金属氢化物储氢装置研究
- 格式:pdf
- 大小:601.41 KB
- 文档页数:4
储氢材料的储氢原理与研究现状氢能,即氢气中所含有的能量。
具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点。
目前,能源危机和环境危机日益严重。
许多国家都在加紧部署、实施氢能战略,如美国对运输机械的“FreedomCAR”计划和针对规模制氢的“FutureGen”计划,日本的“NewSunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势。
但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。
因此,氢能的利用和研究成为是当今科学研究的热点之一。
而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。
目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。
高压气态液态储氢发展的历史较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3%。
而且存在很大的安全隐患,成本也很高。
金属氢化物储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮。
金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。
有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。
具体有NaH-Al-Ti、Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeOx等物质,质量储氢密度为2%-5%。
金属氢化物储氢具有高体积储氢密度和高安全性等优点。
在较低的压力(1×106Pa)下具有较高的储氢能力,可达到100kg/m3以上。
最近,中科院大连化学物理研究所陈萍团队发现Mg(NH2)/2LiH储氢体系可在110℃条件下实现约5%(质量分数)氢的可逆充放。
金属氢化物储氢材料的制备及应用研究近年来,由于全球氢能产业的快速发展,研究金属氢化物储氢材料已成为科研人员的热门领域。
金属氢化物储氢材料因其高储氢量、快速充放氢速度、优异的循环稳定性等特性,成为氢能储备、运输和利用的重要材料。
一、金属氢化物储氢材料的制备方法1.1 物理化学法物理化学法是一种常用的金属氢化物储氢材料制备方法,包括共沉淀、溶剂热、熔盐电解、磁控溅射等技术。
其中,共沉淀法是最为传统和广泛采用的方法之一,通过调节pH值、温度、沉淀剂等影响因素来控制金属离子的还原和氢反应的控制。
在溶剂热法中,所需的金属或金属合金在溶剂中进行热反应,水热法、高温氢化反应等其它方法也可以构成溶剂热反应法。
熔盐电解法是通过将金属或金属合金放入电解介质中,进行电化学还原并生成氢化物。
1.2 生物法生物法是指利用天然微生物所产生的还原酶,将氢化物还原成金属,在储氢材料中,这种方法具有很好的针对性。
使用生物法合成的金属氢化物,通常都具备很强的还原能力,这一方法的主要优点是不需要耗费太多的能源和反应条件,因此会被氢能科学探索的越来越多。
二、金属氢化物储氢材料的应用2.1 储氢材料金属氢化物作为一种高效的储氢材料,已经在氢能源领域得到越来越广泛的应用,尤其是在氢燃料电池、燃料电池车和家庭储氢方面。
在单车、汽车和公交等物流运输模式逐步向熟练化、缩小化、城市化转变的大环境下,储氢制氢所具有的灵活性和多种用途性将更受关注。
2.2 其他应用领域金属氢化物储氢材料不仅有在氢能源领域的应用,其它领域也有潜在的应用。
