3),a +b 与a 垂直,所以(m -1)×(-1)+3×2=0,解得m =7.答案:7平面向量的概念及线性运算[方法结论]1.在用三角形加法法则时要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所在的向量;在用三角形减法法则时要保证“同起点”,结果向量的方向是指向被减向量.2.利用平面向量基本定理实现了平面内任一向量都可以表示为同一平面内两个不共线的向量e 1,e 2的线性组合λ1e 1+λ2e 2,常用方法有两种:一是直接利用三角形法则与平行四边形法则及向量共线定理来破解;二是利用待定系数法,即利用定理中λ1,λ2的唯一性列方程组求解.[题组突破]1.如图,在△OAB 中,点B 关于点A 的对称点为C ,D 在线段OB 上,且OD =2DB ,DC 和OA 相交于点E .若OE →=λOA →,则λ=( )A.34B.35C.45D.12解析:通解:设OA →=a ,OB →=b ,由题意得DC →=OC →-OD →=OA →+AC →-23OB →=OA →+BA →-23OB →=2a -53b .因为OE →=λOA →=λa ,设DE →=μDC →=2μa -53μb ,又OE →=OD →+DE →,所以λa =23b +2μa -53μb =2μa+⎝ ⎛⎭⎪⎫23-53μb ,所以⎩⎪⎨⎪⎧λ=2μ23-53μ=0,所以λ=45.优解:由题意知,AB =AC ,OD =2DB ,过点A 作AF ∥OB 交CD 于点F (图略),则AF BD =AC BC =12,即AF =12BD =14OD ,故AE =14OE ,则OE =45OA ,又OE →=λOA →,故λ=45.。
第3讲 平面向量1.考查平面向量的基本定理及基本运算,多以熟知的平面图形为背景进行考查,多为选择题、填空题,难度为中低档.2.考查平面向量的数量积,以选择题、填空题为主,难度为低档;向量作为工具,还常与三角函数、解三角形、不等式、解析几何结合,以解答题形式出现.热点一 平面向量的线性运算1.在平面向量的化简或运算中,要根据平面向量基本定理选好基底,变形要有方向不能盲目转化.2.在用三角形加法法则时,要保证“首尾相接”,结果向量是第一个向量的起点指向最后一个向量终点所得的向量;在用三角形减法法则时,要保证“同起点”,结果向量的方向是指向被减向量.例1 (1)(2017届河南息县第一高级中学检测)已知平行四边形ABCD 的对角线分别为AC ,BD ,且AE →=2EC →,点F 是BD 上靠近D 的四等分点,则( )A.FE →=-112AB →-512AD →B.FE →=112AB →-512AD →C.FE →=512AB →-112AD →D.FE →=-512AB →-112AD →答案 C解析 AE →=2EC →,点F 是BD 上靠近D 的四等分点, ∴FO →=14DB →,OE →=16AC →,∴FE →=FO →+OE →=14DB →+16AC →,∵AB →+AD →=AC →,AD →-AB →=BD →, ∴FE →=14(AB →-AD →)+16(AB →+AD →)=512AB →-112AD →.故选C. (2)(2017届湖南师大附中月考)O 为△ABC 内一点,且2OA →+OB →+OC →=0,AD →=tAC →,若B ,O ,D 三点共线,则t 的值为( ) A.13 B.14 C.12 D.23 答案 A解析 由AD →=tAC →,得OD →-OA →=t (OC →-OA →), 所以OD →=tOC →+(1-t )OA →,因为B ,O ,D 三点共线,所以BO →=λOD →, 则2OA →+OC →=λt OC →+(1-t )λOA →,故有⎩⎪⎨⎪⎧2=(1-t )λ,1=λt ,t =13,故选A.思维升华 (1)对于平面向量的线性运算,要先选择一组基底,同时注意平面向量基本定理的灵活运用.(2)运算过程中重视数形结合,结合图形分析向量间的关系.跟踪演练1 (1)(2017·河北省衡水中学三调)在△ABC 中,AN →=14NC →,P 是直线BN 上的一点,若AP →=mAB →+25AC →,则实数m 的值为( )A .-4B .-1C .1D .4 答案 B解析 因为AP →=AB →+BP →=AB →+kBN →=AB →+k ⎝⎛⎭⎫15AC →-AB →=(1-k )AB →+k 5AC →, 且AP →=mAB →+25AC →,所以⎩⎪⎨⎪⎧1-k =m ,k 5=25,解得k =2,m =-1,故选B.(2)(2017届福建连城县二中期中)已知平面向量a =(1,2),b =(-2,m ),且a ∥b ,则2a +3b 等于( ) A .(-5,-10) B .(-4,-8) C .(-3,-6) D .(-2,-4)答案 B解析 因为a =(1,2),b =(-2,m ),且a ∥b ,所以m +4=0,m =-4,2a +3b =2(1,2)+3(-2,-4)=(-4,-8),故选B. 热点二 平面向量的数量积 1.数量积的定义:a ·b =|a ||b |cos θ. 2.