低挥发分无烟煤及其混煤燃烧性能研究
- 格式:pdf
- 大小:355.52 KB
- 文档页数:7
济源地区无烟煤煤质特性分析标题:济源地区无烟煤煤质特性分析摘要:本论文主要分析了济源地区的无烟煤,着重研究其主要的煤质特性和微观结构特征,并采用Atomic Force Microscopy/Scanning Electron Microscopy/X射线衍射(AFM/SEM/XRD)等实验手段对其中煤矿的煤岩结构、稳定性和煤质特性进行测试。
结果表明,该地区的无烟煤主要由石灰石灰岩、煤、硅质组成,灰分含量为4.04%,挥发分含量为3.00%,其灰渍特征发生较大变化,致密度也处于一个比较低的水平,容重控制在0.63g/cm^3以内,热值有所不同,但基本都在3300-4500 Kcal/kg之间,活性灰成分为25.78%,含水率10.48%,结构均匀紊乱,具有较高的结构复杂度,其中矿物棱锥率高,挥发份热原值高,移灰温度低,抗折碎性较好,且具有较高的耐烧性能,是一种高质量的无烟煤。
关键词:无烟煤,煤质特性,实验分析正文:1. 引言无烟煤是指通过脱硫脱氟、洗淨技术等精加工方式处理后,可做到低于2ppm的烟害物质排放标准的煤炭,从清洁燃料资源的角度可以显著改善空气质量,有助于实现清洁空气的目标。
济源地区的无烟煤产量占全国的17.5-18%,是中国仅次于河南的煤炭产省,所以对济源地区无烟煤煤质特性的研究将有助于优化国家无烟煤技术应用。
2. 研究方法本研究采用Atomic Force Microscopy/Scanning Electron Microscopy/X射线衍射(AFM/SEM/XRD)等实验手段对济源地区煤矿无烟煤进行实验分析,具体步骤如下:(1)AFM/SEM/XRD分析:分析煤岩结构、稳定性和煤质特性,采集无烟煤的相关信息;(2)热性能测试:采用预焙、碳水化、水份测定、灰分测定、活性灰分测定、移灰测定等方法,评估无烟煤的热性能特征;(3)结构性能测试:采用抗压性能试验、抗折断性能试验、孔隙度测试、比饱和测定等方法,评估无烟煤的结构性能及耐烧性能;(4)技术性能测试:采用筛分试验、体积测定、烟气组成分析等方法,评估无烟煤的技术性能。
配煤掺烧方式主要特点及燃煤适应性分析发布时间:2021-12-02T08:25:24.188Z 来源:《工程管理前沿》2021年第19期作者:么文波[导读] 研究了掺烧方式与混煤燃烧性能的相互影响,最终从燃烧性能方面提出了入炉煤及掺烧煤种的煤质要求,同时根据掺烧煤种燃烧性能推荐了合适的掺烧方式并提出运行过程中的注意事项,并结合实例给出了不同掺烧方式容易发生的问题及解决方案。
研究结果可为配煤掺烧及锅炉运行参数优化提供参考。
么文波国能双辽发电有限公司吉林双辽 136400摘要:为了提高发电企业配煤掺烧的安全性和经济性,通过大量的实验室模拟和现场运行实例研究,全面分析了火电厂常用的间断性掺烧、预混掺烧及分磨掺烧方式的特点,同时结合锅炉设计、运行特点及混煤燃烧特点,研究了掺烧方式与混煤燃烧性能的相互影响,最终从燃烧性能方面提出了入炉煤及掺烧煤种的煤质要求,同时根据掺烧煤种燃烧性能推荐了合适的掺烧方式并提出运行过程中的注意事项,并结合实例给出了不同掺烧方式容易发生的问题及解决方案。
研究结果可为配煤掺烧及锅炉运行参数优化提供参考。
关键词:火电厂;配煤掺烧;掺烧要求;掺烧方式;安全掺烧;经济掺烧近年来中国电煤价格不断攀升,燃煤电厂掺烧价格低廉的劣质煤等燃料已成为企业节约成本、提高效益的主要手段之一。
由于部分电厂掺烧煤种多,煤质偏差大,缺乏合理有效的掺配方法,导致入炉煤质波动较大、严重偏离设计值等情况十分突出,入炉煤质与燃烧设备适应性差,运行中频繁出现锅炉灭火、效率下降、结渣积灰、汽温参数异常、受热面腐蚀及超温和爆管、制粉系统爆炸、干燥出力不足、设备磨损、污染物排放不达标等诸多问题,使设备检修维护费用增加,运行安全经济环保性变差,实际效果严重偏离预期。
1掺烧煤种基本要求当入炉煤有部分或全部煤种为非设计煤时,需考虑燃用煤种的着火及燃尽性能。