如铁锂电池、动力电池、钠离子电池等二次电池储能材料等等,都被视为未来材料结构设计的热点领域之一。
三、发展金属氢化物储氢材料应注意的问题3.1 安全性问题由于其中的氢气具有极高的易燃性和爆炸性,在生产、运输和使用过程中,安全问题一直是制约金属氢化物储氢材料应用的重要因素,对于储氢化学或物理反应产生的暴燃问题,是开展金属氢化物制备和应用研究的重要议题。
浅谈金属氢化物储氢及常用的金属储氢材料摘要:为了应对能源危机,减少全球温室气体排放,人类不断在探索可持续和可再生替代能源载体,包括风能、核能、太阳能和氢能等。
氢因其具有含量丰富,容易再生,废气排放无污染、应用场景灵活等优点,被视为理想的可再生能源,很多学者预测未来将进入能源“氢经济”的时代。
氢气虽然具有绿色可再生能源的诸多优点,但是也存在不可忽视的缺点。
与化石燃料相比,氢的体积能量密度较低(低热值9.9MJ/m3,标准状态下气态氢的体积能量密度仅为汽油的0.04%,即使在液态也只是汽油的32%),导致氢气的存储需要大量的空间,这对于固定能源系统尚可接受,但是对于可移动的能源系统(例如绿色能源汽车、移动电源等)则是巨大的挑战。
因此,发展高体积能量密度的储氢技术成为当前的研究热点。
关键词:金属氢化物;储氢;金属储氢材料引言储氢技术作为氢气“制”和“用”环节之间的重要桥梁,其重要性不容忽视。
高压气态储氢技术、低温液态储氢技术,固态储氢技术及有机物液体储氢技术是目前主要的四种储氢技术,其中主流方式还是高压气态储氢。
从长远来看氢能要实现其对净零排放的重大贡献潜力,就必须进行大规模储存。
地下储氢技术由于其储氢规模大、综合成本低而受到了广泛关注。
以美国为代表的世界发达国家围绕地下储氢技术正进行技术攻关,并得到迅速发展。
目前,英国、德国、加拿大、波兰、土耳其、荷兰和丹麦等也都制定了盐穴储氢计划。
相比上述国家,我国地下储氢研究较为滞后,尚无地下储氢实践。
为此,本文主要根据国外地下储氢技术的研究和应用现状,分析氢气地下储存可能面临的技术问题,为国内发展盐穴储氢技术提供借鉴。
进一步结合中盐金坛盐穴综合利用的经验以及江苏地区的地域特点,探索盐穴储氢技术路线的可能性,为中国实现“双碳”目标提供思路。
1.金属氢化物储氢原理在一定温度和压力条件下,将储氢合金与氢气混合,储氢合金就可以吸收氢气,并且与氢气反应生成金属固溶体MHx和金属氢化物MHy。
氢是一种清洁的可再生能源。
储氢材料作为一种可逆的氢元素存储材料,在现代及未来的应用十分广泛。
对于储氢材料性质的研究,将会更好地推动我国相关研究领域的进步。
随着近年来我国经济的不断发展,能源消耗也在大幅度增加,化石能源储量减少,并产生一系列的环境问题,所以寻找一种安全可靠的绿色清洁能源是必然趋势,而氢元素一直是能源系列中的“宠儿”。
由于氢能是一种可循环利用的清洁能源,将在我国能源转换中扮演重要角色。
近年来,氢能产业从行业圈内逐渐走向大众视野,被认为是具有发展潜力的新型产业。
目前唯一存在的应用问题是氢能源的存储技术问题,为了解决这一问题,储氢材料正式问世,利用金属络合物储存氢能,其质量百分密度较高且具有一定的可逆性,实现了储氢材料的正式应用,而此类材料的具体应用也可以更好地推动相关领域的发展。
氢能的储存方式分析氢能是目前发现的能源体系中储量丰富且无公害的清洁能源,是理想化石燃料替代品,而且氢能在燃烧后的生成物只有水,对我国实现“碳达峰”“碳中和”等目标具有重要意义。
在氢能的应用体系中,氢能的存储制约了氢能走向实用化和规模化。
为了解决这一问题,诞生了储氢材料理念。
目前,有3种主要的储氢方式,分别为高压气态储氢、低温液态储氢和固态储氢。
1高压气态储氢高压气态储氢是目前应用广泛、相对成熟的储氢技术,即通过压力将氢气液化至气瓶中加以储存。
该技术的优点在于,其充装释放氢气速度快,技术成熟及成本低。