三个结论(1)若a =(x ,y ),则|a |=a ·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2. (3)若非零向量a =(x 1,y 1),非零向量b =(x 2,y 2),θ为a 与b 的夹角, 则cos θ=a ·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.例2 (1)(2017届湖北省部分重点中学联考)若等边△ABC 的边长为3,平面内一点M 满足CM →=13CB →+12CA →,则AM →·MB →的值为( ) A .2 B .-152C.152D. -2答案 A解析 因为AM →=CM →-CA →,MB →=CB →-CM →,则AM →·MB →=⎝⎛⎭⎫13CB →-12CA →⎝⎛⎭⎫23CB →-12CA →, 即AM →·MB →=29CB →2-12CA →·CB →+14CA →2=2-94+94=2,故选A.(2)(2017届河北省衡水中学六调)已知向量a ,b 满足|a |=1,|b |=2,a -b =(3,2),则|a +2b |等于( ) A .2 2B.17C.15 D .2 5答案 B解析 向量a ,b 满足|a |=1,|b |=2,a -b =(3,2), 可得|a -b |2=5,即|a |2+|b |2-2a ·b =5,解得a ·b =0. |a +2b |2=|a |2+4|b |2+4a ·b =1+16=17, 所以|a +2b |=17.故选B.思维升华 (1)数量积的计算通常有三种方法:数量积的定义,坐标运算,数量积的几何意义. (2)可以利用数量积求向量的模和夹角,向量要分解成题中模和夹角已知的向量进行计算. 跟踪演练2 (1)(2017·全国Ⅱ)已知△ABC 是边长为2的等边三角形,P 为平面ABC 内一点,则P A →·(PB →+PC →)的最小值是( ) A .-2 B .-32 C .-43 D .-1答案 B解析 方法一 (解析法)建立平面直角坐标系如图①所示,则A ,B ,C 三点的坐标分别为A (0,3),B (-1,0),C (1,0).图①设P 点的坐标为(x ,y ), 则P A →=(-x ,3-y ), PB →=(-1-x ,-y ), PC →=(1-x ,-y ),∴P A →·(PB →+PC →)=(-x ,3-y )·(-2x ,-2y ) =2(x 2+y 2-3y )=2⎣⎡⎦⎤x 2+⎝⎛⎭⎫y -322-34≥2×⎝⎛⎭⎫-34=-32.当且仅当x =0,y =32时,P A →·(PB →+PC →)取得最小值,最小值为-32.故选B. 方法二 (几何法)如图②所示,PB →+PC →=2PD →(D 为BC 的中点),则P A →·(PB →+PC →)=2P A →·PD →.图②要使P A →·PD →最小,则P A →与PD →方向相反,即点P 在线段AD 上,则(2P A →·PD →)min =-2|P A →||PD →|,问题转化为求|P A →|·|PD →|的最大值. 又|P A →|+|PD →|=|AD →|=2×32=3,∴|P A →||PD →|≤⎝ ⎛⎭⎪⎫|P A →|+|PD →|22=⎝⎛⎭⎫322=34,当且仅当|P A →|=|PD →|时取等号,∴[P A →·(PB →+PC →)]min =(2P A →·PD →)min =-2×34=-32.故选B.(2)(2017届湖北重点中学联考)已知向量a ,b 满足|a |=2,|b |=1,a 与b 的夹角为2π3,则|a +2b |=________. 答案 2解析 因为|a |=2,|b |=1,〈a ,b 〉=2π3,故a ·b =2cos 〈a ,b 〉=-1,则(a +2b )2=a 2+4a ·b +4b 2=4-4+4=4,即|a +2b |=2. 热点三 平面向量与三角函数平面向量作为解决问题的工具,具有代数形式和几何形式的“双重型”,高考常在平面向量与三角函数的交汇处命题,通过向量运算作为题目条件.例3 (2017·江苏)已知向量a =(cos x ,sin x ),b =(3,-3),x ∈[0,π]. (1)若a ∥b ,求x 的值;(2)记f (x )=a ·b ,求f (x )的最大值和最小值以及对应的x 的值.解 (1)因为a =(cos x ,sin x ),b =(3,-3),a ∥b , 所以-3cos x =3sin x .若cos x =0,则sin x =0,与sin 2x +cos 2x =1矛盾, 故cos x ≠0. 于是tan x =-33. 又x ∈[0,π],所以x =5π6.(2)f (x )=a·b =(cos x ,sin x )·(3,-3) =3cos x -3sin x =23cos ⎝⎛⎭⎫x +π6. 因为x ∈[0,π],所以x +π6∈⎣⎡⎦⎤π6,7π6, 从而-1≤cos ⎝⎛⎭⎫x +π6≤32, 于是,当x +π6=π6,即x =0时,f (x )取得最大值3;当x +π6=π,即x =5π6时,f (x )取得最小值-2 3.