检测与仪表
- 格式:ppt
- 大小:4.28 MB
- 文档页数:15
检测与仪表课程设计一、课程目标知识目标:1. 让学生理解检测与仪表的基本概念,掌握不同类型传感器的原理与应用。
2. 使学生掌握仪表的读数、校准及维护的基本方法。
3. 引导学生了解检测与仪表技术在工业自动化中的应用和发展趋势。
技能目标:1. 培养学生运用传感器进行数据采集、处理和分析的能力。
2. 培养学生根据实际需求选择合适的仪表及传感器,设计简单的检测系统的能力。
3. 提高学生实际操作仪表及传感器的技能,掌握基本的故障排查方法。
情感态度价值观目标:1. 培养学生对检测与仪表技术的兴趣,激发学生主动学习的积极性。
2. 培养学生严谨的科学态度,注重实践操作的安全性和准确性。
3. 增强学生的团队合作意识,培养学生在实际工程问题中解决问题的能力。
本课程针对高年级学生,结合课程性质、学生特点和教学要求,将目标分解为具体的学习成果。
通过本课程的学习,使学生不仅掌握检测与仪表的基础知识,还能运用所学技能解决实际问题,培养学生在实际工程中的应用能力和创新精神。
同时,注重培养学生的安全意识、团队合作精神和对检测与仪表技术发展的关注,为学生未来的学习和工作打下坚实基础。
二、教学内容1. 检测与仪表的基本概念:介绍传感器、仪表的定义、分类及基本工作原理。
- 教材章节:第一章 检测与仪表概述- 内容列举:传感器原理、仪表分类、检测技术发展历程2. 常用传感器及其应用:学习温度、压力、流量、液位等传感器的原理及应用。
- 教材章节:第二章 常用传感器及其应用- 内容列举:温度传感器、压力传感器、流量传感器、液位传感器3. 仪表的读数、校准与维护:讲解仪表的读数方法、校准原理及日常维护知识。
- 教材章节:第三章 仪表的读数、校准与维护- 内容列举:仪表读数方法、校准技术、仪表维护保养4. 检测系统设计:探讨检测系统的设计原则、步骤及实际应用案例。
- 教材章节:第四章 检测系统设计- 内容列举:检测系统设计原则、步骤、案例解析5. 检测与仪表技术在工业自动化中的应用:分析检测与仪表技术在工业自动化领域的应用及发展趋势。
实验一 金属箔式应变片——单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,拉伸时电阻增大,压缩时电阻减小,这就是电阻应变效应,描述电阻应变效应的关系式为ε⋅=∆k RR式中RR∆为电阻丝电阻相对变化; k 为应变灵敏系数;ll∆=ε为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感组件。
通过它转换被测部位受力状态变化、电桥等作用完成电阻到电压的比例变化,电桥的输出电压反应了相应的受力状态。
对单臂电桥输出电压。
三、需用仪器与单元:应变传感器实验模块、应变式传感器、砝码、直流电压表、±15V 电源、±4V 电源、万用表(自备)。
四、实验步骤:应变感器实验模块说明:应变传感器实验模块由应变式双孔悬臂梁载荷传感器(称重传感器)、加热器+5V 电源输入口、多芯插头、应变片测量电路、差动放大器组成。
实验模板中的R1(传感器的左下)、R2(传感器的右下)、R3(传感器的右上)、R4(传感器的左上)为称重传感器的应变片输出口;没有文字标记的5个电阻符号是空的无实体,其中4个电阻符号组成电桥模型是为电路初学者组成电桥连接方便而设;R5、R6、R7是350 固定电阻,是为应变片组成单臂电桥、双臂电桥(半桥)而设的其他桥臂电阻。
加热器+5V 是传感器上的加热器的电源输入口,做应变片温度影响实验时使用。
