最新必修二+空间几何体复习教案资料
- 格式:ppt
- 大小:1.04 MB
- 文档页数:7
高中数学必修2《空间几何体》教案高中数学必修2《空间几何体》教案第一章空间几何体一、知识点归纳(一)空间几何体的结构特征(1)多面体——由若干个平面多边形围成的几何体.旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。
其中,这条定直线称为旋转体的轴。
(2)柱,锥,台,球的结构特征1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆柱.2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。
2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。
3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台.3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台.4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球.(二)空间几何体的三视图与直观图1.投影:区分中心投影与平行投影。
平行投影分为正投影和斜投影。
2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则:长对齐、高对齐、宽相等3.直观图:直观图通常是在平行投影下画出的空间图形。
4.斜二测法:在坐标系中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x轴(或在x轴上)的线段保持长度不变,平行于y轴(或在y轴上)的线段长度减半。
(三)空间几何体的表面积与体积1、空间几何体的表面积①棱柱、棱锥的表面积:各个面面积之和②圆柱的表面积③圆锥的表面积④圆台的表面积⑤球的表面积⑥扇形的面积公式 (其中表示弧长,表示半径)2、空间几何体的体积①柱体的体积②锥体的体积③台体的体积④球体的体积二、练习与巩固(1)空间几何体的结构特征及其三视图1.下列对棱柱说法正确的是( )A.只有两个面互相平行B.所有的棱都相等C.所有的面都是平行四边形D.两底面平行,且各侧棱也平行2.一个等腰三角形绕它的底边所在的直线旋转360。
必修2数学复习资料第一章 空间几何体1.1柱、锥、台、球的结构特征 1.2空间几何体的三视图和直观图1、 三视图: 正视图:从前往后; 侧视图:从左往右; 俯视图:从上往下。
2、 画三视图的原则: 长对齐、高对齐、宽相等3、直观图:斜二测画法4、斜二测画法的步骤:(1).平行于坐标轴的线依然平行于坐标轴;(2).平行于y 轴的线长度变半,平行于x ,z 轴的线长度不变; (3).画法要写好。
5 用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图 1.3 空间几何体的表面积与体积 (一 )空间几何体的表面积 1、棱柱、棱锥的表面积: 各个面面积之和2、圆柱的表面积3、圆锥的表面积2r rl S ππ+=4、圆台的表面积22R Rl r rl S ππππ+++=5、球的表面积24R S π=(二)空间几何体的体积 1、柱体的体积 h S V ⨯=底2、锥体的体积 h S V ⨯=底313、台体的体积h S S S S V ⨯++=)31下下上上(4、球体的体积 334R V π=第二章 直线与平面的位置关系2.1空间点、直线、平面之间的位置关系 2.1.11、平面含义:平面是无限延展的2、平面的画法及表示 (1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)(2)平面通常用希腊字母γβα、、等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。
3、三个公理:(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内 符号表示为ααα⊂⇒⎪⎪⎭⎪⎪⎬⎫∈∈∈∈L L B L A B A 公理1作用:判断直线是否在平面内(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A 、B 、C 三点不共线 => 有且只有一个平面α,222r rl S ππ+= D CBAαC · B· A·LA· α使.,,ααα∈∈∈C B A公理2作用:确定一个平面的依据。
立体几何全部教案(人教A版高中数学必修②教案)第一章:空间几何体的结构特征1.1 教学目标了解柱体、锥体、球体的定义及性质。
掌握空间几何体的结构特征,如表面积、体积等。
1.2 教学内容柱体、锥体、球体的定义及性质。
空间几何体的结构特征的计算方法。
1.3 教学步骤1. 引入新课,讲解柱体、锥体、球体的定义及性质。
3. 讲解空间几何体的结构特征的计算方法,如表面积、体积等。
1.4 课堂练习完成课本练习题,巩固所学知识。