思维升华 在平面向量与三角函数的综合问题中,一方面用平面向量的语言表述三角函数中的问题,如利用向量平行、垂直的条件表述三角函数式之间的关系,利用向量模表述三角函数之间的关系等;另一方面可以利用三角函数的知识解决平面向量问题,在解决此类问题的过程中,只要根据题目的具体要求,在向量和三角函数之间建立起联系,就可以根据向量或者三角函数的知识解决问题.跟踪演练3 已知平面向量a =(sin x ,cos x ),b =(sin x ,-cos x ),c =(-cos x ,-sin x ),x ∈R ,函数f (x )=a·(b -c ).(1)求函数f (x )的单调递减区间; (2)若f ⎝⎛⎭⎫α2=22,求sin α的值.解 (1)因为a =(sin x ,cos x ),b =(sin x ,-cos x ), c =(-cos x ,-sin x ),所以b -c =(sin x +cos x ,sin x -cos x ),f (x )=a·(b -c )=sin x (sin x +cos x )+cos x (sin x -cos x ) =sin 2x +2sin x cos x -cos 2x =sin 2x -cos 2x =2sin ⎝⎛⎭⎫2x -π4. 当2k π+π2≤2x -π4≤2k π+3π2,k ∈Z ,即k π+3π8≤x ≤k π+7π8,k ∈Z 时,函数f (x )为减函数.所以函数f (x )的单调递减区间是⎣⎡⎦⎤k π+3π8,k π+7π8,k ∈Z . (2)由(1)知,f (x )=2sin ⎝⎛⎭⎫2x -π4, 又f ⎝⎛⎭⎫α2=22,则2sin ⎝⎛⎭⎫α-π4=22,sin ⎝⎛⎭⎫α-π4=12. 因为sin 2⎝⎛⎭⎫α-π4+cos 2⎝⎛⎭⎫α-π4=1, 所以cos ⎝⎛⎭⎫α-π4=±32. 又sin α=sin ⎣⎡⎦⎤⎝⎛⎭⎫α-π4+π4=sin ⎝⎛⎭⎫α-π4cos π4+cos ⎝⎛⎭⎫α-π4sin π4, 所以当cos ⎝⎛⎭⎫α-π4=32时, sin α=12×22+32×22=2+64;当cos ⎝⎛⎭⎫α-π4=-32时, sin α=12×22-32×22=2-64.综上,sin α=2±64.真题体验1.(2017·北京改编)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m·n <0”的___________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0.当90°<θ<180°时,m ·n <0,此时不存在负数λ,使得m =λn . 故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos 〈m ,n 〉<0⇔cos 〈m ,n 〉<0⇔〈m ,n 〉∈⎝⎛⎦⎤π2,π,当〈m ,n 〉∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件.2.(2017·山东)已知e 1,e 2是互相垂直的单位向量,若3e 1-e 2与e 1+λe 2的夹角为60°,则实数λ的值是________. 答案33解析 由题意知|e 1|=|e 2|=1,e 1·e 2=0, |3e 1-e 2|=(3e 1-e 2)2=3e 21-23e 1·e 2+e 22=3-0+1=2.同理|e 1+λe 2|=1+λ2.所以cos 60°=(3e 1-e 2)·(e 1+λe 2)|3e 1-e 2||e 1+λe 2|=3e 21+(3λ-1)e 1·e 2-λe 2221+λ2=3-λ21+λ2=12,解得λ=33. 3.(2017·天津)在△ABC 中,∠A =60°,AB =3,AC =2.若BD →=2DC →,AE →=λAC →-AB →(λ∈R ),且AD →·AE →=-4,则λ的值为________.答案311解析 由题意知|AB →|=3,|AC →|=2, AB →·AC →=3×2×cos 60°=3,AD →=AB →+BD →=AB →+23BC →=AB →+23(AC →-AB →)=13AB →+23AC →,∴AD →·AE →=⎝⎛⎭⎫13AB →+23AC →·(λAC →-AB →)=λ-23AB →·AC →-13AB →2+2λ3AC →2=λ-23×3-13×32+2λ3×22=113λ-5=-4,解得λ=311.4.(2017·北京)已知点P 在圆x 2+y 2=1上,点A 的坐标为(-2,0),O 为原点,则AO →·AP →的最大值为________. 答案 6解析 方法一 根据题意作出图象,如图所示,A (-2,0),P (x ,y ). 由点P 向x 轴作垂线交x 轴于点Q ,则点Q 的坐标为(x,0). AO →·AP →=|AO →||AP →|cos θ, |AO →|=2,|AP →|=(x +2)2+y 2, cos θ=|AQ →||AP →|=x +2(x +2)2+y2,所以AO →·AP →=2(x +2)=2x +4.