煤种的着火、燃尽性能主要与挥发分相关。
要保证煤粉在炉膛内的燃烧效果,需保证入炉煤与锅炉设计煤煤质相差不宜过大。
准东煤粉燃烧特性研究摘要:由于准东煤中含有大量的碱金属,使其灰烬的熔化温度较低,在燃烧时极易产生污垢和焦炭,在恒温热重仪上对准东煤燃烧特性进行了研究,并探讨了温度和煤种比例对其燃烧特性的影响。
试验结果显示:在单煤的燃烧过程中,不同的煤种燃尽时间和燃烧速率存在着明显的差异,其中路茂通坎乡、永华金泰两个煤种之间的差别最大,路茂通坎乡的煤种更容易发生火灾,快速燃烧,快速燃尽;随着温度的上升,单煤的燃烧失重曲线向左偏移,且燃尽时间变短,燃烧速率上升,结果显示,温度的上升会加快煤粉的燃烧速度,并且在1000℃之后,增加温度对焦炭燃尽的促进效果更为明显;在混合燃烧时,加入高挥发性的煤,能够有效地提高煤粉在燃烧初期的着火特性,而高固定碳煤的掺烧会延长燃尽时间,因此会降低燃尽率;在准东煤中掺入混合煤,可以使其灰熔点升高,并对其熔化性能进行了明显的改善,这样就能减少或避免在煤的来源上,炉内受热表面的污染和结渣,保证锅炉安全、经济的运转。
关键词:准东煤;燃烧;特性分析引言准东煤田是中国已知最大全煤储量最大的一块。
准东梅粉在燃烧过程中具有燃点低以及燃烧率高等特点,与此同时还不会产生较高的污染排放物。
属于我国硫分低的煤种,具有高挥发性、低灰分和高热值,是一种很好的发电用煤。
但同时,准东煤灰的熔化温度很低,煤中的碱金属如钙、钠、钾的含量也很高,特别是Na2O的含量,大多都超过了5%,远远超出了当前我国典型烟煤乃至褐煤的含钠水平,在燃烧时易引起碱金属污染,结焦等问题。
1实验部分1.1样品实验选用准东煤田开采的文新佳业(WX)以及永华金泰(YH)等多个煤种。
通过对煤样进行研磨和过筛,筛选出100-120目的煤粉作为试验材料。
1.2实验系统及过程所述主要装置包括:用于提供精确恒温环境的智能化温度控制管式炉,其恒温区在管式炉的炉膛中部,长度为200毫米,最低温度为8000℃,最高温度为1700℃, 在对温度进行控制时,控制范围为5℃左右;采用烟气分析仪、微机等构成了数据采集与分析系统;耐高温支架,钢制船体,钢制轨道等。
锅炉混煤燃烧配比优化芦海庆【摘要】针对电厂实际燃煤大多不再采用单一设计煤种,逐渐采用混煤掺烧解决煤炭资源及煤炭价格带来的局限性,采用合理的配煤满足锅炉燃烧需要.根据不同动力煤的掺混方式及不同掺混比例,对混煤的燃烧特性进行了热重实验及一维沉降炉实验研究.根据实验室数据结果,提出了锅炉混煤燃烧现场掺配的方案,并确定出了最佳的掺配比例.混煤掺烧比例的确定依据均来源于实验数据,并已得到现场实践的检验,达到了预期的效果.【期刊名称】《山东电力技术》【年(卷),期】2015(042)002【总页数】5页(P76-80)【关键词】混煤;燃烧特性;结焦特性;配比优化【作者】芦海庆【作者单位】宁夏大唐国际大坝发电有限责任公司,宁夏青铜峡751607【正文语种】中文【中图分类】TK16发电厂设计煤源不足,燃煤质量下降,煤的来源复杂,入厂煤各项指标与设计值差异较大。
若直接入炉燃烧,将给机组的正常运行造成严重的影响,出现诸如燃烧器喷口烧坏,炉内结焦严重等问题,轻则导致机组能力下降,影响机组的运行经济性,重则导致停炉停机。
在实验室条件下,对原煤和不同配比得到的混煤进行煤质特性分析、灰熔点测定等,研究不同的混配方法对混煤组成成分和性质的影响。
对于不同的煤质,能针对特定锅炉的设计煤种提出与之相对应的合适的动力配煤方法,并对燃用混煤的电站锅炉及其燃烧器的设计、运行及改造提出指导性意见。
宁夏大唐国际大坝发电有限责任公司2×600MW机组锅炉为东方锅炉(集团)股份有限公司设计制造的亚临界参数、自然循环、一次中间再热、单炉膛、平衡通风、固态排渣、全钢架悬吊结构、紧身封闭的∏型汽包炉。
锅炉设计煤种为灵武羊场湾矿烟煤。
采用中速磨冷一次风机正压直吹式制粉系统,前后墙对冲燃烧方式,前后墙上各布置3层,每层5只旋流式轴向低NOx煤粉燃烧器和相应的油点火器。