而其缺点在于:一是对储氢压力容器的耐高压要求较高,商用气瓶设计压力达到20 MPa,一般充压力至15 MPa;二是其体积储氢密度不高,其体积储氢密度一般在18~40 g/L;三是在氢气压缩过程中能耗较大,且存在氢气泄漏和容器爆破等安全隐患问题。
2低温液体储氢为了解决高压气体储氢体积储氢密度低的问题,人们提出了液态储氢的概念,低温液态储氢将氢气冷却至-253℃,液化储存于低温绝热液氢罐中,储氢密度可达70.6 kg/m3,体积密度为气态时的845倍。
基于金属材料的氢气储存技术研究氢气作为一种能源,近年来备受关注。
但是,氢气的储存一直是难题,因为氢气具有如下的缺点:易泄漏、易燃爆、密度小、低温高压等。
为了克服这些缺点,过去提出了多种储存方式,如压缩、液化、固态和化学吸附等。
本文将从金属材料氢气储存技术的研究角度,探讨氢气储存的发展趋势。
一、金属材料在氢气储存方面的应用金属材料是目前氢气储存中应用最广泛的材料之一,金属材料常用作氢气的储存容器、催化剂、氢气传递材料等。
在金属材料中,常用的有铁、钛、镁、钯、铝、镍等。
目前,比较成功的一种金属储氢材料是氢化物。
氢化物是一种将氢与另一种元素形成离子化合物,它在储氢方面有独特的优势。
因为储氢过程中,氢化物可以实现氢气的物理吸附,从而大幅提高氢气的储存密度。
同时,氢化物的制备容易,可以通过简单的反应制备得到。
二、氢气储存技术的发展趋势1.金属材料化学吸附氢气储存技术金属材料化学吸附储氢技术是近年来较为前沿的氢气储存技术。
化学吸附储氢是一种通过催化剂介导氢分子与固体材料之间氢键的形成而实现的氢气储存方法。
早期的研究表明,基于金属材料的氢化物化学吸附储氢方案能够实现氢气储备密度较高的储氢方案。
然而,由于金属材料化学吸附氢气储存技术在实现可控氢气储存方面存在显示困难,其实际应用广泛度和可靠性还需要进一步提升。
2.金属氢化物储氢材料的制备优化金属氢化物储氢材料是目前氢气储存中应用最广泛的储氢材料之一,其在储氢密度、制备成本等方面具有优势。
然而,当前,金属氢化物储氢材料的產品稳定性、热稳定性、压力稳定性等性能仍然不理想,进一步的优化和完善仍需进行深入的探索和研究。
3.金属-有机框架材料在氢气储存中的应用金属-有机框架材料(MOFs)是一种由金属离子或簇通过有机构建单元配成的材料。
由于其稳定性和多孔性等特点,被广泛研究作为气体存储材料。
研究表明,相对于采用纯金属储氢材料,采用由金属-有机框架材料制成的储氢材料能够具有更高的储能密度和更好的热稳定性。
氢储能技术发展与研究现状氢能是能源转型升级的重要载体,是实现碳达峰碳中和的重要解决方案。
氢气储运是连接氢气生产端和需求端的关键桥梁,低成本高效的氢气储运技术是实现氢气大规模应用的必要保障。
01.氢气储存技术根据氢气的存储状态可将氢气储存方式分为常温高压气态储氢、低温液态储氢、有机液态储氢和固态储氢等。
目前,常温高压气态储氢是当前我国最成熟的储氢技术,占绝对主导地位。
低温液态储氢尚处起步阶段,是未来大规模用氢的良好解决方案。
有机液态储氢处于技术研发阶段,是未来有发展潜力的氢气低价储运技术之一。
固态储氢尚处示范阶段,具有实用化前景的是金属氢化物基储氢合金。
常温高压气态储氢是指将氢气压缩在储氢容器中,通过增压来提高氢气的容量,满足日常使用。
这是一种应用广泛、灌装和使用操作简单的储氢方式,具有成本低、能耗低、充放速度快的特点。
缺点是储氢密度低,安全性较差,只能适用于小规模、短距离的运输场景。
低温液态储氢属于物理储存,是一种深冷氢气存储技术。
氢气经过压缩后,深冷到21K(约-253°C)以下,使之变为液氢,然后储存在专用的低温绝热液氢罐中,密度可达70.78kg/cm3,是标准情况下氢气密度的850倍左右,体积比容量大,适用于大规模、远距离的氢能储运。