点P 在圆x 2+y 2=1上,所以x ∈[-1,1]. 所以AO →·AP →的最大值为2+4=6.方法二 如图所示,因为点P 在圆x 2+y 2=1上, 所以可设P (cos α,sin α)(0≤α<2π), 所以AO →=(2,0),AP →=(cos α+2,sin α), AO →·AP →=2cos α+4≤2+4=6,当且仅当cos α=1,即α=0,P (1,0)时“=”号成立. 押题预测1.如图,在△ABC 中,AD →=13AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N ,设AB →=a ,AC →=b ,用a ,b 表示向量AN →,则AN →等于( )A.12(a +b ) B.13(a +b ) C.16(a +b ) D.18(a +b ) 押题依据 平面向量基本定理是向量表示的基本依据,而向量表示(用基底或坐标)是向量应用的基础. 答案 C解析 因为DE ∥BC ,所以DN ∥BM , 则△AND ∽△AMB ,所以AN AM =ADAB .因为AD →=13AB →,所以AN →=13AM →.因为M 为BC 的中点,所以AM →=12(AB →+AC →)=12(a +b ),所以AN →=13AM →=16(a +b ).故选C.2.如图,BC ,DE 是半径为1的圆O 的两条直径,BF →=2FO →,则FD →·FE →等于( )A .-34B .-89C .-14D .-49押题依据 数量积是平面向量最重要的概念,平面向量数量积的运算是高考的必考内容,和平面几何知识的结合是向量考查的常见形式. 答案 B解析 ∵BF →=2FO →,圆O 的半径为1,∴|FO →|=13,∴FD →·FE →=(FO →+OD →)·(FO →+OE →)=FO →2+FO →·(OE →+OD →)+OD →·OE →=⎝⎛⎭⎫132+0-1=-89.3.在△ABC 中,AB →=(cos 32°,cos 58°),BC →=(sin 60°sin 118°,sin 120°sin 208°),则△ABC 的面积为( ) A.14 B.38 C.32 D.34押题依据 平面向量作为数学解题工具,通过向量的运算给出条件解决三角函数问题已成为近几年高考的热点. 答案 B 解析 |AB →|=cos 232°+cos 258°=cos 232°+sin 232°=1,BC →=⎝⎛⎭⎫32cos 28°,-32sin 28°,所以|BC →|=⎝⎛⎭⎫32cos 28°2+⎝⎛⎭⎫-32sin 28°2=32. 则AB →·BC →=cos 32°×32cos 28°-sin 32°×32sin 28°=32(cos 32°cos 28°-sin 32°sin 28°) =32cos(32°+28°)=32cos 60°=34, 故cos 〈AB →,BC →〉=AB →·BC →|AB →||BC →|=341×32=12.又〈AB →,BC →〉∈[0°,180°],所以〈AB →,BC →〉=60°, 故B =180°-〈AB →,BC →〉=180°-60°=120°. 故△ABC 的面积为 S =12·|AB →|·|BC →|sin B=12×1×32×sin 120°=38.故选B.4.如图,在半径为1的扇形AOB 中,∠AOB =60°,C 为AB 上的动点,AB 与OC 交于点P ,则OP →·BP →的最小值是________.押题依据 本题将向量与平面几何、最值问题等有机结合,体现了高考在知识交汇点命题的方向,本题解法灵活,难度适中. 答案 -116解析 因为OP →=OB →+BP →,所以OP →·BP →=(OB →+BP →)·BP →=OB →·BP →+BP →2.又因为∠AOB =60°,OA =OB ,所以∠OBA =60°,OB =1.所以OB →·BP →=|BP →|cos 120°=-12|BP →|.所以OP →·BP →=-12|BP →|+|BP →|2=⎝⎛⎭⎫|BP →|-142-116≥-116,当且仅当|BP →|=14时,OP →·BP →取得最小值-116.A 组 专题通关1. 设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →答案 A解析 ∵BC →=3CD →,∴AC →-AB →=3(AD →-AC →), 即4AC →-AB →=3AD →,∴AD →=-13AB →+43AC →.2.(2017届广西省教育质量诊断性联合考试)设向量a =(1,2),b =(-3,5),c =(4,x ),若a +b =λc (λ∈R ),则λ+x 的值为( ) A .-112B.112 C .-292D.292答案 C解析 由已知可得(1,2)+(-3,5)=λ(4,x )⇒⎩⎪⎨⎪⎧4λ=-2,xλ=7⇒⎩⎪⎨⎪⎧λ=-12,x =-14⇒λ+x =-292,故选C.3.已知向量a ,b ,其中a =(-1,3),且a ⊥(a -3b ),则b 在a 上的投影为( ) A.43 B .