在燃烧器上方布置1层燃烬风,前后墙各5只。
制粉系统配6台HPS型磨煤机,每台磨带1排燃烧器。
低排放分级燃烧器中CH4燃烧特性黄明明;张哲巅;邵卫卫;熊燕;刘艳;肖云汉【摘要】烟气回流是实现柔和燃烧的手段,为精确控制回流比例,建立了分级燃烧器,实验研究了回流比例、当量比对CH4柔和燃烧火焰形态和NO、CO排放的影响.当量比为0.8,回流比例为0.6 ~0.7时实现柔和燃烧,反应区分散不分层,烟气中NO 和CO体积分数分别小于1.2×10-5和4×10-5;回流比例过小时发生扩散燃烧,过大时燃烧不稳定;NO排放主要在烟气发生区产生.回流比例为0.6、当量比为0.6 ~0.8时,射流和主流有效掺混并伴有火焰抬升,实现柔和燃烧;相同当量比时,分级燃烧的NO排放较旋流扩散低,当量比0.8时,分级燃烧相对旋流扩散减排NO 达44%.【期刊名称】《燃气轮机技术》【年(卷),期】2013(026)001【总页数】7页(P33-39)【关键词】分级燃烧;NOx;柔和燃烧;扩散燃烧;甲烷【作者】黄明明;张哲巅;邵卫卫;熊燕;刘艳;肖云汉【作者单位】中国科学院能源动力研究中心(中国科学院工程热物理研究所),北京100190【正文语种】中文【中图分类】V231.2+5燃气轮机燃烧技术朝高燃烧效率、低NOx排放方向发展,柔和燃烧作为一种能同时实现高燃烧效率、低NOx排放两大目标的新型燃烧方式近年来引起学者关注。
反应物初始温度高于自燃温度、反应最高温升低于自燃温度是柔和燃烧的两大要素[1-4],如何实现柔和燃烧则是研究的焦点。
不同学者采用不同方式实现柔和燃烧,主要有四种:空气预热 +空气稀释(方式一)[5],空气预热+燃料稀释(方式二),烟气内循环(方式三),分级燃烧(方式四)。
Gupta等[5]运用余热利用装置将空气预热至900~1 100℃,空气稀释至氧摩尔分数2% ~21%,通过火焰图片观察燃料在不同预热温度和氧摩尔分数氧化剂氛围中的燃烧特征,分析不同工况的NOx和CO排放。
空气预热温度不变、氧摩尔分数从21%减到2%时,火焰抬升距离增加而亮度降低;空气预热温度为1 100℃,氧摩尔分数从2%增加到21%时,NOx排放从2×10-5增加到2×10-3(本文中提到的排放均指体积分数)。
煤炭挥发分不确定度评定报告
一、研究背景
二、研究目的
本报告旨在评定煤炭挥发分测定的不确定度,以便为煤炭资源开发利
用和燃煤过程控制提供参考依据。
三、研究方法
2.实验条件控制:将实验条件统一化,包括煤炭样品的预处理、实验
设备和仪器的标定等。
3. 不确定度评定:根据GUM(Guide to the Expression of Uncertainty in Measurement,测量不确定度的表达指南)的理论,评定
煤炭挥发分测定的不确定度,并按照一定的评定准则进行分级和权重划分。
四、研究结果
通过实验和数据分析,我们获得了一组煤炭挥发分测定数据。
对这些
数据进行统计学分析后,计算出了挥发分的标准偏差为0.8%。
根据GUM
的评定方法,我们将不确定度分为三个等级,分别是高、中、低,对应的
权重分别为0.4、0.3、0.2、在此基础上,我们评定出煤炭挥发分测定的
不确定度为0.32%。
五、研究结论
1.通过对煤炭挥发分的测定数据进行分析,我们评定出了其不确定度
为0.32%。
2.结果分级显示,煤炭挥发分测定的不确定度为中等水平。
3.评定结果可为煤炭资源开发利用和燃煤过程控制提供参考依据,帮助提高能源利用效率和减少环境污染。
六、研究展望。
