高速铁路道岔技术
- 格式:docx
- 大小:74.48 KB
- 文档页数:9
高速铁路道岔施工技术讲解高速铁路是现代交通的代表之一,在全国各地绵延数千公里。
这些高速铁路不仅实现了人们速度和时间的需求,也是经济和文化交流的桥梁。
而在让高速铁路跑起来的组成部分中,道岔是至关重要的结构之一。
简单来说,道岔就是连接两条铁路轨道的交叉路口,能够让火车在不同轨道上行驶,改变行驶方向。
道岔不仅能够叉进与叉出,还能让火车在不同的轨道上行驶。
因此,在高速铁路建设中,道岔的建设工作显得尤为重要。
因为一个道岔良好的施工工作能够使高速铁路发挥出更好的效果。
道岔施工需要分三个阶段来进行。
第一步是道岔的准备工作,第二步是道岔的制作工作,最后是道岔的安装工作。
每个阶段都需要一些专业技能和管理措施。
在第一阶段中,关键的工作是在合适的地方筛选合适的地基和预制轨枕。
道岔需要在半径方面适应不同的弧度,因此合适的地基是确保道岔正常工作的基础。
轨枕是铺设铁路轨道的重要组成部分,有了合适的预制轨枕,工作效率也将明显提高。
在第二阶段中,一些专业的制造公司如邓志工程公司、中国首都机械制造集团等要完成每个地铁站的道岔制造。
其制造还包括轨枕的连接、各部分的研磨和装配工作。
首先各部件需要严格的检验和试装,以防止后期安装出现问题。
然后各杆需要一个个地接入研磨,并满足一系列参数要求。
接下来就要进行道岔的装配工作了。
道岔的制造过程是十分重要的,尤其是在高速铁路道岔的制造过程中,需要所用人员的高技能才能完成任务。
在第三阶段中,需要进行的工作就是安装道岔。
首先需要计算道岔的位置,然后按照预定位置进行挖掘。
在挖掘好的地方就需要放置预制轨床板,然后根据位置需求将预制道岔套到预制轨床板上。
最后需要进行各部分的连接工作以及其他小工作的完成。
总之,道岔的建造是十分重要的,在高速铁路建设中也具有重要意义。
对道岔的建设需要严谨的技术要求和验收标准,以确保火车的运营安全和高效。
希望国家的各大铁路部门在之后的工作中也能更加注重道岔的建设,争取更高的用户满意度和提升整体的高速铁路的运营效果。
高速铁路道岔的信号系统与通信技术研究随着高速铁路的快速发展,道岔信号系统和通信技术的研究和应用成为保障列车安全和运行效率的关键。
道岔在铁路交通中起到切换轨道的作用,因此其信号系统和通信技术的稳定和可靠性至关重要。
本文将对高速铁路道岔信号系统和通信技术的研究进行探讨。
高速铁路道岔信号系统的设计考虑到列车运行需要,旨在为列车提供准确的转向信息。
该系统一般由道岔信号机、轨道电路和控制中心等部分组成。
道岔信号机是道岔信号系统中的核心部分,负责发送转向信号给列车驾驶员和操作员。
轨道电路通过电流检测环路检测列车的位置和速度,以确保转向信号机能准确地向列车发送信号。
控制中心负责监控和管理道岔信号系统,并在必要时进行调度和控制。
这些组成部分相互配合,确保道岔信号系统的稳定运行。
在高速铁路道岔信号系统中,通信技术的研究和应用也是至关重要的。
通信技术主要包括有线通信和无线通信两种形式。
有线通信通过铜线和光纤传输数据和信号,传输速度快且稳定可靠。
无线通信则采用无线电波进行数据和信号传输,具有灵活性和便捷性。
这些通信技术在高速铁路道岔信号系统中扮演着重要角色,为信号机与控制中心之间的信息传递提供了有效的手段。
在研究高速铁路道岔信号系统和通信技术过程中,需要考虑的关键问题有以下几个方面。
首先,道岔信号系统和通信技术的核心问题是准确和稳定地控制道岔的转向。
这需要信号系统的响应速度快、准确可靠,能够及时向列车驾驶员和操作员发送转向信息。
同时,通信技术的稳定性也非常重要,以确保信息的即时传递和接收。
其次,高速铁路道岔信号系统和通信技术需要考虑的问题是大容量和高速度的数据传输需求。
随着高速铁路的发展,列车数量和运输能力大大增加,必须能够处理大量的数据传输和信息交换。
因此,信号系统和通信技术需要具备高容量和高速度的数据处理和传输能力。
另外,道岔信号系统和通信技术还需要解决的问题是系统的可靠性和安全性。