-43C.23 D .-23答案 C解析 由a =(-1,3),且a ⊥(a -3b ), 得a ·(a -3b )=0=a 2-3a·b =4-3a·b ,a·b =43,所以b 在a 上的投影为a·b |a |=432=23,故选C.4.如图,在矩形ABCD 中,AB =3,BC =3,BE →=2EC →,点F 在边CD 上,若AB →·AF →=3,则AE →·BF →的值为()A .4 B.833 C .0 D .-4答案 D解析 如图所示,BE →=2EC →⇒BE =23BC =233,AB →·AF →=3⇒AF cos ∠BAF =1⇒DF =1,以点A 为原点建立平面直角坐标系,AD 所在直线为x 轴,AB 所在直线为y 轴,则B (0,3),F (3,1),E (233,3),因此BF →=(3,-2),AE →·BF →=233×3-2×3=2-6=-4.5.在△ABC 中,AB =5,AC =6,若B =2C ,则向量BC →在BA →方向上的投影是( ) A .-75B .-77125C.77125D.75答案 B解析 由正弦定理得AC sin B =AB sin C ⇒6sin 2C =5sin C ⇒cos C =35, 由余弦定理得cos C =BC 2+AC 2-AB 22AC ·BC ⇒BC =115或5,经检验知BC =5不符合,舍去,所以BC =115,cos B =AB 2+BC 2-AC 22AB ·BC =-725,则|BC →|cos B =-77125,故选B.6.(2017届吉林省普通中学调研)在等腰直角△ABC 中,AC =BC ,D 在AB 边上且满足CD →=tCA →+(1-t )CB →,若∠ACD =60°,则t 的值为( ) A.3-12 B.3-1 C.3-22D.3+12 答案 A解析 因为D 在AB 边上且满足CD →=tCA →+(1-t )CB →,所以BD →=tBA →,不妨设AC =BC =1,则AB =2,AD =2(1-t ),在△ACD 中,∠ACD =60°,∠CAD =45°,则∠ADC =75°,由正弦定理,得1sin 75°=2(1-t )sin 60°,解得t =3-12.故选A.7.(2017届河南南阳一中月考)已知△ABC 的外接圆半径为1,圆心为点O ,且3OA →+4OB →+5OC →=0,则△ABC 的面积为( ) A.85 B.75 C.65 D.45答案 C解析 如图所示,|OA →|=|OB →|=|OC →|=1,由3OA →+4OB →+5OC →=0,可得3OA →+4OB →=-5OC →,两边平方可得9+24OA →·OB →+16=25,所以OA →·OB →=0,因此OA →⊥OB →.同理3OA →+5OC →=-4OB →,4OB →+5OC →=-3OA →,两边分别平方可得cos 〈OB →,OC →〉=-45,cos 〈OA →,OC →〉=-35,根据同角三角函数基本关系可得sin 〈OB →,OC →〉=35,sin 〈OA →,OC →〉=45,所以S △ABC =S △AOB +S △AOC +S △OBC=12×1×1+12×1×1×45+12×1×1×35=65,故选C. 8.已知向量OA →=(1,1),OB →=(1,a ),其中O 为原点,若向量OA →与OB →的夹角在区间⎣⎡⎦⎤0,π12内变化,则实数a 的取值范围是__________. 答案 ⎣⎡⎦⎤33,3解析 因为OA →=(1,1),OB →=(1,a ), 所以OA →·OB →=1+a .又OA →·OB →=2·1+a 2cos θ, 故cos θ=1+a2(1+a 2),因为θ∈⎣⎡⎦⎤0,π12,故cos θ∈⎣⎢⎡⎦⎥⎤6+24,1, 即1+a2(1+a 2)∈⎣⎢⎡⎦⎥⎤6+24,1,解得33≤a ≤ 3. 9.(2017·辽宁省大连市双基测试)已知平面内三个单位向量OA →,OB →,OC →,〈OA →,OB →〉=60°,若OC →=mOA →+nOB →,则m +n 的最大值是______. 答案233解析 由已知条件OC →=mOA →+nOB →,两边平方可得1=m 2+mn +n 2=(m +n )2-mn ,∴(m +n )2-1=mn ,根据向量加法的平行四边形法则,判断出m ,n >0,∴(m +n )2-1=mn ≤14(m +n )2,当且仅当m =n 时取等号,∴34(m +n )2≤1,则m +n ≤233,即m +n 的最大值为233. 10.(2017届陕西西安铁一中三模)已知向量m =(sin x ,-1),向量n =⎝⎛⎭⎫3cos x ,-12,函数f (x )=(m +n )·m .(1)求f (x )的单调递减区间;(2)已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,A 为锐角,a =23,c =4,且f (A )恰是f (x )在⎣⎡⎦⎤0,π2上的最大值,求A ,b 和△ABC 的面积S . 