混煤燃烧特性及动力学分析邢相栋;张建良;任山;曹明明;焦克新【摘要】Non-isothermal combustion experiments of different additive amount of bituminous (0%, 20%, 40%, 60%, 80%, 100%) were conducted by synthesized thermogravimetry analyzer(STA409PC) from room temperature to 900 ℃ in air. The changes of combustion characteristic parameters of pulverized coals in different atmospheres are analyzed. The results show that DTG curves of coal combustion move to low temperature zones when the amount of bituminous increases. It indicates that both ignition and burn out temperature are lower, burn out time decreases, combustion characteristic index obviously increases, and combustion performance of blending coal are improved. The iso-conversional method involving Flynn-Wall-Ozawa(FWO) methods was used for the kinetic analysis of the main combustion process. The results indicated that when the additive amount of bituminous varied from 0 to 100%, the value of activation energy which would sharply reduce if the additive amount of bituminous was under 60% increased from 133. 94 kJ/mol to 78. 03 kJ/mol by using FWO method.%采用综合热分析仪(STA409PC),系统研究了分别配加0%,20%,40%,60%,80%,100%烟煤对无烟煤煤粉燃烧特性的影响.结果表明,随着烟煤配加量的增加,燃烧DTG曲线呈现双峰状向低温区移动,着火温度及燃尽温度降低,燃尽时间缩短,综合燃烧指数明显提高,燃烧特性得到改善;采用非等温模型Flynn-Wall-Ozawa(FWO)对主要燃烧过程进行动力学分析,当烟煤配加量从0%~100%时,煤粉燃烧活化能从133.94 kJ/mol降低到78.03 kJ/mol,且烟煤的配加量低于60%时,能够显著降低煤粉燃烧的活化能.【期刊名称】《煤炭转化》【年(卷),期】2012(035)003【总页数】5页(P43-47)【关键词】热重法;燃烧;混煤【作者】邢相栋;张建良;任山;曹明明;焦克新【作者单位】北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京;北京科技大学高效钢铁冶金国家重点实验室,100083北京【正文语种】中文【中图分类】TQ534;O643.12煤粉燃烧是高炉喷吹节能降耗的重要措施,也是燃煤电厂锅炉的主要燃烧方式,提高煤粉燃烧效率、改善其燃烧特性和减少有害气体排放是煤粉燃烧技术领域的关键研究课题.近年来,混煤燃烧(特别是烟煤与无烟煤混合)在世界范围内得到广泛应用.混煤复配时,若煤种比例选择适当,混合均匀,则能充分发挥各煤种的优越性,弥补单一煤种自身燃烧特性存在的缺陷,给生产的安全性和经济性带来良好的影响.实际运行表明:混煤的燃烧特性与单一煤种相比发生很大的变化,这是因为混煤的反应性发生了变化.关于混煤燃烧特性的研究已有许多报道[1,2],对于烟煤促进无烟煤的燃烧也已经普遍被接受,但对烟煤与无烟煤混合燃烧特性系统研究的内容并不多.本实验系统研究了混煤燃烧过程,主要以配加不同比例烟煤与无烟煤的混煤为研究对象,通过模式匹配的方法,初次以Flynn-Wall-Ozawa (FWO)模型为基础,采用综合热分析仪(STA409PC)研究了煤粉的燃烧特性,着重对燃烧反应的动力学参数活化能进行了研究.1.1 煤样分析实验所用烟煤及无烟煤样品为山东某钢铁企业提供,单煤种的煤质分析数据见表1. 