缺点是对储氢容器的绝热要求很高,液化和运输过程中能耗大。
有机液态储氢属于化学储存,利用有机液体(环己烷、甲基环己烷等)与氢气进行可逆加氢和脱氢反应,能够实现常温常压下氢气储运。
这种储氢方式的优势在于储氢密度比较高、安全性高。
缺点是需要配备相应的加氢脱氢装置,流程繁琐,效率较低,增加储氢成本,影响氢气纯度。
固态储氢是以金属氢化物、化学氢化物或纳米材料等作为储氢载体,通过化学吸附和物理吸附的方式实现储氢,具有储氢密度高、储氢压力低、安全性好、放氢纯度高等优势。
缺点是成本高,放氢需要较高温度下进行。
02.氢气输送技术根据储氢状态氢气输送分为气态输送、液态输送和固态输送,气态和液态为目前的主流方式。
金属氢化物贮氢技术研究与发展随着全球能源危机加剧,氢能作为一种绿色能源被越来越广泛地重视和研究,其中氢气作为能量源已经在一些领域得到了应用。
但是,氢气因为其轻便、极易泄漏和爆炸等特性,使得氢气的储存一直以来是一个难以克服的问题。
为了解决这个问题,金属氢化物储氢技术被广泛地研究和应用。
1. 金属氢化物储氢技术的基本概念金属氢化物作为氢气储存材料的一种,主要是利用金属原子与氢原子间的化学反应,将氢气吸附在金属氢化物的表面上,以此实现氢气的储存。
目前,金属氢化物储氢技术已经得到了广泛的研究和应用,并且已经取得了一定的进展及成果。
2. 金属氢化物的基本特性金属氢化物储氢材料通常是由金属和氢原子组成的。
金属在氢气的作用下可以进行氢化反应,将氢原子吸附在金属表面上形成金属氢化物。
金属氢化物的性质取决于其中金属与氢的比例。
当金属氢化物中氢的含量超过一定比例时,金属氢化物会发生相变,使得储氢量增加。
金属氢化物的主要特性包括以下几个方面:2.1. 储氢能力金属氢化物作为氢储存材料的一种,最主要的特点就是其具有较高的储氢能力,可以将氢气在一定的条件下吸附在材料内部,实现氢气的储存。
2.2. 吸附热金属氢化物的吸附热主要是指金属氢化物在吸附氢气时放出的热量。
金属氢化物吸附氢气的放热量越大,就可以越快地将氢气吸附到金属氢化物中。
2.3. 滞后现象金属氢化物的滞后现象是指金属氢化物在吸附氢气时,需要一定的时间才能达到最大的吸附量,并且在释放氢气时也有类似的滞后现象,需要一定的时间才能释放完所有的氢气。
2.4. 热稳定性金属氢化物在储氢过程中需要经受一定的温度、压力等条件的变化,因此其热稳定性是至关重要的。
一些研究发现,金属氢化物在应用于储氢中时,如果温度太高或者压力不够时,都会影响金属氢化物的稳定性,从而降低储氢效率。
3. 金属氢化物储氢技术的研究进展近年来,随着全球氢能研究的不断深入,金属氢化物储氢技术也得到了广泛的研究和应用。
金属氢化物贮氢技术研究与发展随着全球温室气体排放不断增加,气候变化日益严峻。
为了降低碳排放和改善环境,发展清洁能源已经成为全球绿色能源产业的重大挑战。
而氢能作为绿色能源的重要代表之一,特别是接下来的5-10年,将会成为全球能源转型的重要方向。
金属氢化物贮氢技术是目前最新的贮氢技术之一。
它是利用金属氢化物吸附与释放氢气的特性,通过物理吸附氢气的方式储存。
金属氢化物贮氢技术具有氢气密度高、储氢效率高、容易存储与搬运、无污染等优点。
在氢能发展中,金属氢化物贮氢技术十分具有应用前景与重要性。
金属氢化物是指由金属与氢化物通过弱化学键组成的复合物,现有的金属氢化物共有90多种,其中以钛、锆、镁、镍、铁、铝等为代表的六系金属氢化物体系是最为著名的。
在吸氢过程中,金属氢化物的晶格扩张,吸收氢气形成氢化物,同时释放大量的热量。
在放氢过程中,氢化物中的氢和金属分离,释放氢气,再收放放热量。
金属氢化物贮氢技术的发展经历了几个阶段,目前主要处于实验室研究阶段。
其中,吸附剂的性能和合成,装置设计与制造,标准化等方面的研究和发展非常重要。