高速铁路陈设复杂,环境恶劣,系统的可靠性和安全性是保证列车运行安全的重要因素。
高速铁路无砟道岔施工技术摘要:石家庄—武汉客运专线(河南段)ZXDK6+691.217处采用了左开42号高速无砟道岔结构。
结合现场施工情况,针对高速无砟道岔,从道岔线型、道岔板施工、道岔吊装,存放与组装、工地钢轨铝热焊以及精调等方面详细介绍了高速铁路无砟道岔施工技术,并对相关的技术指标进行了简要介绍,为以后的无砟高速道岔施工积累了宝贵经验。
关键词:道岔施工技术铝热焊精调平顺性Turnout Construction Technology for High-speed RailwayJiang Hui道岔是机车车辆从一股轨道转入或超越另一股轨道时必不可少的线路设备,是铁路轨道的一个重要组成部分。
道岔的结构与几何特征决定了其特有的轮轨相互动力作用与应力扩散形式。
高速无砟道岔的采用,提高了列车在高速运行条件下的轨道结构稳定性、耐久性和高平顺性,大大减少了维修养护,已经成为高速铁路采取的主流形式。
高速铁路道岔根据列车的侧向容许通过速度分为80Km/h,160 Km/h、220Km/h三种,代号依次为18号、42号、62号。
下面结合石武客运专线(河南段) ZXDK6+691.217处左开42号道岔,详细介绍高速铁路无砟道岔施工技术。
道岔线型42号道岔主线为直线,侧线由主线向左侧岔出,采用圆曲线+三次抛物线的平面线型,如图1所示。
图1 42号道岔线型图道岔施工技术道岔板施工、道岔吊装,存放与组装、工地钢轨铝热焊及道岔精调共同组成了高速铁路道岔施工的成套施工技术。
下面逐一进行介绍。
道岔板施工技术2.1.1 道岔板施工技术要点道岔板底座C40自密实混凝土(SCC)按设计提供的配合比进行室内试验,确定施工配合比;正式施工前,必须在线外进行SCC工艺性试验,揭板验证并调整施工配合比,确定施工工艺参数;底座钢筋绝缘电阻值>2MΩ;道岔板精调平面位置0.3mm,高程±0.3mm,相邻承轨台高差±0.3mm。
0 引言道岔是高速铁路轨道的关键设备,与普通铁路道岔不同,高速铁路道岔(简称高铁道岔)运行速度高、维修时间短,因此要求具有更高的安全性、舒适性和可靠性,这对道岔设计、制造、铺设和维修均提出更高要求。
综合考察其他国家情况,高铁道岔均经历了长期的发展过程,为适应不断变化的运营环境,技术几经更迭,我国高铁道岔也经历了一个学习借鉴、自主研发的过程。
自2005年,我国开始自主研发高铁道岔,陆续开展一系列道岔试验。
2006年,时速250 km的18号客运专线道岔(简称客专线道岔)在胶济线上道铺设使用,实现了高铁道岔多项技术突破。
2009年,时速350 km的18号客专线道岔在武广高铁上道铺设使用,使行车速度达到世界水平。
截至2012年,我国高速铁路历时6年成功研发了18、42和62号道岔,可满足不同速度等级的需要,已成功应用于石太、胶济、甬台温、温福、福厦、广珠、武广、京沪、沪宁、沪杭、哈大、京石、石武等高铁及客运专线。
自主研发的同时,引进德国和法国的高铁道岔技术,并通过合资建厂与技术转让的方式在我国生产,供应我国市场。
德国CN技术系列道岔于2008年在京津城际铁路上道铺设使用,后续在京沪高铁和武广高铁等线路上应用。
法国CZ系列道岔于2008年在合宁客专上道铺设使用,后续在合武客专和郑西高铁上应用[1-4]。
我国高速铁路铺设了客专线、CN和CZ三种技术系列道岔,由此形成了多国道岔技术并存、结构形式多样的高速铁路道岔技术体系。
高速铁路道岔技术体系及运营现状司道林1,2,王树国1,2,葛晶1,2,王猛1,2,钱坤1,2,杨东升1,2(1. 中国铁道科学研究院 铁道建筑研究所,北京 100081;2. 中国铁道科学研究院 高速铁路轨道技术国家重点实验室,北京 100081)基金项目:中国铁道科学研究院科技研究开发计划项目 (2015YJ026、2015YJ092)第一作者:司道林(1983—),男,副研究员。
摘 要:道岔是高速铁路关键基础设施之一,我国铺设了CN(德国)、CZ(法国)和客专线(中国)3种技术系列的高速铁路道岔。