多芯插头是振动源的振动梁上的应变片输入口,做应变片测量振动实验时使用。
1、将托盘安装到传感器上,如图1-1所示。
图1-1 传感器托盘安装示意图2、测量应变片的阻值:当传感器上的托盘上无重物时,分别测量应变片R1、R2、R3、R4的阻值。
在传感器的托盘上放置10只砝码后再分别测量R1、R2、R3、R4的阻值变化,分析应变片的受力情况(受拉的应变片:阻值变大,受压的应变片:阻值变小。
过程检测技术及仪表过程检测在工业生产中起着重要的作用,它可以帮助企业实时监测生产过程,并提供及时的反馈和控制。
过程检测技术及仪表是实现过程检测的关键工具和设备。
本文将介绍几种常见的过程检测技术及仪表,并对其特点和应用进行分析。
1. 传感器技术传感器是过程检测的核心技术之一。
它通过感知物理量或者化学量,并将其转换成电信号或者其他形式的信号,用于监测和测量过程中的各种参数。
常见的传感器技术包括:•温度传感器:用于测量物体的温度变化,广泛应用于工业过程中的温度监测和控制。
•压力传感器:用于测量气体或者液体的压力变化,常见应用于流体管道和储罐的监测。
•液位传感器:用于测量液体的高度或者液位变化,广泛应用于储罐和槽罐中的液位控制。
•流量传感器:用于测量流体流经的速度和流量,常见应用于管道中的流量监测。
•pH传感器:用于测量溶液中的酸碱度,常用于化工和医药行业中的酸碱反应过程监测等。
传感器技术的发展已经取得了重要的进展,从传统的机械式传感器到现代的电子式传感器,传感器的精度和可靠性得到了极大的提高。
同时,随着物联网技术的发展,传感器与云计算和大数据分析相结合,使得过程检测变得更加智能化和高效化。
2. 仪器设备除了传感器技术外,过程检测还需要借助各种仪器设备进行信号的采集、处理和分析。
常见的仪器设备包括:•数据采集仪:用于采集传感器信号,并进行模数转换和信号放大等处理,得到可用的数字信号。
•控制器:用于接收采集到的信号,并根据设定的控制策略进行反馈和控制。
常见的控制器包括PID控制器和PLC控制器等。
•数据分析仪:用于对采集到的数据进行分析和处理,常见的数据分析方法包括统计分析、模型识别和预测等。
•监视器:用于实时监测和显示过程中的各种参数和状态,常见的监视器包括显示屏和报警器等。
仪器设备的综合运用可以帮助企业实现对生产过程的精确监测和控制。
通过合理配置仪器设备,可以实现对生产过程中的各种参数进行实时监测,并根据需要进行调整和优化,实现生产过程的高效和稳定。
检测技术与仪表一、 绪论1. 检测仪表控制系统结构图:各单元作用:① 检测单元:实现控制调节作用的基础,它完成对所有被控变量的直接测量, 包括温度、压力、流量、液位、成分等;② 变送单元:将检测的温度、压力等参数转为电信号(U:1-5V 、I:4-20mA ); ③ 显示单元:控制系统的附属单元;④ 调节单元:完成调节控制规律的运算,调节单元采用的常规控制规律PID 调节 ⑤ 执行单元:实施控制策略的执行机构,有电动、气动、液动等方式。
2. 基本概念:测量范围的最小值和最大值分别称为测量下限和测量上限,简称下限和上限。
下限又趁称为零点; 量程: 测量上限值-测量下限值。
3. 标尺特性曲线:零点的变化称为零点迁移,而量程的变化(斜率)则称为量程迁移。