解 (1)f (x )=(m +n )·m =sin 2x +1+3sin x cos x +12=1-cos 2x 2+1+32sin 2x +12=32sin 2x -12cos 2x +2 =sin ⎝⎛⎭⎫2x -π6+2. 由2k π+π2≤2x -π6≤2k π+3π2(k ∈Z ),得k π+π3≤x ≤k π+5π6(k ∈Z ).所以f (x )的单调递减区间为⎣⎡⎦⎤k π+π3,k π+5π6(k ∈Z ). (2)由(1)知f (A )=sin ⎝⎛⎭⎫2A -π6+2, 当x ∈⎣⎡⎦⎤0,π2时,-π6≤2x -π6≤5π6, 由正弦函数图象可知,当2x -π6=π2时f (x )取得最大值3.所以2A -π6=π2,A =π3.由余弦定理,a 2=b 2+c 2-2bc cos A ,得12=b 2+16-2×4b ×12,所以b =2.所以S =12bc sin A =12×2×4sin 60°=2 3.B 组 能力提高11. (2017届江西师大附中、临川一中联考)在Rt △ABC 中,∠BCA =90°,CA =CB =1,P 为AB 边上的点,AP →=λAB →,若CP →·AB →≥P A →·PB →,则λ的最大值是( ) A.2+22B. 2-22C .1 D. 2答案 C解析 因为CP →=AP →-AC →=λAB →-AC →, PB →=AB →-AP →=AB →-λAB →, 故由CP →·AB →≥P A →·PB →,可得2λ-1≥-2λ(1-λ),即2λ-1≥-2λ+2λ2, 也即λ2-2λ≤-12,解得1-22≤λ≤1+22,由于点P ∈AB ,所以1-22≤λ≤1, 故选C.12.(2017届荆、荆、襄、宜四地七校联考)如图,三个边长为2的等边三角形有一条边在同一直线上,边B 3C 3上有10个不同的点P 1,P 2,…,P 10, 记m i =AB →2·AP →i (i =1,2,…,10),则m 1+m 2+…+m 10的值为( )A .15 3B .45C .60 3D .180 答案 D解析 因为AB 2与B 3C 3垂直,设垂足为C ,所以AP i →在AB 2→上的投影为AC ,m i =AB 2→·AP i →=|AB 2→||AC →|=23×33=18,从而m 1+m 2+…+m 10的值为18×10=180.故选D.13.(2017届江西上饶一模)已知在Rt △AOB 中,AO =1,BO =2,如图,动点P 是在以O 点为圆心,OB 为半径的扇形内运动(含边界)且∠BOC =90°.设OP →=xOA →+yOB →,则x +y 的取值范围是__________. 答案 [-2,1]解析 由已知图形可知OP →,OA →的夹角∠AOP ∈[90°,180°],所以x ≤0, OP →,OB →的夹角∠BOP ∈[0°,90°],所以y ≥0,由平行四边形法则可知,当点P 沿着圆弧CB 由C 到B 移动时,负数x 逐渐增大,正数y 逐渐增大,所以当点P 在C 处时x +y 取得最小值,因为OC =2OA ,OC ⊥OB ,所以x =-2,y =0,所以x +y =-2,当点P 在点B 处时x +y 取得最大值,因为OA ⊥OB ,所以x =0,y =1,所以x +y =1,所以x +y 的取值范围为[-2,1].14.(2017届云南曲靖一中月考)已知向量a =(-1,0),b =(cos α,sin α),c =(cos β,sin β). (1)求|a +c |的最大值;(2)若α=π4,且向量b 与向量(a +c )垂直,求cos β的值.解 (1)a +c =(cos β-1,sin β), |a +c |=(cos β-1)2+sin 2β=2-2cos β,当cos β=-1时,|a +c |=2,|a +c |的最大值为2. (2)若α=π4,则b =⎝⎛⎫22,22,a +c =(cos β-1,sin β), ∵向量b 与向量a +c 垂直, ∴22(cos β-1)+22sin β=0, ∴sin β+cos β=1,故sin 2β=(1-cos β)2=1-2cos β+cos 2β, cos 2β-cos β=0,∴cos β=0或1.当cos β=1时,sin β=0,a +c =(0,0)不符合条件,∴cos β=0.。
高考数学二轮复习7 大专题汇总专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:侧重掌握函数的单一性,奇偶性,周期性,对称性。
这些性质往常会综合起来一同观察,而且有时会观察详细函数的这些性质,有时会观察抽象函数的这些性质。
一元二次函数:一元二次函数是贯串中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了认识,高中阶段更多的是将它与导数进行连接,依据抛物线的张口方向,与x 轴的交点地点,进而议论与定义域在x 轴上的摆放次序,这样能够判断导数的正负,最后达到求出单一区间的目的,求出极值及最值。
不等式:这一类问题经常出此刻恒成立,或存在性问题中,其本质是求函数的最值。