同时,金属氢化物贮氢技术需要融合其他技术,如减压吸氢技术和化学储氢技术,以提高储氢效率。
在现有技术的基础上,金属氢化物储氢技术还可以进一步提升性能。
例如,将金属氢化物和吸氢剂共混,形成复合吸氢剂,可以提高吸氢速率和容量。
同时,优化储氢装置的设计和制造,以提供更好的氢气等方面的性能,可以使储氢技术更加应用广泛。
此外,当金属氢化物的吸附能力达到瓶装氢气标准时,金属氢化物将成为传统氢气贮存技术的优越替代品。
金属氢化物储氢技术也将广泛应用在氢燃料电池车、航空航天、新能源发电等领域,成为全球清洁能源发展的重要组成部分。
总之,金属氢化物储氢技术是一种潜在的很有前途的储氢技术,其在氢燃料电池、新能源应用等领域的应用前景十分广阔。
未来,金属氢化物储氢技术仍需要加强可控制备、设计制造、标准化等方面的研究,以提高其储氢效率和应用价值。
金属氢化物的制备及性能研究一、引言金属氢化物一直是纳米化学、材料化学和电化学界的热门研究领域。
金属氢化物具有非常重要的应用作用,如储氢材料、催化剂、电极材料等。
同时,金属氢化物还可以作为基于氢源的绿色化学中的重要化学试剂,因此对金属氢化物的研究十分重要。
二、金属氢化物的制备1. 气相法制备金属氢化物气相法制备金属氢化物是一种简单且广泛应用的方法。
通常采用的是金属和氢气之间的反应,在高温下进行。
在这种反应中,金属先被加热到适当的温度,然后通过注入氢气来实现反应。
这种反应需要在惰性气体(如氩气)氛围中完成,以防止反应产生不受欢迎的副产物。
2. 溶液法制备金属氢化物溶液法制备金属氢化物可以通过金属在氢化物溶液中的反应来实现。
在这个过程中,金属首先被浸泡在氢化物溶液中,然后通过在恒温下反应来形成氢化物。
这种方法有多种优点,如相对较低的制备温度和无需使用惰性气氛,因此很受欢迎。
3. 物理法制备金属氢化物物理法制备金属氢化物利用一些现有的物理机制,如吸附、离子交换等。
这种方法不涉及任何化学反应,因此非常有前途。
其中最常见的方法是担载基金属,该方法可以制备高质量的金属氢化物,并且相对容易实现。
三、金属氢化物的性能研究1. 储氢性能研究金属氢化物具有很好的储氢性能,能够以较小的体积存储大量氢气。
当前,研究主要集中在改善金属氢化物的吸附和解吸速率。
吸附和解吸速率越快,金属氢化物的储氢性能就越好。
2. 催化性能研究金属氢化物在许多重要的催化反应中作为催化剂使用,如催化环化反应、脱芳基化反应、氧化反应等。
近年来,受到其优异的催化性能的启发,更多的金属氢化物被广泛地用于环保领域。
3. 电化学性能研究金属氢化物还可以作为电极材料,例如储能电池和水解电解反应。
对于这些应用来说,金属氢化物的电化学性能是很重要的。
最近的研究表明,金属氢化物对电激发还原反应是非常敏感的。
四、结语金属氢化物具有诸多应用,因此对其的研究一直备受关注。
金属氢化物储氢材料的研究与发展近年来,随着环保和能源危机的加剧,储氢技术正在成为人们关注的焦点。
因为储氢技术可以有效地储存能源,为未来能源的可持续发展提供了一条新的出路。
而金属氢化物储氢材料就是储氢技术中的重要组成部分之一。
一、金属氢化物储氢材料金属氢化物储氢材料是指通过与氢气反应,形成氢化物的金属材料。
储氢时,氢气吸附在储氢材料的表面或者内部空隙,从而形成氢化物储氢材料。
这种材料不仅能够吸氢,而且还可以释放出氢气,从而满足能源的需求。
目前,金属氢化物储氢材料主要分为两种类型,分别是轻金属氢化物和过渡金属氢化物。
轻金属氢化物主要包括镁、钠和铝等轻金属。
这种材料的优点是比较轻便、价格低廉,但其吸附氢气的能力较差。
过渡金属氢化物主要包括钛、锆、镍和铁等过渡金属。
这种材料的优点是吸附氢气的能力比较强,但价格相对较高。
二、金属氢化物储氢材料的研究进展随着科技的发展,金属氢化物储氢材料的研究也取得了一定的进展。