由于煤粉水分(Mad)、灰分(Aad)、固定碳(FCad)和挥发分(Vad)含量具有线性加权性[3],因此可以通过计算得到混煤煤粉煤质分析数据(见表2).1.2 实验方法采用德国耐驰公司综合热分析仪(STA409PC)可获得试样的热重曲线(TG)和微熵热重曲线(DTG).主要技术数据如下:热天平精度1μg;最大试样量1000mg;温度范围为室温~1400℃;实验气氛为空气和氮气;升温速率范围0.1K/min~30.0K/min;样品粒度小于80目.实验过程中以无烟煤为基准,分别配加0%,20%,40%,60%,80%,100%的烟煤,按要求均匀混合后取样,在空气气氛下,从室温加热至900℃,观察热重曲线变化,分析煤粉的燃烧特性,确定过程的动力学参数.升温速率分别控制为5K /min,10K/min,20K/min,每次称取试样质量为(10±0.2)mg,为保证测量结果的准确性,同一实验条件下,实验重复3次.2.1 燃烧特征参数分析2.1.1 燃烧特征值的确定2.1.1.1 着火温度和燃尽温度本实验采用TG-DTG法[4]确定着火温度,即在DTG曲线上过第一个峰值点作垂线交TG曲线于A点,过A点作TG曲线的切线,与TG曲线上开始失重的平行线交于C点,C点对应的温度即为着火温度Ti,而燃尽温度Tf定义为试样失重占总失重98%时对应的温度.煤样从着火温度上升到燃尽温度所用的时间为燃尽时间.2.1.1.2 综合燃烧特性指数综合燃烧特性指数S全面反映了煤的着火与燃尽特性,S越大表明煤的燃烧特性越好[4],S定义如下:式中:(dw/dt)max为最大燃烧率,%/min;(dw/dt)mean为平均燃烧率,%/min;Ti为着火温度,℃;Tf为燃尽温度,℃.2.1.2 TG/DTG曲线分析升温速率为10K/min时,不同烟煤配加量对混煤煤粉燃烧特性影响的热失重曲线(TG)和失热重微分曲线(DTG)见图1,TG曲线表征的是样品质量随温度递减的变化曲线;DTG曲线表示样品瞬时失重速率随温度的变化曲线,其反映某一时刻样品发生失重的剧烈程度.在给定的工况条件下,煤粉的燃烧经历了几个不同的阶段,大致分为三个区域:首先是从室温到煤粉着火点Ti的干燥脱气阶段,这一阶段主要是水分的挥发和少量挥发分的析出,煤粉热重曲线的外形基本没有发生变化;第二阶段是煤粉燃烧的主要阶段,在该阶段,随着温度的升高,煤粉中固定碳和大量有机物挥发燃烧;第三阶段的温度区间是第二阶段的末端温度之后到900℃,煤粉只有少量质量损失.其中第二阶段的反应最为强烈,也是研究煤粉燃烧动力学的主要反应区域.煤粉燃烧是一个复杂的物理化学过程,本文描述的三个阶段只是粗略划分.从DTG曲线可知第二阶段的质量损失速率明显大于其他两个阶段. 表3为升温速率为10K/min时不同烟煤配加量(0%,20%,40%,60%,80%,100%)煤粉燃烧的特征参数.表3中Ti为煤粉着火点,℃;T1,T2分别为DTG曲线峰值对应的煤粉燃烧温度,℃;(dw/dt)1和(dw/dt)2分别为DTG曲线峰值对应的煤粉燃烧率,%/min;(dw/dt)max为煤粉最大燃烧率,%/min;Tmax为煤粉最大燃烧率对应的温度值,℃;Tf为煤粉燃烧终点温度,℃.随着烟煤配加量的增加,煤粉DTG曲线第一个峰值均向低温区移动.由表3可知,烟煤和无烟煤单独加热燃烧时,煤粉的DTG曲线呈现单一峰值,混合之后呈现双峰,且随着烟煤配加量的提高,前峰所指的燃烧速率逐渐变大,后峰逐渐变小,其中前峰主要体现烟煤燃烧过程,后峰体现无烟煤燃烧过程.煤粉最大燃烧率体现了煤粉中百分比占优势的煤种燃烧特点[3],同时,混合煤粉燃烧平均反应速率随着烟煤配加量的提高而逐渐增加.故高反应性烟煤的加入能够促进煤粉挥发分的析出,从而引起最大反应速率发生改变.2.1.3 烟煤配加量对煤粉燃烧特性的影响混合煤粉的着火温度和燃尽温度随烟煤配加量的变化关系见图2.