极值存在定理
- 格式:doc
- 大小:203.00 KB
- 文档页数:6
费马定理极值必要条件1.引言1.1 概述费马定理是数学中的一个重要定理,它关于极值问题给出了一个必要条件。
极值问题是数学中研究函数在一定区间上取得最大值或最小值的问题,它在经济学、物理学、工程学等领域中都有着广泛的应用。
费马定理通过对函数的导数进行分析,给出了一个在极值点附近的特殊性质。
本文将首先介绍费马定理的背景和相关概念,然后从数学推导的角度解释极值必要条件,并最终利用费马定理推导出极值必要条件的表达式。
通过本文的阐述,读者将能够更加深入地理解极值问题以及费马定理的作用。
1.2 文章结构本文主要分为引言、正文和结论三个部分。
引言部分包括概述、文章结构和目的三个小节。
概述部分将简要介绍费马定理的极值问题及其重要性。
文章结构部分将详细说明本文按照怎样的顺序和方式来讨论费马定理的极值必要条件。
目的部分将阐明本文的写作目的,即通过对费马定理的极值必要条件的推导和讨论,帮助读者更好地理解和运用该定理。
正文部分主要分为费马定理的介绍与极值问题的背景两个小节。
费马定理的介绍将回顾费马定理的基本定义和主要内容,介绍其在求解极值问题中的重要作用。
极值问题的背景将探讨极值问题的起源和应用领域,并举例说明极值问题在实际生活和科学研究中的重要性。
结论部分主要包括极值必要条件的推导和费马定理的极值必要条件两个小节。
极值必要条件的推导将详细推导出费马定理的极值必要条件,通过对导数的分析和运用,解释为什么该定理能够有效地帮助我们找到极值点。
费马定理的极值必要条件将阐述该定理在实际问题中的应用,并列举一些实例进行说明。
综上所述,本文将通过分析费马定理的极值必要条件,帮助读者更好地理解和运用该定理,并展示该定理在求解极值问题中的重要性和应用价值。
1.3 目的本文旨在探讨费马定理在极值问题中的应用,并推导出极值条件的必要性。
通过深入研究费马定理的原理和极值问题的背景,我们将阐述费马定理的极值必要条件,帮助读者更好地理解极值问题的求解过程。
极值问题的极值存在定理及其简要证明数学中的极值问题是研究一个函数在某一区间内的最大值或最小值。
极值问题是数学分析中的一个重要问题,在数学的各个领域都有涉及。
极大值和极小值的存在性是极值问题的一个基本问题,下面简要介绍极值存在定理及其证明。
极值存在定理:设函数$f(x)$在区间$[a,b]$上连续,那么$f(x)$在区间$[a,b]$上一定有极大值和极小值。
证明:假设函数$f(x)$在区间$[a,b]$上没有极大值,则$f(x)$在区间$[a,b]$上不断增加,即$f(x_1)<f(x_2)<\cdots<f(x_n)$,其中$x_1<x_2<\cdots<x_n$为区间$[a,b]$上的任意$n$个不同的点。
由于$f(x)$在区间$[a,b]$上连续,因此根据介值定理,对于任意$k\in\mathbb{N^{+}}$,都存在一个$x_k\in(a,b)$,使得$f(x_k)=k$,所以$f(x)$在区间$[a,b]$上无上界,矛盾。
同理可证$f(x)$在区间$[a,b]$上一定有极小值。
从证明中可以看出,极值存在定理的证明过程依赖于介值定理。
介值定理是数学分析中一个重要的定理,它表明了连续函数在区间中取到介于$f(a)$与$f(b)$之间的任意值。
介值定理的表述:设$f(x)$为区间$[a,b]$上的连续函数,$u$和$v$分别为$f(x)$在区间$[a,b]$上的任意两个值,其中$u<v$。
则对于任意$w\in(u,v)$,总存在一个$x_0\in[a,b]$,使得$f(x_0)=w$。
介值定理的证明:对于任意$\epsilon>0$,由于$f(x)$在区间$[a,b]$上连续,所以存在$\delta>0$,使得对于任意$x_1,x_2\in[a,b]$,当$|x_1-x_2|<\delta$时,有$|f(x_1)-f(x_2)|<\epsilon$。
极小点的判定条件
(一) 内点为极小值点的判定条件(求)(min x f ,D x ∈)
一、一般条件
定理1(一阶必要条件)设1
R R :→⊆n D f 具有一阶连续偏导数,*x 是D 的内点,若*x 是)(x f 的局部极小点,则 0)(*=∇x f
定理2(二阶必要条件)设1
R R :→⊆n D f 具有二阶连续偏导
数,若*x 是D 的内点且为)(x f 的局部极小点,则)(*2x f ∇是半正定的。
定理3(二阶充分条件)设1R R :→⊆n D f 具有二阶连续偏导
数,*x 为D 的内点,且0)(*=∇x f ,若)(*2x f ∇正定,则*x 为)
(x f 的严格局部极小点。
定理4(二阶充分条件)设1
R R :→n f 具有二阶连续偏导数,n x R *∈且0)(*=∇x f ,若存在*x 的δ邻域),(*δx N 使对),(*δx N x ∈∀,都有)(2x f ∇半正定,则*x 为)(x f 的局部极小点。
二、凸规划极值判定条件
凸规划问题:非空凸集D 上的凸函数的极小化问题。
定理5 设1
R R :→⊆n D f 为凸集D 上的凸函数,则
