开 关 电 源 反 馈 控 制 原 理 简 介
- 格式:ppt
- 大小:146.50 KB
- 文档页数:11
目录1自动控制系统的基本概念1.1内容提要1.2习题与解答2自动控制系统的数学模型2.1内容提要2.2习题与解答3自动控制系统的时域分析3.1内容提要3.2习颗与他答4根轨迹法4.1内容提要4.2习题与解答5频率法5.1内容提要5.2习题与解答6控制系统的校正及综合6.1内容提要6.2习题与解答7非线性系统分析7.1内容提要7.2习题与解答8线性离散系统的理论基础8.1内容提要8.2习题与解答9状态空间法9.1内容提要9.2习题与解答附录拉普拉斯变换参考文献1自动控制系统的基本概念1. 1内容提要基本术语:反馈量,扰动量,输人量,输出量,被控对象;基本结构:开环,闭环,复合;基本类型:线性和非线性,连续和离散,程序控制与随动;基本要求:暂态,稳态,稳定性。
本章要解决的问题,是在自动控制系统的基本概念基础上,能够针对一个实际的控制系统,找出其被控对象、输人量、输出量,并分析其结构、类型和工作原理。
1.2习题与解答题1-1图P1-1所示,为一直流发电机电压白动控制系统示意图。
图中,1为发电机;2为减速器;3为执行电机;4为比例放大器;5为可调电位器。
(1)该系统有哪些环节组成,各起什么作用” (2)绘出系统的框图,说明当 负载电流变化时,系统如何保持发 电机的电压恒定 (3)该系统是有差系统还是无 差系统。
(4)系统中有哪些可能的扰动, 答(1)该系统由给定环节、比较环节、中间环节、执行结构、检测环节、 发电机等环节组成。
给定环节:电压源0U 。
用来设定直流发电机电压的给定值。
比较环节:本系统所实现的被控量与给定量进行比较,是通过给定电 压与反馈电压反极性相接加到比例放大器上实现的中间环节:比例放大器。
它的作用是将偏差信号放大,使其足以带动 执行机构工作。
该环节又称为放大环节执行机构:该环节由执行电机、减速器和可调电位器构成。
该环节的 作用是通过改变发电机励磁回路的电阻值,改变发电机的磁场,调节发 电机的输出电压被控对象:发电机。
光电开关原理及应用一、前言光电开关是传感器大家族中的成员,它把发射端和接收端之间光的强弱变化转化为电流的变化以达到探测的目的。
由于光电开关输出回路和输入回路是电隔离的(即电缘绝),所以它可以在许多场合得到应用。
? ?二、光电开关介绍1、工作原理光电开关(光电传感器)是光电接近开关的简称,它是利用被检测物对光束的遮挡或反射,由同步回路选通电路,从而检测物体有无的。
物体不限于金属,所有能反射光线的物体均可被检测。
光电开关将输入电流在发射器上转换为光信号射出,接收器再根据接收到的光线的强弱或有无对目标物体进行探测。
工作原理如图1所示。
多数光电开关选用的是波长接近可见光的红外线光波型。
图2是德国SICK公司的部分光电开关外型图。
2、光电开关的分类及术语解释(1)、分类①漫反射式光电开关:它是一种集发射器和接收器于一体的传感器,当有被检测物体经过时,物体将光电开关发射器发射的足够量的光线反射到接收器,于是光电开关就产生了开关信号。
当被检测物体的表面光亮或其反光率极高时,漫反射式的光电开关是首选的检测模式。
②镜反射式光电开关:它亦集发射器与接收器于一体,光电开关发射器发出的光线经过反射镜反射回接收器,当被检测物体经过且完全阻断光线时,光电开关就产生了检测开关信号。
③对射式光电开关:它包含了在结构上相互分离且光轴相对放置的发射器和接收器,发射器发出的光线直接进入接收器,当被检测物体经过发射器和接收器之间且阻断光线时,光电开关就产生了开关信号。
当检测物体为不透明时,对射式光电开关是最可靠的检测装置。
④槽式光电开关:它通常采用标准的U字型结构,其发射器和接收器分别位于U型槽的两边,并形成一光轴,当被检测物体经过U型槽且阻断光轴时,光电开关就产生了开关量信号。
槽式光电开关比较适合检测高速运动的物体,并且它能分辨透明与半透明物体,使用安全可靠。
⑤光纤式光电开关:它采用塑料或玻璃光纤传感器来引导光线,可以对距离远的被检测物体进行检测。