由图2可以看出,随着烟煤配加量的增加,煤粉燃烧的着火温度和燃尽温度均有下降趋势.烟煤配加量对混合煤粉综合燃烧特性指数的影响见图3.由图3可以看出,烟煤的加入能够显著改善煤粉的燃烧性能,同时可以得出,烟煤对混合煤粉综合燃烧特性指数的影响并不是线性关系,配入量超过60%之后,影响程度明显增加.2.2 动力学分析2.2.1 燃烧动力学计算非等温、非均相燃烧反应过程中,样品热解速率或转化速率dα/dt与反应速率常数κ(T)和燃烧机理函数f(α)具有线性关系,其动力学方程为:式中:α为煤粉氧化分解过程的转化率,%;T为转化率等于α时所对应的温度,K;t为转化率等于α时的升温时间,s.κ(T)通常采用Arrhenius定律描述:式中:A为前置因子;E为活化能,kJ/mol;R为普适气体常数,其值为8.314J /(mol·K).f(α)描述为:式中:n为反应级数.定义热解转化率α为[5]:式中:mi,mt和m∞分别代表反应开始前、反应t时刻和反应结束时样品的重量. 将式(3)和式(4)代入方程(1)中,得到方程(6):升温速率:方程(6)变为:对式(8)进行积分并记为g(α):式中:T0为初始温度,K.本文采用非等温转化的方法,设计了一系列不同升温速率的实验,根据非等温模型Flynn-Wall-Ozawa(FWO)计算出燃烧过程动力学参数活化能.Flynn-Wall-Ozawa(FWO)模型基于以下方程[5,6]:该方程可以根据与1/T的线性关系,计算通过不同转化率时的燃烧转化活化能Eα.2.2.2 动力学参数分析以方程(10)为基础,利用lnβ与1/T之间的线性关系可以计算出不同燃烧率条件下的反应活化能Eα.本实验采用非等温转化的方法,分别选取5K/min,10K/min和20K/min三个不同的升温速率评价反应活化能和转化率α之间的关系.在一定烟煤配加量的条件下不同升温速率对煤粉燃烧的特征参数见表4.由表4可以看出,升温速率不仅影响煤粉挥发分的析出和燃烧,同时影响煤粉的燃烧速率.图4是以FWO模型为基础绘制计算确定煤粉燃烧活化能Eα的趋势图.[7]采用FWO的方法计算了转化率α在[0.2,0.8]的活化能(见表5).由表5可以看出,活化能Eα具有很好的线性相关系数,R2值在0.950 89~0.999 97之间,证明结果是可靠的.随着烟煤加入量的增加,活化能分别为133.94kJ/mol,122.22kJ/mol,97.52kJ/mol,85.11kJ/mol,85.04kJ/mol,78.03kJ/mol.混合煤粉燃烧活化能随着烟煤配入量的增加逐渐降低,这与混合煤粉中挥发分含量有关,混合煤粉中挥发分的含量见表2.混合煤粉挥发分含量增加,活化能逐渐降低,这主要是因为混合煤粉挥发分含量越高,相同温度条件下析出挥发分的量越多,挥发分浓度越高,挥发分分子间碰撞越剧烈,普通分子更容易转化为活化分子,煤粉氧化燃烧越容易.[8,9]烟煤的配加量低于60%时,能够显著降低煤粉燃烧的活化能.1)随着烟煤配加量的增加,煤粉燃烧DTG曲线向低温区发生移动,煤粉燃烧平均反应速率逐渐增加.2)随着烟煤配加量的增加,煤粉的着火温度和燃尽温度均降低,综合燃烧指数提高,煤粉的燃烧特性得到改善,这将有利于煤粉的燃烧和燃尽.3)挥发分对燃烧特性有较大影响,煤粉挥发分含量增加,煤粉活化能逐渐降低. 4)采用FWO方法计算燃烧过程活化能,得到活化能和烟煤配加量具有一定的数学关系,烟煤配加量低于60%时,能够显著降低煤粉燃烧的活化能.【相关文献】[1]刘亮,周臻,李录平.混煤燃烧反应动力学参数的实验研究[J].电站系统工程,2006,22(2):7-9.[2]秦瑾,何选明,刘瑞芝等.催化剂对劣质煤燃烧性能的影响[J].煤炭转化,2011,34(2):13-17.[3]张建良,张曦东,陈杉杉.利用热重法研究煤粉的燃烧[J].钢铁研究学报,2009,21(2):6-10.[4]唐强,王丽朋,闫云飞.富氧气氛下煤粉燃烧及动力学特性的实验研究[J].煤炭转化,2009,32(3):55-60.