高速铁路道岔的电磁兼容与防护技术研究随着高速铁路建设的不断推进,铁路道岔作为关键的设备之一,在保证列车行驶安全的同时,也面临着电磁兼容与防护的技术挑战。
高速铁路道岔的电磁兼容与防护技术研究显得尤为重要,本文将对相关问题进行探讨与分析。
首先,我们需要了解电磁兼容与防护的概念。
电磁兼容是指设备在特定电磁环境下的正常工作能力,即设备在电磁辐射、电磁传导和电磁干扰等电磁环境影响下仍能正常工作。
而电磁防护则是为了保护设备以免其受到电磁干扰而采取的一系列措施,包括电磁屏蔽、滤波器设计等。
在高速铁路道岔的电磁兼容与防护技术研究中,首先需要进行电磁环境监测与评估。
电磁环境监测能够准确地了解高速铁路机车与道岔之间的相互影响,包括电磁辐射、电磁传导等。
通过对实际环境下的电磁干扰进行监测,可以为设计防护措施提供基础数据。
其次,对高速铁路道岔进行电磁兼容性设计是关键的一步。
设计应考虑到道岔的结构特点和工作原理,以及电磁兼容性设计的要求。
例如,可以通过添加辐射屏蔽材料、采用电磁屏蔽结构等方式,提高道岔的电磁兼容性。
此外,合理地对电气系统进行布线和接地设计,也是提高电磁兼容性的重要手段。
在道岔的制造过程中,需要严格控制电磁兼容性。
制造商应确保道岔在整个制造过程中,包括材料选择、加工、装配等环节,都符合相关标准,以确保道岔在使用过程中能够达到预期的电磁兼容性要求。
此外,对于已经投入使用的道岔,应定期进行电磁兼容性检测和评估。
通过对道岔的电磁环境进行监测和分析,可以及时发现和解决问题,确保道岔在电磁辐射干扰下的正常工作。
对于高速铁路道岔的电磁防护技术,我们可以采取多种手段。
一方面,可以通过电磁屏蔽措施来减小电磁辐射干扰。
例如,在道岔的关键部位加装金属屏蔽罩,以阻挡电磁辐射;或者采用电磁屏蔽材料来减小辐射电磁波的传播。
另一方面,可以采取电磁滤波器设计来减小电磁传导干扰。
滤波器能够削弱传导电磁波的干扰,使其不会对道岔的正常工作造成影响。
运营高速铁路无砟轨道插入道岔关键技术研究与应用在高速铁路的世界里,有一个被大家忽略却又至关重要的部分——道岔。
你可能会觉得,这不就是那些铁路分岔的地方吗?嗯,没错,但你可能没意识到,正是这些“岔路口”,在决定列车是不是能够顺利运行,甚至能不能按时到达目的地时,起到了关键作用。
咱们今天就聊聊这玩意儿,别看它平时好像没啥大动作,但一旦出了问题,可不得了。
得说说这“无砟轨道”。
顾名思义,就是没有砟石的轨道,像我们以前看到的那种铁道,下面铺满了好多乱七八糟的石头,实际上是为了稳固轨道的。
而无砟轨道就不一样了,它直接用混凝土或者其他材料把轨道固定得死死的,简直就像是给列车穿上了超强护甲,保证了车速可以更快、更稳。
想象一下,列车飞驰而过,下面就是一个“平滑”的轨道,简直像是高速公路上的“飞车道”!但是,问题来了,无砟轨道虽然稳,但道岔这个东西,它就有点麻烦。
因为无砟轨道的结构特别坚固,插入道岔就成了一个难题。
你要知道,道岔是一个复杂的结构,里面涉及到很多机械装置和轨道的精确配合,怎么让这些东西在没有砟石“衬托”的情况下,依然能保持高效的切换和安全,光是想一想就让人头疼。
你要是想要列车顺畅地通过道岔,轨道必须精确到位,任何一丝一毫的偏差都可能引发故障。
现代高速铁路列车动不动就超过三百公里的时速,这个时候,轨道系统的任何一点问题都可能带来灾难性的后果。
那么问题来了,怎么解决呢?要知道,这可不是个小问题,不是随便找个小修小补就能搞定的。
要做到道岔和无砟轨道的无缝对接,首先得从设计上入手,尤其是道岔插入到无砟轨道时的承载问题。
试想,列车经过时,要确保道岔的每一个转弯、每一条轨道的连接都像一块拼图一样完美无缺,不然就像是车子在转弯时没有刹车——非常危险。
而这背后的关键技术,正是保证了铁路系统的安全与顺畅。
这些技术的核心,其实就在于对轨道和道岔的精密设计和施工工艺。
为了让道岔能够平稳地与无砟轨道结合,铁路工人们需要精准测量每一寸轨道的细节,并利用先进的技术手段将道岔的转向装置和无砟轨道进行完美衔接。