(六)自动控制技术知识1.单相全控桥式整流电路是能实现有源逆变的功能。
(√)2.单相半控桥式整流电路是能实现有源逆变的功能。
(×)3.三相半波可控整流电路是不能实现有源逆变的功能。
(×)4.带续流二极管的三相半波可控整流电路是不能实现有源逆变的电路。
(√)5.三相桥式全控整流电路是能实现有源逆变的电路。
(√)6.在有源逆变电路中.,当某一晶闸管发生故障,失去开通能力,则会导致逆变失败。
(√)7.晶闸管逆变电路在工作过程中,某一晶闸管发生断路,就会造成逆变倾覆。
(√)8.绕线转子异步电动机串级调速电路中,定子绕组与转子绕组要串联在一起使用。
(×)9.串级调速就是利用一个或n个辅助电动机或者电子设备串联在绕线转子异步电动机转子回路里,把原来损失在外串电阻的那部分能量加以利用,或者反馈到电网里,既能达到调速目的,又能提高电动机运行效率,这种调速方法叫作串级调速。
(√)10.晶闸管装置的使用会引起电网波形畸变和供电电压降低的后果。
(√)11.过零触发就是改变晶闸管每周期导通的起始点以达到改变输出电功率的目的。
(×)12.双向晶闸管是一个NPNPN五层三端元件。
(√)13.双向晶闸管的额定电流与普通晶闸管一样是平均值而不是有效值。
(×)14.交流开关可用两只普通晶闸管或者两只自关断电力电子器件反并联组成。
(√)15.常用双向晶闸管组成交流开关电路。
(√)16.单相交流调压电路带电感性负载时,可以用窄脉冲触发。
(×)17.单相交流调压电路带电阻性负载时移相范围为0°~180°。
(√)18.带中性线的三相交流调压电路,其实就是三个单相交流调压电路的组合。
(√)19.定宽调频斩波器输出电压脉冲的宽度是固定的,欲改变输出电压平均值U d,只需改变主晶闸管的触发脉冲频率。
(√)20.定频调宽斩波器向负载输出的电压脉冲频率是可调的。
(×)21.采用定宽调制方法的斩波器,是指保持斩波器通断频率不变,通过改变电压脉冲宽度来使输出电压平均值改变。
自动控制原理实验报告实验一、典型环节的时域响应一.实验目的1.熟悉并掌握TD-ACC+(TD-ACS)设备的使用方法及各典型环节模拟控制电路的构成方法。
2.熟悉各种典型环节的理想阶跃曲线和实际阶跃响应曲线。
对比差异、分析原因。
3.了解参数变化对典型环节动态特性的影响。
二.实验设备PC机一台,TD-ACC+(TD-ACS)实验系统一套。
三.实验内容1.比例环节2.积分环节3.比例积分环节4.惯性环节5.比例微分环节6.比例积分微分环节四、实验感想在本次实验后,我了解了典型环节的时域响应方面的知识,并且通过实践,实现了时域响应相关的操作,感受到了实验成功的喜悦。
实验二、线性系统的矫正一、目的要求1.掌握系统校正的方法,重点了解串联校正。
2.根据期望的时域性能指标推导出二阶系统的串联校正环节的传递函数二、仪器设备PC 机一台,TD-ACC+(或 TD-ACS)教学实验系统一套。
三、原理简述所谓校正就是指在使系统特性发生变接方式,可分为:馈回路之内采用的测点之后和放1.原系统的结构框图及性能指标对应的模拟电路图2.期望校正后系统的性能指标3.串联校正环节的理论推导四、实验现象分析校正前:校正后:校正前:校正后:六、实验心得次实验让我进一步熟悉了TD-ACC+实验系统的使用,进一步学习了虚拟仪器,更加深入地学习了自动控制原理,更加牢固地掌握了相关理论知识,激发了我理论学习的兴趣。
实验三、线性系统的频率响应分析一、实验目的1.掌握波特图的绘制方法及由波特图来确定系统开环传函。
2.掌握实验方法测量系统的波特图。
二、实验设备PC机一台,TD-ACC+系列教学实验系统一套。
三、实验原理及内容(一)实验原理1.频率特性当输入正弦信号时,线性系统的稳态响应具有随频率(ω由0变至∞)而变化的特性。
频率响应法的基本思想是:尽管控制系统的输入信号不是正弦函数,而是其它形式的周期函数或非周期函数,但是,实际上的周期信号,都能满足狄利克莱条件,可以用富氏级数展开为各种谐波分量;而非周期信号也可以使用富氏积分表示为连续的频谱函数。
电力电子技术1.以电力为处理对象的电子技术称为电力电子技术。