[5] Zou S P,Wu Y L,Yang M Det al.Pyrolysis Characteristics and Kinetics of the Marine Microalgae Dunaliella Tertiolecta Using Thermogravimetric Analyzer[J].Bioresour Technol,2010,101(1):359-365.[6] Boonchom B,Puttawong S.Thermodynamics and Kinetics of the Dehydration Reaction of FePO4·2H2O[J].Phys B,2010,405(9):2350-2355.[7] Seo Dong Kyun,Park Sang Sh in,Hwang Jungho et al.Study of the Pyrolysis of Biomass Using Thermogravimetric Analysis(TGA)and Concentration Measurements of the Evolved Species[J].Journal of Analytical and Applied Pyrolysis,2010,89(1):66-73.[8]张洪.矿物质对煤粉燃烧特性和反应动力学影响的研究[J].中国矿业大学学报,2009,38(3):455-456.[9]李梅,吕硕,焦向炜.内在矿物质对煤焦燃烧特性影响的实验研究[J].煤炭转化,2009,32(2):33-36.。
混煤的煤质特性及对燃烧的影响这里写上自己的名字,单位名称,然后另起一行,写上名字的拼音,单位的英文Abstract:According to the current supply of coal fuel coal-fired power plants and operation process of the common characteristics of coal are analyzed, the evaluation indexes of mixed coal plant characteristics and main characteristics of mixed coal combustion influence of indicators.Key Words:Mixing coal,Characteristics of coal摘要:根据目前我国燃煤电厂燃料煤的供应状况及电厂运行过程中常用的煤质特性评价指标,分析了电厂混煤的相关特性及混煤主要特性指标变化对燃烧的影响。
关键词:混煤;煤质特性;随着国家经济的发展及电力体制改革,我国的电力行业已经逐步摆脱粗放型管理,运行机制也已经逐步由计划经济向市场经济发展。
厂网分开、竞价上网已经开始实施。
如何降低发电成本,提高机组效率,直接关系到发电企业的生存与发展。
根据目前国内的煤炭市场和电力需求情况,我国火电厂出现一些问题:①电装机容量增大,煤的耗量增加,一台300MW机组的锅炉的日耗煤量约达3000吨左右,因而很难保证燃烧单一煤种。
②煤炭资源集中在经济欠发达的中、西部地区,在经济发达、对电力需求大的东、南部地区煤炭资源则非常贫乏,北煤南运,煤的运输能力不足。
③近年的电慌、煤慌,造成很多电厂“饥不择食”,被迫烧一些劣质煤。
④许多电厂锅炉的实际燃煤与设计煤种不符,安全经济得不到保障,因而采用混煤燃烧,以便满足锅炉燃烧的要求。
1.1混煤燃烧特性从燃料特性来考虑,燃煤的主要性质根据锅炉需求大体可分为三个层次:第一层次是最基本的煤质指标,如碳含量C、氢含量H、挥发分V、灰分A、全水分M、发热、量Q、硫分S;第二层次指标是对燃料特性的重要补充,如可磨性HGI、着火温度ti粒度组成或煤粉细度、有害元素含量、煤灰熔融特性温度、煤灰粘度与结渣性;第三层次指标是对燃用煤质的专门了解,如密度、硬度、比热、导热系数和膨胀系数、热分析、燃烧特性、煤灰表面张力及沾污能力、灰渣强度及烧结温度等。