(1))(x f 的任一局部极小点*x 为全局极小点;
(2)若)(x f 可微,且存在D x ∈*,使0)(*=∇x f ,则*x 为)
(x f 在D 上的全局极小点;
(3)若)(x f 为严格凸函数,且全局极小点存在,则必唯一。
定理6 考虑如下特殊的凸规划问题:正定二次函数
C x b Qx x x f ++=T T 2
1)(,n x R ∈ 则b Q x 1
*--=为唯一的全局极小点。
(二) 边界点为极小值点的判定条件
考虑一般的非线性规划(NP):
)(min x f
:D x ∈ ⎩⎨⎧===≥ ,,1 ,0)(
,,1 ,0)(l j x h m i x s j
i (1) 一、一般条件
定理1(K —T 条件)(或一阶必要条件):设*x 是(NP )的局部极小点,)(,),(),(,),(),(11x h x h x s x s x f l m 在点*x 处可微,且点*x
处的全部起作用约束的梯度线性无关(即*x 是正则点),则存在实数
l m λλμμ,,,,,11 ,使下述条件成立
⎪⎪⎪⎩⎪⎪⎪⎨⎧=≥===∇-∇-∇∑∑==m
i m i x s x h x s x f i i i l j j j m i i i ,,2,1 ,0,,2,1 ,0)(0)()()(*1*1** μμλμ (*)
二、凸规划极值判定条件
考虑凸规划问题:
)(min x f
s.t. ⎩⎨⎧===≥ ,,1 ,0)(
,,1 ,0)(l j x h m i x s j
i (2) 其中,)(x f 是可微凸函数,m i x s i ,,1 ),( =是可微凹函数,l j x h j ,,1 ),( =是线性函数。
定理2(凸规划的极值):若*x 是凸规划(2)的K —T 点,则*
x 为全局极小点。
注:线性函数既可视为凸函数,又可视为凹函数。
三、等式约束极值判定条件
⎩
⎨⎧== ,,1 ,0)( ..)(min l j x h t s x f j (3) 定理3:(一阶必要条件)假设
(1)*
x 为等式约束(3)的局部极小点;
(2)1n :),,1(,R R l j h f j →= 在*x 的某邻域内连续可微; (3))(,),(),(**2*1x h x h x h l
∇∇∇ 线性无关。
则存在R ,,,**2*1∈l λλλ 使得
0)()(*1*
*
=∇-∇∑=x h x f j l
j j λ (**) 定理4(二阶充分条件)假设
(1)1n :),,1(,R R l j h f j
→= 是二阶连续可微函数; (2)存在n x R *∈与l l R ],,,[T **2*1*∈=λλλλ 使得式(**)成立;
(3)关于x 的海色矩阵),(*
*2λx L x ∇在切子空间 },,1 ,0)({T l j v x h v T j ==∇=
上正定。
则点*
x 是问题(3)的严格局部极小点。
四、线性约束的(NP )问题极值判定条件
考虑如下线性约束的(NP )问题
⎪⎩⎪⎨⎧=≥
..)(min d Cx b Ax t s x f (4) 定理5:在约束问题(4)中,假设
i )x 是容许点;
ii )⎥⎦⎤⎢⎣⎡'''=A A A ,⎥⎦
⎤⎢⎣⎡'''=b b b 使得b x A '=',b x A ''>''; iii )A '和C 的行向量线性无关(即起作用约束的梯度线性无关);
iv )*
p 是如下线性规划的最优解: p x f z T )(min ∇=
s.t. ⎪⎩
⎪⎨⎧≤≤=≥'e p e Cp p A -0 0 (***) 其中,[]1,,1,1 =e 。
则点x 为K —T 点的充要条件是0)(*T =∇p x f 。
五、几何最优性条件
考虑不等式约束问题
⎩
⎨⎧=≥ ,,1 ,0)( ..)
(min m i x s t s x f i (5) 定理6(几何最优性条件):设*
x 是问题(2)的一个局部极小点,
目标函数)(x f 在*x 处可微,且 1°)(x s i (I i ∈)在*x 处可微;
2°)(x s i (I i ∉)在*
x 处连续。
则在*x 处不存在容许下降方向,即不存在方向p 满足
⎪⎩⎪⎨⎧∈>∇<∇I i p x s p x f i ,0)(0)(T *T * (****)
六、线性规划问题的极值条件
最优性检验
判别数j σ:用非基变量表示的目标函数式中,各非基变量的负系数,即称为各非基变量的判别数。
1º最优解判别定理:若在极小化问题中,对于某个基本容许解, 所有判别数0≤j σ,且人工变量为0,则该基本容许解是最优解。
2º无穷多最优解判别定理:若在极小化问题中,对于某个基本
容许解,所有判别数0≤j σ,又存在某个非基变量的判别数为0,且人工变量为0,则该线性规划问题有无穷多最优解。
3º无容许解判别定理:若在极小化问题中,对于某个基本容许解,所有判别数0≤j σ,但人工变量不为0,则该线性规划问题无容许解。
4º无有限最优解判别定理:若在极小化问题中,对于某个基本容许解,有一个非基变量的判别数0<k σ,但k p 列中没有正元素,且人工变量为0,则该线性规划问题无有限最优解。