通过仪表的标尺特性来反映标尺特性:以被测变量值相对于量程的百分数为横坐标记为X ,以仪表指针位移或转角相对于标尺长度的百分数为纵坐标记为Y可得仪表的标尺特性曲线X-Y线段1(OB红):理想型;(0,100%)线段2(绿):测量范围(0,75%),标尺特性:零点迁移(K不变);线段3(黄):测量范围(0,70%),标尺特性:量程迁移(K变大,更灵敏);线段4(蓝):测量范围(0,100%),标尺有效范围(0,71.4%),量程迁移(K变小)4.灵敏度K=(标尺特性为曲线时,K为切线斜率)5.误差:①被测真值(约定真值):真实的理论值;②绝对误差=示值-约定真值;③相对误差=绝对误差真值;④引用误差=绝对误差量程;⑤最大引用误差Qmax=最大绝对误差量程,(最大绝对误差指量程内)仪表精度为最大引用误差不带%(精度等级:0.1,0.2,0.5,1.0,1.5,2.5,5.0,数越小精度越高)P10例1-1,1-2,作业题二、误差分析基础1.平n为测量次数,Mi为测量示值;2.准确度:δ=A-A0,(测量值与真值的偏差)n足够大,A0则接近真值3.残差(残余误差):各测量值与平均值的差:vi=Mi-A,∑vi=04.精密度:即标准差(表示测量值间差异)图一:准高(好像不是很高)、精低;图二:准低、精高;图三:都高Array左图:A为被测量的真值,Aa、Ab为两种测量方法测得数据的平均值,分析得知:曲线1表示准确却不精密(误差小,标准误差大);曲线2表示精密却不准确(误差大,标准误差小)。
检测与仪表课程设计一、课程目标知识目标:1. 学生能够理解检测与仪表的基本概念,掌握常用传感器的原理、特性及应用场景。
2. 学生能够描述各种仪表的工作原理,了解其使用方法和操作步骤。
3. 学生掌握检测系统的基本构成,了解信号处理、数据传输和显示等方面的知识。
技能目标:1. 学生能够运用所学知识,分析实际检测问题,选择合适的传感器和仪表。
2. 学生具备使用检测仪表进行数据采集、处理和分析的能力,能够解决简单的实际问题。
3. 学生能够根据检测需求,设计简单的检测系统,并进行初步的调试和优化。
情感态度价值观目标:1. 培养学生对检测与仪表学科的兴趣,激发他们探索科学技术的热情。
2. 培养学生严谨、细致的学习态度,使他们具备良好的实验操作习惯。
3. 培养学生的团队协作意识,提高他们沟通、交流和解决问题的能力。
课程性质分析:本课程属于工程技术类课程,注重理论与实践相结合,强调学生的动手能力和实际应用。
学生特点分析:学生为初中生,具有一定的物理知识基础,对新技术和新事物充满好奇,但可能缺乏实际操作经验。
教学要求:结合课程性质和学生特点,注重启发式教学,引导学生主动探究,提高他们的实践操作能力和创新能力。
通过课程学习,使学生能够将所学知识应用于实际检测问题中,培养他们的工程技术素养。
二、教学内容1. 传感器原理与应用- 介绍传感器的基本概念、分类和工作原理。
- 着重讲解力、热、光、磁等常见传感器的工作原理和特性。
- 分析传感器在实际检测中的应用场景。
2. 检测仪表基础- 概述仪表的分类、结构及工作原理。
- 详细介绍压力表、温度计、流量计等常用仪表的原理和使用方法。
3. 检测系统组成与设计- 介绍检测系统的基本构成,包括传感器、信号处理、数据传输和显示等。
- 指导学生设计简单的检测系统,并进行实验操作和调试。
4. 实践操作与案例分析- 组织学生进行实际操作,如使用传感器和仪表进行数据采集、处理和分析。
- 分析典型案例,使学生了解检测技术在工业、医疗、环保等领域的应用。
3.液位检测及仪表在容器或工业设备中液体介质的高度叫液位;固体粉末或颗粒状物质的堆积高度叫料位;液体-液体或液体-固体的分界面叫界面。
液位、料位和界面的测量统称为物位测量。
液位,料位和界面的测量仪表分别称为液位计,料位计和界面计,统称为物位计。
3.1物位检测仪表的分类物位测量的目的在于正确地知道容器或工业设备中所储藏物质的容量或质量。
为了满足生产过程中各种条件和要求,测量物位的仪表种类很多。