它是一门利用电力电子器件对电能进行控制和转换的学科。
2.电力交换分为:交直变换(AC-DC 整流)直交变换(DC-AC 逆变)交交变换(AC-AC 交交变换)直直变换(DC-DC 斩波)3.1957年美国的通用电气公司研制出第一个晶闸管。
4.电源:直流电源,恒压恒频交流电源,变压变频电源。
5.电源涉及不间断电源、电解电源、电镀电源、开关电源(SMPS)、计算机及仪器仪表电。
6.高压直流输电(HVDC)晶闸管控制电抗器(TCR)晶闸管投切电容器(SVC)有源电力滤波(APF)7.为了减小本身的损耗,提高效率,电力电子器件一般工作在开关状态。
8.低频时通态损耗电力电子器件功率损耗的主要成因;器件开关频率较高,开关损耗随增大而成为器件功率损耗主要因素。
9.电力二极管:螺栓型和平板型两种封装。
10.当施加的反向电压过大时,反向电流将会急剧增大,破坏PN结反向偏置为截止的工作状态,这就是反向击穿。
反向电流未被限制住,使得反向电流和反向电压的乘积超过了PN 结所容许的耗散功率,就会因热量散发不出去而导致PN结温度上升,直至过热而烧毁,这就是热击穿。
PN结的电荷量随外加电压而变化,呈现一定的电容效应。
11.正向平均电流IF(Av)是指电力二极管长期运行时,在指定的管壳温皮平均值取标散热条件下,其允许流过的最大工频正弦平波电流的平均值。
肖特基二极管是单极器件12.为保证可靠,安全触发,触发电路所提供的触发电压、电流和功率都限制在可靠触发区。
13.实际中,应对晶闸管施加足够长时间的反向电压,使其充分恢复对正向电压的阻断能力,才能使晶闸管可靠关断。
14.GTR一般采用共发射极接法。
为了保证安全,最高工作电压Ucem要比BUceo低的多。
15.当GTR的集电极电压升高至一次击穿电压临界值BUcEo时,集电极电流Ic会迅速增大,出现雪崩击穿,称之为一次击穿,一次击穿也称为电压击穿。
第十一章绪论反击式属于开关电源的DC/DC变换器形式的一种,我们在研究反击式开关电源的时候必须对开关电源有所认识。
11.1 开关电源概述11.1.1 开关电源的发展历史通常在一般的情况下,发出电能的电源是不符合要求的,这就需要进行转化,即把一种形态的电能转化成另外一种形态的电能。
这种电能形态的变换可以是交流电和直流电之间的变换以及其它,可以是交流电频率、项数、幅值等的变换,也可以是电流幅值和电压幅值之间的变换。
比如变压器、变频器等一般我们所见的。
在有些情况下,这种电能形态的转换肯能仅仅是稳定精度的提高或对其它性能的改进。
输入这种电源输入也是电能,因此,许多输入和输出都是电源称之为间接电源。
我们日常看见的电源就是一般电网发出电能而供热、取暖的电源,它们的发出有几种形势,即水力发电、火力发电、核能发电新能源等,它们都属于工频交流电源。
日常生活中接触比较多的还有另外一种电源,即电化学电源。
干电池、蓄电池就属于,在人们的日常生活中虽然占的比例比较小,但是特别重要,和人们的日常生活密切相关。
通过电池的充电,蓄电池和干电池获得充电,但是它们放电的过程是由化学能直接转变而来的,所以说它们为直接电源从广义上来讲,开关电源就是电路中的电力电子器件工作在开关状态的电源。
开关电源通常由5大部分组成:第一部分是输入整流滤波电路,有低通滤波和一次整流环节,输入的交流电先通过低值滤波去除不符合要求的波,再通过全桥整流电路得到脉动直流电压Vi。
第二部分是功率变换电路,有电子开关和高压变压器等,在电子开关的传导和高压变压器的变压下,把直流电压变换成受到控制的、符合设计要求高频方波脉冲电压以备后面的设计的需求。
第三部分是输出整流滤波电路,经过变换电路的高频方波脉冲电压经过整流滤波后变成直流电压输出,输入电压波动和输出负载变化一起来控制了这种电压。
第四部分是控制电路,经过输出整流滤波电路后的输出电压首先经过分压、采样后与电路的基准电压进行比较、放大为控制信号,它调整调制脉冲宽窄还有频率高低,最后使输出电压保持在一稳定数值。
本文为大家介绍的是减压阀的工作原理,首先介绍减压阀的定义,所谓的减压阀是通过调节,将进口压力减至某一需要的出口压力,并依靠介质本身的能量,使出口压力自动保持稳定的阀门。