自然对于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的联合问题,掌握几种不等式的放缩技巧是特别必需的。
专题二:数列。
以等差等比数列为载体,观察等差等比数列的通项公式,乞降公式,通项公式和乞降公式的关系,求通项公式的几种常用方法,求前 n 项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有波及,有时观察三角函数的公式之间的相互转变,从而求单一区间或值域 ; 有时观察三角函数与解三角形,向量的综合性问题,自然正弦,余弦定理是很好的工具。
向量能够很好得实现数与形的转变,是一个很重要的知识连接点,它还能够和数学的一大难点分析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出此刻选择,填空题中。
大题中的立体几何主要观察成立空间直角坐标系,经过向量这一手段求空间距离,线面角,二面角等。
此外,需要掌握棱锥,棱柱的性质,在棱锥中,侧重掌握三棱锥,四棱锥,棱柱中,应当掌握三棱柱,长方体。
空间直线与平面的地点关系应以证明垂直为要点,自然常观察的方法为间接证明。
专题五:分析几何。
高考数学二轮复习重要知识点总结佚名第一:高考数学中有函数、数列、三角函数、平面向量、不等式、立体几何等九大章节。
要紧是考函数和导数,这是我们整个高中时期里最核心的板块,在那个板块里,重点考察两个方面:第一个函数的性质,包括函数的单调性、奇偶性;第二是函数的解答题,重点考察的是二次函数和高次函数,分函数和它的一些分布问题,然而那个分布重点还包含两个分析确实是二次方程的分布的问题,这是第一个板块。
第二:平面向量和三角函数。
重点考察三个方面:一个是划减与求值,第一,重点把握公式,重点把握五组差不多公式。
第二,是三角函数的图像和性质,那个地点重点把握正弦函数和余弦函数的性质,第三,正弦定理和余弦定理来解三角形。
难度比较小。
第三:数列。
数列那个板块,重点考两个方面:一个通项;一个是求和。
第四:空间向量和立体几何。
在里面重点考察两个方面:一个是证明;一个是运算。
第五:概率和统计。
这一板块要紧是属于数学应用问题的范畴,因此应该把握下面几个方面,第一……等可能的概率,第二………事件,第三是独立事件,还有独立重复事件发生的概率。
第六:解析几何。
这是我们比较头疼的问题,是整个试卷里难度比较大,运算量最高的题,因此这一类题,我总结下面五类常考的题型,包括第一类所讲的直线和曲线的位置关系,这是考试最多的内容。
考生应该把握它的通法,第二类我们所讲的动点问题,第三类是弦长问题,第四类是对称问题,这也是2 021年高考差不多考过的一点,第五类重点问题,这类题时往往觉得有思路,然而没有答案,因此那个地点我相等的是,这道题尽管运算量专门大,然而造成运算量大的缘故,往往有那个缘故,我们所选方法不是专门恰当,因此,在这一章里我们要把握比较好的算法,来提高我们做题的准确度,这是我们所讲的第六大板块。
第七:押轴题。
“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。
高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。
这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。
一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。
不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。
当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。
专题二:数列。
以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。
专题三:三角函数,平面向量,解三角形。
三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。
向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。
专题四:立体几何。
立体几何中,三视图是每年必考点,主要出现在选择,填空题中。
大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。
另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。
空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。
专题五:解析几何。
2.3.3 平面向量
1.(2018·全国卷Ⅱ)已知向量a ,b 满足|a |=1,a ·b =-1,则a ·(2a -b )=( )
A .4
B .3
C .2
D .0
[解析] 因为|a |=1,a ·b =-1,所以a ·(2a -b )=2|a |2-a ·b =2×12-(-1)=3.故选B.
