材料力学 第十一章压杆稳定(1,2)
- 格式:ppt
- 大小:1.67 MB
- 文档页数:38
材料力学压杆稳定概念欧拉公式计算临界力材料力学是研究物体受力及变形行为的一门学科。
压杆稳定是材料力学中重要的概念之一、当一个杆件受到作用力时,如果杆件不发生任何形状上的变化,我们称之为杆件处于稳定状态。
然而,当作用力超过一定临界值时,杆件就会发生失稳,产生形状上的变化。
因此,欧拉公式就是用来计算杆件临界力的一种方式。
欧拉公式由瑞士数学家欧拉于18世纪中叶首次提出。
它的基本假设是杆件是理想化的,即杆件是均匀、无缺陷、具有均匀截面的杆件。
根据欧拉公式,杆件临界力可通过以下公式计算:Pcr = (π^2 * E * I) / L^2其中,Pcr表示临界力,E表示杨氏模量,I表示截面惯性矩,L表示杆件的有效长度。
从上述公式中可以看出,临界力与材料的弹性模量有关,即材料越硬,临界力越大;同时临界力与截面的形状也有关,即截面惯性矩越大,临界力越大;临界力还与杆件长度有关,即杆件越短,临界力越大。
例子:假设有一根长为L的无缺陷的圆柱形杆件,其截面半径为r,杨氏模量为E。
根据材料力学的知识,该圆柱形杆件的截面惯性矩可计算为I=(π*r^4)/4Pcr = (π^2 * E * ((π * r^4) / 4) ) / L^2通过上述公式,可以计算出该无缺陷的圆柱形杆件的临界力。
这个临界力表示了该杆件能够承受的最大作用力。
如果作用力超过了临界力,该杆件将发生失稳,产生形状上的变化。
总结起来,材料力学中的压杆稳定概念是指杆件在受力作用下不发生形状上的变化。
欧拉公式是用来计算杆件临界力的一种常用公式,可以帮助工程师们确定杆件的最大承载能力。
材料力学压杆稳定材料力学是研究物质在外力作用下的形变和破坏规律的学科。
在材料力学中,压杆是一种常见的结构元素,它能够承受压缩力,用来支撑、传递和稳定结构的荷载。
压杆的稳定性是指在外力作用下,压杆不会发生失稳或破坏。
稳定性的分析对于设计和使用压杆结构具有重要意义,可以保证结构的安全可靠性。
本文将从材料的稳定性理论出发,探讨压杆稳定的原理和影响因素。
压杆的稳定性主要受到两种力的影响:压缩力和弯曲力。
压缩力使得杆件在长轴方向上缩短,而弯曲力使得杆件发生侧向的弯曲变形。
这两种力的作用会引起杆件在截面上的应力分布,当这些应力达到一定的极限时,杆件就会发生失稳或破坏。
为了保证压杆的稳定性,需要考虑以下几个因素:1.杆件的形状和尺寸:杆件的形状和尺寸是影响压杆稳定性的重要因素。
一般来说,杆件的截面形状应当是圆形或类圆形,这样能够均匀地分配应力,在承受压力时能够更好地抵抗失稳。
此外,杆件的直径或截面积也应当足够大,以提高材料的稳定性。
2.材料的性质:材料的性质对杆件的稳定性有着重要的影响。
一般来说,杆件所使用的材料应当具有足够的强度和刚度。
强度可以提供杆件抵抗失稳的能力,而刚度可以减小失稳时的弯曲变形。
此外,材料应当具有足够的韧性,以防止杆件发生断裂。
3.杆件的支撑条件:杆件的支撑条件也会对稳定性产生影响。
一般来说,杆件的两端应当进行良好的支撑,以减小弯曲变形和失稳的发生。
支撑条件可以通过适当的连接方式、支撑点的设置和钢结构的设计来实现。
4.外力的作用:外力的作用是导致杆件发生失稳的主要原因。
外力可以包括静力荷载、动力荷载和温度荷载等。
在设计和使用压杆结构时,需要对外力进行充分的分析和计算,确保结构在外力作用下能够稳定运行。
总之,压杆的稳定性是确保结构安全可靠性的重要因素。
在材料力学中,通过对压杆受力和形变规律的分析,可以找到保证压杆稳定的途径和措施。
合理选择杆件的形状和尺寸,使用适当的材料,提供良好的支撑条件,并进行准确的外力分析和计算,可以有效地提高压杆的稳定性,确保结构的安全运行。
第11章压杆稳定[内容提要]稳定问题是结构设计中的重要问题之一。
本章介绍了压杆稳定的概念、压杆的临界力-欧拉公式,重点讨论了压杆临界应力计算和压杆稳定的实用计算,并介绍了提高压杆稳定性的措施。
11.1 压杆稳定的概念工程中把承受轴向压力的直杆称为压杆。
前面各章中我们从强度的观点出发,认为轴向受压杆,只要其横截面上的正应力不超过材料的极限应力,就不会因其强度不足而失去承载能力。
但实践告诉我们,对于细长的杆件,在轴向压力的作用下,杆内应力并没有达到材料的极限应力,甚至还远低于材料的比例极限σP时,就会引起侧向屈曲而破坏。
杆的破坏,并非抗压强度不足,而是杆件的突然弯曲,改变了它原来的变形性质,即由压缩变形转化为压弯变形(图11-1所示),杆件此时的荷载远小于按抗压强度所确定的荷载。
我们将细长压杆所发生的这种情形称为“丧失稳定”,简称“失稳”,而把这一类性质的问题称为“稳定问题”。
所谓压杆的稳定,就是指受压杆件其平衡状态的稳定性。
为了说明平衡状态的稳定性,我们取细长的受压杆来进行研究。
图11-2(a)为一细长的理想轴心受压杆件,两端铰支且作用压力P,并使杆在微小横向干扰力作用下弯曲。
当P较小时,撤去横向干扰力以后,杆件便来回摆动最后仍恢复到原来的直线位置上保持平衡(图11-2(b))。
因此,我们可以说杆件在轴向压力P的作用下处于稳定平衡状态。
P,杆件受到干扰后,总能回复到它原来的直线增大压力P,只要P小于某个临界值crP时,杆件虽位置上保持平衡。
但如果继续增加荷载,当轴向压力等于某个临界值,即P=cr然暂时还能在原来的位置上维持直线平衡状态,但只要给一轻微干扰,就会立即发生弯曲并停留在某一新的位置上,变成曲线形状的平衡(图11-2(c))。
因此,我们可以认为杆件在P的作用下处在临界平衡状态,这时的压杆实质上是处于不稳定平衡状态。
P=cr(a) (b) (c)图11-1 图11-2继续增大压力P ,当轴向压力P 略大于cr P 时,由于外界不可避免地给予压杆侧向的干扰作用(例如轻微的振动,初偏心存在,材料的不均匀性,杆件制作的误差等),该杆件将立即发生弯曲,甚至折断,从而杆件失去承载能力。