从流体力学的观点看,减压阀是一个局部阻力可以变化的节流元件,即通过改变节流面积,使流速及流体的动能改变,造成不同的压力损失,从而到达减压的目的。
然后依靠控制与调节系统的调节,使阀后压力的波动与弹簧力相平衡,使阀后压力在一定的误差范围内保持恒定。
下面我们通过减压阀的三个结构分别为大家介绍减压阀的工作原理。
减压阀是气动调节阀的一个必备配件,主要作用是将气源的压力减压并稳定到一个定值,以便于调节阀能够获得稳定的气源动力用于调节控制。
按结构形式可分为薄膜式、弹簧薄膜式、活塞式、杠杆式和波纹管式;按阀座数目可分为单座式和双座式;按阀瓣的位置不同可分为正作用式和反作用式。
减压阀的工作原理一组合式减压阀的内部结构1、组合式减压阀自动调节原理:组合式减压阀是一种在复杂多变的工况下亦可利用水压进行自我调节的减压阀稳压阀,在进口压力和流量产生变化的时候保持出口的压力和流量稳定。
其完全实现自力控制,调试简单,运行可靠。
2、组合式减压阀的双反馈切换的工作原理:组合式减压阀的反馈系统是根据减压阀出口压力的变化信号来控制过流面积〔节流锥开度〕的独立系统。
减压阀装备有互为备用的双反馈系统,启用A系统即停用B系统的运行模式可以到达减压阀不停机检修的目的。
3、组合式减压阀反冲排污的工作原理:水电站的运行工况比较复杂,尤其水质的好坏直接关系到设备的安全运行。
针对泥沙含量较大的水电站,除了在减压阀的过流位置采用不锈钢材质并堆焊镍基合金防磨蚀外,减压阀的反冲排污装置亦能有效地防止反馈控制系统的堵塞,使减压阀在多泥沙杂物的水质中保持良好的工况。
〔反冲排污系统标配为手动控制,根据水质实际情况把握反冲排污频率,或直接采用PLC自动反冲排污装置。
〕4、组合式减压阀出口压力锁定工作原理:每一台合格的减压阀阀体均经受了超过60分钟的倍强压实验,彻底杜绝阀体缺陷,即使历经十余年的连续运行也不会出现破裂漏水等故障。
QBZ6—80真空磁力起动器一、近控回路:变压器二次回路;变压器二次36V 4#线→JDB保护4#线通过内部继电器接点→3#线→真空接触器线圈→停止按钮TA→起动按钮QA→近控开关K近→变压器二次8#线。
按下起动按钮QA,真空按触器线圈得电吸合。
CKJ1闭合,开关自保。
二、远控回路:变压器二次36V 4#线→JDB保护4#线通过内部继电器接点→3#线→真空接触器线圈→停止按钮TA→远控开关K远→停止按钮TA→1#线→外接压扣起动按钮→停止按钮→8#线→起动按钮QA常闭点→变压器8#线。
按下起动按钮,真空接触器线圈得电吸合,CKJ1闭合开关自保。
9#线、13#线通过CKJ2联锁下一台开关。
PBG—630(400)/6(10)矿用隔爆型高压真空配电装置一、26芯航空插头引脚说明二、元件标志及作用S1——门行程开关触点 S2——隔离行程开关触点,正常时闭合M——合闸电动机 Y1——脱扣线圈,正常时无电Y2——失压线圈,正常时吸合Q1——三相桥式整流器 Q2——单相桥式整流器TA——分闸按钮,一闭两开QA——合闸按钮 YK——远控接点SB——照明灯开关 EL——照明灯HL1——合闸显示 HL2——分闸显示ZJ——中间继电器 ZJ1—4——电流护感器接地2J5——常开失压回路 FA——复位按钮QR——位移 YW——位移LD——漏电试验 HW——电度表RY1-3——压敏电阻 LX——零序电流互感器2LHC——2相电流互感器 QF——真空短路器三、工作原理1、合闸操作:Q1正极→S1→M→QA→Q1负极2、电动分闸回路:电压护感器二次B相对地电压58V→TA→D7→Y1→地。
3、保护动作分闸回路:保护器16角直流24V→QF常开接点→Y1保护器23角。
当过载、短路、漏电、监视、过电压、任意保护动作时,保护器16角输出直流24V正→23角负,形成回路Y1动作完成分闸。
欠压保护动作时,压器释放,完成分闸。
4、失压保护回路:开关送电后,中间继电器ZJ得电吸合,电压护感器二次A相经隔离行程开关S2→TA→整流桥Q2交流一端通过Q2交流另一端至电压护感器二次B相。