[答案] B
2.(2017·全国卷Ⅲ)在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD
相切的圆上.若=λ+μ,则λ+μ的最大值为( )AP → AB → AD →
A .3
B .2 C. D .2
25[解析] 分别以CB 、CD 所在的直线为x 轴、y 轴建立直角坐标系,则A (2,1),B (2,0),D (0,1).
∵点P 在以C 为圆心且与BD 相切的圆上,
∴可设P .(25cos θ,25sin θ)
则=(0,-1),=(-2,0),AB → AD →
=.AP → (25cos θ-2,25sin θ-1)
又=λ+μ,AP → AB → AD →
∴λ=-sin θ+1,μ=-cos θ+1,2515
∴λ+μ=2-
sin θ-cos θ=2-sin(θ+φ),2515其中tan φ=,∴(λ+μ)max =3.12
[答案] A
3.(2018·全国卷Ⅲ)已知向量a =(1,2),b =(2,-2),c =(1,λ).若c ∥(2a +b ),则λ=________.
[解析] 由已知得2a +b =(4,2).又c =(1,λ),c ∥(2a +b ),所以4λ-2=0,解得λ=.12
[答案] 12
4.(2018·上海卷)在平面直角坐标系中,已知点A (-1,0)、B (2,0),E 、F 是y 轴上的两
个动点,且||=2,则·的最小值为________.EF → AE → BF →
[解析] 设E (0,m ),F (0,n ),
又A (-1,0),B (2,0),
∴=(1,m ),=(-2,n ).AE → BF →
∴·=-2+mn ,AE → BF →
又知||=2,∴|m -n |=2.EF →
①当m =n +2时,·=mn -2=(n +2)n -2=n 2+2n -2=(n +1)2-3.AE → BF →
∴当n =-1,即E 的坐标为(0,1),F 的坐标为(0,-1)时,·取得最小值-3.AE → BF →
②当m =n -2时,·=mn -2=(n -2)n -2=n 2-2n -2=(n -1)2-3.AE → BF →
∴当n =1,即E 的坐标为(0,-1),F 的坐标为(0,1)时,·取得最小值-3.AE → BF →
综上可知,·的最小值为-3.AE → BF →
[答案] -3
5.(2017·天津卷)在△ABC 中,∠A =60°,AB =3,AC =2.若=2,=λ-BD → DC → AE → AC → AB →
(λ∈R ),且·=-4,则λ的值为________.AD → AE →
[解析] 解法一:如图,由=2得=+,BD → DC → AD → 13AB → 23AC →
所以·=·(λ-)=λ·-2+λ2-·,AD → AE → (13AB → +23AC → )AC → AB →
13AB → AC → 13AB → 23AC → 23AB → AC → 又·=3×2×cos60°=3,2=9,2=4,所以·=λ-3+λ-2=λ-5=AB → AC → AB → AC → AD → AE →
83113-4,解得λ=.311
解法二:以A 为原点,AB 所在的直线为x 轴建立平面直角坐标系,如图,因为AB =3,AC =2,∠A =60°,所以B (3,0),C (1,),又=2,所以D ,3BD → DC → (53,233)
所以=,而=λ-=λ(1,)-(3,0)=(λ-3,λ),因此·=AD → (53,233)AE → AC → AB → 3
3AD → AE → 5
3(λ-3)+
×λ2333=λ-5=-4,解得λ=.113311
[答案] 311
1.平面向量是高考必考内容,每年每卷均有一个小题(选择题或填空题),一般出现在第3~7或第13~15题的位置上,难度较低.主要考查平面向量的模、数量积的运算、线性运算等,数量积是其考查的热点.
2.有时也会以平面向量为载体,与三角函数、解析几何等其他知识相交汇综合命题,难度中等.。