以过渡金属氢化物为例,钛系和锆系储氢材料是目前研究比较活跃的两个方向。
其中,锆系储氢材料具有高储氢容量、较低的反应活化度和较好的热稳定性等特点。
研究表明,锆系储氢材料的理论存氢量可以达到2.0wt%,但其反应活化度较低,需要高温才能进行储氢反应。
因此,如何提高锆系储氢材料的反应活化度,是当前研究的热点之一。
而钛系储氢材料则具有较高的反应活化度和储氢速率,但其储氢容量较低,只有1.5wt%左右。
因此,钛系储氢材料的研究主要集中在如何提高其储氢容量和维持其高活性的方向上。
目前,许多研究团队通过改变钛系储氢材料的组成和微观结构,以期望提高其储氢性能。
除此之外,还有一些新型金属氢化物储氢材料也正在被研究。
比如,基于金属有机骨架的储氢材料和基于金属-氧化物的复合储氢材料等,这些新型材料具有较高的储氢容量和热稳定性,但其制备工艺和成本也更加复杂和昂贵。
三、金属氢化物储氢材料的应用前景金属氢化物储氢材料因其高存氢能力、易于操控和储氢稳定性等优点,被广泛应用于氢能、新能源汽车、储能等领域。
储氢金属材料国内外研究现状从本世纪六十年代中期,国内外就开始了用金属氢化物作为储氢介质的研究,最终目的是为了解决氢能源的贮存问题,其研究的主要目标是寻找比重小、储氢量大、使用寿命长、能在常温下吸放氢和价格便宜的储氢材料。
储氢材料在能源、环保等领域(如Ni-MH电池和燃料电池等方面)都有重要应用价值。
目前研究较多的储氢材料仍是金属氢化物,而且发展较快。
主要有:以LaNi5为代表的AB5型稀土系储氢材料,以ZrM2、TiM2(M=Mn、Ni、V等)为代表的AB2型Laves相储氢材料,以Ti-Fe 为代表的钛系AB型储氢材料,以Mg2Ni为代表的镁系A2B型储氢材料。
近期很多研究工作者已将研究重点放在镁基储氢材料的研究上,主要是因为镁首先是地壳中含量最丰富的元素之一,居第八位,约占地壳重量的2.35%,而我国含镁矿物储量又是最多的几个国家之一,这就为大规模应用储氢材料提供坚实的物质保证;其次镁的储氢容量大,理论上可达到7.6mass%H。
镁基储氢材料以Mg及MgH2的吸放氢为基础,它们与氢的反应速度慢,氢化物的分解温度高(0.1MPa 时为560K),而且镁的表面常常覆有一层氧化膜,从而严重的妨碍了氢原子吸附,难以活化,极大的限制了实际应用,要解决此问题,现在比较有效的方法是将镁基合金纳米化复合化。
实际上就储氢材料的制备技术而言,目前有很多种方法,如熔盐保护法、金属熔炼法、置换扩散法、包覆法、机械合金化法、高压气体雾化法、氢化燃烧法、真空快淬方法等。
近来由于机械合金化方法能够很好地改善材料的吸放氢性能而备受关注,但是其存在耗时耗能,同时在产物中引入杂质,导致费用过高、产量低、规模小等不足。
利用物理场下制备储氢合金的报到不多,对于制备镁基储氢合金研究更是少之又少。
实际上,外加物理场处理技术制备合金材料时利用金属和物理场的相互作用,可以改善其性能。
该技术具有环境友好、操作简便等优点。
目前该领域的研究热点主要集中在以下3个方面:1)让电流通过金属熔体,即电流处理;2)让金属熔体在磁场中凝固,即磁场处理;3)对金属熔体进行超声波处理。
储氢合金的研究1 储氢材料的研究背景能源是人类社会生存和发展的重要物质基础,是现代文明的三大支柱之一。
目前,世界能源消耗还是以煤、石油、天然气之类的矿物能源为主,但进入二十世纪以来,一方面煤、石油、天然气等化石能源的日益枯竭使人类面临着能源危机的威胁,另一方面,化石能源所带来的环境污染给人类社会带来了诸如全球变暖、淡水资源减少、生物多样性减少、环境公害等诸多灾难,形成了一系列的恶性循环,严重制约了人类的发展,并且有愈演愈烈的趋势。
因此发展可再生的无污染的新能源迫在眉睫。
我国作为发展中大国,能源消耗巨大,能源利用率不高,能源结构也不合理。