而且随着科技的进步,还会不断产生新的检测方法和检测仪表。
按工作原理的不同,物位仪表主要有以下几种类型:(1)直读式物位仪表。
利用连通管原理制成。
这类仪表中主要有玻璃管液位计、玻璃板液位计等。
(2)浮力式物位仪表。
应用浮力原理制成。
液位测量仪表是对漂浮在液体上的浮子高度的测量或对浸没在液体中的浮子所受浮力的测量。
前者称为恒浮力法,后者称为变浮力法。
(3)差压式物位仪表。
它是利用物位的变化对某定点所产生的压力也发生变化的原理进行物位测量。
可以分为静压力式物位仪表和差压式物位仪表两种。
(4)电磁式物位仪表。
将物位的变化转换成电量的变化,通过测量这些电量的变化来测知物位。
(5)核辐射式物位仪表。
核辐射线透过物料时,其强度会随着介质层厚度而变化,利用这一特性实现物位的测量。
(6)声波式物位仪表。
物位的变化会引起声阻抗的变化,因此声波的遮断和声波反射距离也会不同,测出这些变化就可以测知物位。
(7)光学式物位仪表。
利用物位对光波的遮断和反射原理工作的物位仪表。
3.2 浮力式液位计浮力式液位计是利用浮力原理测量液位的,根据浮子所受浮力的不同又分为恒浮力式液位计和变浮力式液位计两种。
1.恒浮力式液位计恒浮力式液位计是利用被测介质对浮子的浮力不随液位的变化而变化的原理工作的。
根据恒浮力的原理,结合生产的不同需要,有浮球液位计,磁浮子液位计及浮子钢带液位计等。
浮球液位计有内浮式和外浮式之分。
内浮式是将浮球直接安装于容器内部,而外浮式是在容器外安装一个与容器连通的浮球室进行测量。
一 1.控制装置与仪表的分类按能源分:电动、气动、液动和混合式;按功能实现原理:模拟控制装置与仪表和数字装置与仪表;模拟的按结构形式分为:基地式,单元组合式,组件组装式。
2.控制的三要素:传感器,控制器,执行器3.电信号种类:模拟信号,数字信号,频率信号,脉宽信号用最多的是电模拟信号。
电模拟信号有:直流电流信号,直流电压信号,交流电流信号,交流电压信号。
4.用直流电流信号时,所有仪表必须串联连接。
适于远距离传输。
直流电压并联。
5.活零点的意义:便于检验信号传输线有无断线及仪表是否断电;使半导体器件工作在较好的工作段;使制作具有本质安全防爆性能,使节约传输线的两线制变送器成为可能。
(有利于识别断电,断线等故障,且为实现两线制提供了可能性)。
6.信号制:指在成套系列仪表中,各个仪表的输入输出信号采用何种统一的联络信号的问题,只有采用统一信号才能使各个仪表间的任意连接成为可能。
上(下)限:测量或检测过程中量程的最大(小)值;意义:适当选取提高灵敏度准确度。
7.国标统一信号:DC 4- 20mA,DC 1--5 V。
8.二线制和四线制:区别:四线制供电电源与输出信号分别用两根导线传输,供电电源可以是AC220V或者DC24V,输出信号可以是真零点0-10mA或活零点4-20mA。
而二线制同变送器连接的导线只有两根,这两根导线同时传输电源和输出信号,电源、变送器和负载是串联的,信号电流必须采用活零点电流。
应用场合:四线用于对电流信号的零点及元器件的功耗没有严格要求的场合;二线用于低功耗的场合。
可否互换:二线制可以转换为四线制,四线制不一定能转换为二线制,实现二线制必须满足:采用有活零点的电流信号;必须是单电源供电。
二1.一个完整的过程调节系统变送器:对被控参数进行测量和信号变换控制器:将给定值与被控参数进行比较,运算执行机构:将控制器的运算输出转换为开关阀门或者挡板位移或转角。
2.量程调整概念:量程调整包括下限调整(通常称为零点迁移)和上限调整,只有当下限为零或确定不变时才可以把上限调整看作量程调整。