2009年,中国风力发电量达到了25.8亿瓦,超过了德国的25.77亿瓦,仅次于美国35亿瓦;2020年,中国将投入足以实现年发电量150亿瓦的风力涡轮机,成为世界最大的风能生产国。
尽管在新能源领域有了大规模的增长,但风力发电量只占据中国电力消耗总量的1%。
为缓解和解决能源危机,科学家提出资源与能源最充分利用技术和环境最小负担技术。
新能源与新能源材料是两大技术的重要组成部分。
新能源的发展必须靠利用新的原理来发展新的能源系统,同时还必须靠新材料的开发与利用才能使新系统得以实现,并提高其利用效率,降低成本。
发展新能源材料是解决能源危机的根本途径。
新能源材料是指能实现新能源的转化和利用以及发展新能源技术所需的关键材料,主要包括:储氢合金为代表的储氢材料,锂离子电池为代表的二次电池材料,质子交换膜电池为代表的燃料电池材料,硅半导体为代表的太阳能电池材料和以铀、氘、氚为代表的反应堆核能材料等。
而其中氢能由于其高效性和清洁性有望成为未来的理想能源,并成为各种能量形式之间转化的最优良载体。
其优点主要有:(1)氢是自然界中最普遍的元素,资源资源丰富,无穷无尽-不存在枯竭问题;(2)氢的可再生性可通过水的分解循环-永无止境;(3)氢的燃烧值高,高于所有化石燃料和生物质燃料,燃烧产物是水,可实现零排放,无污染,是最环保的能源;(4)氢的燃烧能以高效和可控的方式进行,且燃烧稳定性好,燃烧充分(5)氢气具有可储存性,这是与电、热最大的不同,且氢的储运方式较多,包括气体、液体、固体或化合物;(6)氢是安全能源氢的扩散能力很大,不具毒性及放射性氢能的使用主要包括氢气的制备,储存和能量转化,而氢气的储存是至关重要的一步。
金属储氢的密度研究金属储氢是一种新兴的能源储存技术,其通过将氢气吸附或嵌入到金属中的晶格中来实现氢气的储存。
随着全球能源需求不断增长和对可再生能源的需求增加,金属储氢技术被认为是一种具有巨大潜力的解决方案。
本文将深入探讨金属储氢的密度研究,以及其在能源领域的应用和未来发展。
1. 金属储氢的基本原理金属储氢是利用金属材料的晶格结构,将氢气原子吸附或嵌入到晶格中,以实现氢气的高密度储存。
在吸附储氢中,金属表面具有高比表面积,能够吸附氢气分子,形成金属-氢化物。
而在嵌入储氢中,氢气原子则嵌入到金属的晶格空隙中,形成金属-氢化物。
金属储氢的密度研究旨在寻找能够实现高储氢密度和高容量的金属材料。
2. 金属储氢的密度研究方法在金属储氢的密度研究中,常用的方法包括气相吸附法、计算模拟法和实验测量法等。
气相吸附法通过测量氢气在金属表面或晶体表面的吸附量来评估金属储氢的密度。
计算模拟法则通过计算模拟金属-氢化物体系的结构和能量,预测其储氢容量和密度。
实验测量法则是在实验室中利用各种仪器设备,如气体吸附仪、电子显微镜等,对金属-氢化物样品进行直接测量。
3. 金属储氢的密度研究进展随着对可再生能源的需求与日俱增,金属储氢技术的研究也取得了长足的进展。
已有很多金属被发现具有储氢能力,如钯(Pd)、钛(Ti)、镁(Mg)等。
这些金属储氢材料通过改变晶格结构或掺杂其他元素,可实现更高的储氢密度和容量。
研究人员还利用纳米技术和合金化技术等手段,进一步提高金属储氢材料的性能。
4. 金属储氢在能源领域的应用金属储氢技术在能源领域有着广泛的应用前景。
金属储氢可以作为储氢材料,用于储存和运输氢气燃料。
与传统的高压气体储氢相比,金属储氢具有更高的储氢密度和储氢容量,能够实现更高效、更安全的氢气储存。
金属储氢还可应用于氢能源转换和储能系统中,以提供清洁、可持续的能源解决方案。
5. 金属储氢的未来发展金属储氢技术尚处于研究和开发阶段,仍面临着一些挑战。
储氢材料的储氢原理与研究现状氢能,即氢气中所含有的能量。
具有环境友好、资源丰富、热值高、燃烧性能好、潜在经济效益高等特点。
目前,能源危机和环境危机日益严重。
许多国家都在加紧部署、实施氢能战略,如美国对运输机械的“FreedomCAR”计划和针对规模制氢的“FutureGen”计划,日本的“NewSunshine”计划及“We-NET”系统,欧洲的“Framework”计划中关于氢能科技的投人也呈现指数上升趋势。
但是,氢能的使用至今未能商业化,主要的制约因素就是存储问题难以解决。
因此,氢能的利用和研究成为是当今科学研究的热点之一。
而寻找性能优越、安全性高、价格低廉、环保的储氢材料则成为氢能研究的关键。
目前,氢可以以高压气态液态、金属氢化物、有机氢化物和物理化学吸附等形式储存。
高压气态液态储氢发展的历史较早,是比较传统而成熟的方法,无需任何材料做载体,只需耐压或绝热的容器就行,但是储氢效率很低,加压到15MPa时质量储氢密度不超过3%。
而且存在很大的安全隐患,成本也很高。
金属氢化物储氢开始于1967年,Reilly等报道Mg2Cu能大量储存氢气,接着1970年菲利浦公司报道LaNi5在室温下能可逆吸储与释放氢气,到1984年Willims制出镍氢化物电池,掀起稀土基储氢材料的开发热潮。
金属氢化物储氢的原理是氢原子进入金属价键结构形成氢化物。
有稀土镧镍、钛铁合金、镁系合金、钒、铌、锆等多元素系合金。
具体有NaH-Al-Ti、Li3N-LiNH2、MgB2-LiH、MgH2-Cr2O3及Ni(Cu,Rh)-Cr-FeOx等物质,质量储氢密度为2%-5%。
金属氢化物储氢具有高体积储氢密度和高安全性等优点。
在较低的压力(1×106Pa)下具有较高的储氢能力,可达到100kg/m3以上。
最近,中科院大连化学物理研究所陈萍团队发现Mg(NH2)/2LiH储氢体系可在110℃条件下实现约5%(质量分数)氢的可逆充放。
化学储氢技术随着能源需求的不断增长和环境问题的日益突出,寻找一种清洁、高效的能源储存和利用方式成为了当务之急。
而化学储氢技术作为一种具有巨大潜力的能源储存方式,引起了人们的广泛关注。
本文将探讨化学储氢技术的原理、应用以及面临的挑战。
化学储氢技术是利用化学反应将氢气储存于化合物中,并在需要时释放出来。
与传统的储氢方式相比,化学储氢技术具有储存密度高、稳定性好、安全性高等优点。
其中最为常见的化学储氢方式是利用金属氢化物。
金属氢化物是一种能够吸附和释放氢气的化合物,通过控制温度和压力,可以实现氢气的储存和释放。
此外,还有一些有机化合物和化学储氢材料也可以用于化学储氢。
化学储氢技术在能源储存和利用方面有着广泛的应用前景。
首先,化学储氢技术可以应用于燃料电池。
燃料电池是一种将氢气直接转化为电能的装置,而化学储氢技术可以提供可靠的氢气供应,使燃料电池得以持续运作。
其次,化学储氢技术还可以应用于储能系统。
通过将氢气储存于化学化合物中,可以实现能源的高密度储存,以应对能源需求的波动。
此外,化学储氢技术还可以应用于交通运输领域。
利用化学储氢技术储存的氢气可以作为燃料驱动车辆,实现零排放,减少对环境的污染。
然而,化学储氢技术在实际应用中面临一些挑战。
首先,目前可用的储氢材料的储氢容量还不够高。
虽然金属氢化物等化学储氢材料具有较高的储氢容量,但仍然无法满足实际需求。
其次,化学储氢技术的储氢和释放过程需要一定的温度和压力条件,这限制了其在实际应用中的灵活性。
此外,化学储氢技术还面临储氢和释放过程中的热量管理问题,需要解决热量的传输和控制。
为了克服这些挑战,科学家们正在不断探索和研究新的储氢材料和储氢方法。
例如,研究人员正在开发新型的金属氢化物材料,以提高储氢容量。
此外,也有人致力于研究利用化学反应储氢的新方法,以降低温度和压力条件。
同时,研究人员还在探索如何更好地管理和利用储氢过程中产生的热量,以提高能源利用效率。
化学储氢技术作为一种新兴的能源储存方式,在能源储存和利用领域具有广阔的应用前景。