1.5 课后作业完成课后作业,加深对空间几何体的结构特征的理解。
第二章:点、线、面的位置关系2.1 教学目标了解点、线、面的位置关系,如平行、垂直等。
掌握点、线、面的位置关系的判定方法。
2.2 教学内容点、线、面的位置关系的定义及判定方法。
2.3 教学步骤1. 引入新课,讲解点、线、面的位置关系的定义及判定方法。
2.4 课堂练习完成课本练习题,巩固所学知识。
2.5 课后作业完成课后作业,加深对点、线、面的位置关系的理解。
第三章:空间角的计算3.1 教学目标了解空间角的定义及性质。
掌握空间角的计算方法。
3.2 教学内容空间角的定义及性质。
空间角的计算方法。
3.3 教学步骤1. 引入新课,讲解空间角的定义及性质。
3.4 课堂练习完成课本练习题,巩固所学知识。
3.5 课后作业完成课后作业,加深对空间角的计算的理解。
第四章:空间向量的应用4.1 教学目标了解空间向量的定义及性质。
掌握空间向量的应用方法。
空间向量的定义及性质。
空间向量的应用方法。
4.3 教学步骤1. 引入新课,讲解空间向量的定义及性质。
4.4 课堂练习完成课本练习题,巩固所学知识。
4.5 课后作业完成课后作业,加深对空间向量的应用的理解。
第五章:立体几何中的综合问题5.1 教学目标培养学生解决立体几何综合问题的能力。
5.2 教学内容立体几何中的综合问题的解题策略。
5.3 教学步骤1. 引入新课,讲解立体几何中的综合问题的解题策略。
数学必修2立体几何第一章全部教案第一章:空间几何体1.1.1柱、锥、台、球的结构特征(一)一、教学目标1 ?学问与技能(1)通过实物操作,增加同学的直观感知。
(2)能按照几何结构特征对空间物体举行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
2. 过程与办法(1)让同学通过直观感触空间物体,从实物中概括出柱、锥、台、球的几何结构特征。
(2)让同学观看、研究、归纳、概括所学的学问。
3. 情感态度与价值观(1)使同学感触空间几何体存在于现实生活周围,增加同学学习的乐观性,同时提高同学的观看能力。
(2)培养同学的空间想象能力和抽象括能力。
二、教学重点、难点重点:让同学感触大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括。
三、教学用具(1)学法:观看、思量、沟通、研究、概括。
(2)实物模型、投影仪四、教学过程:一、创设情景,揭示课题1. 研究:经典的建造给人以美的享受,其中神秘为何?世间万物,为何千姿百态?2. 提问:学校与初中在平面上讨论过哪些几何图形?在空间范围上讨论过哪些?3. 导入:进入高中,在必修②的第一、二章中,将继续深化讨论一些空间几何图形,即学习立体几何,注重学习办法:直观感知、操作确认、思维辩证、度量计算二、讲授新课:1. 教学棱柱、棱锥的结构特征:②提问:举例生活中有哪些实例给我们以两个面平行的形象?②研究:给一个长方体模型,经过上、下两个底面用刀垂直切,得到的几何体有D哪些公共特征?把这些几何体用水平力推斜后,仍然有哪些公共特征?②定义:有两个面相互平行,其余各面都是四边形,且每相邻两个四边形的公共边都相互平行,由这些面所围成的几何体叫棱柱→列举生活中的棱柱实例(三棱镜、方砖、六角螺帽)结合图形熟悉:底面、侧面、侧棱、顶点、高、对角面、对角线?②分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等表示:棱柱ABCDE-A 'B'C'D''②研究:埃及金字塔具有什么几何特征?②定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫棱锥.结合图形熟悉:底面、侧面、侧棱、顶点、高?→研究:棱锥如何分类及表示?②研究:棱柱、棱锥分离具有一些什么几何性质?有什么共同的性质?棱柱:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形棱锥:侧面、对角面都是三角形;平行于底面的截面与底面相像,其相像比等于顶点到截面距离与高的比的平方?2. 教学圆柱、圆锥的结构特征:②研究:圆柱、圆锥如何形成?②定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体叫圆柱;以直角三角形的一条直角边为旋转轴,其余两边旋转所成的曲面所围成的几何体叫圆锥?→列举生活中的棱柱实例→结合图形熟悉:底面、轴、侧面、母线、高.→表示办法②研究:棱柱与圆柱、棱柱与棱锥的共同特征?→ 柱体、锥体.②观看书P2若干图形,找出相应几何体;举例:生活中的柱体、锥体.3. 质疑答辩,排难解惑,进展思维,老师提出问题,让同学思量。
人教版高中数学必修二第一章空间几何体全章教案高一数学必修二教案科目:数学课题:空间几何体的结构特征教学目标:1.让学生通过观察实物、图片,理解并归纳出柱、锥、台、球的结构特征。
2.培养学生善于通过观察实物形状到归纳其性质的能力。
教学过程:一、自主研究观察自己书桌上和课本上的图片,思考以下问题:1.这些图片中的物体具有怎样的形状?2.日常生活中,我们把这些物体的形状叫做什么?如何描述它们的形状?3.组成这些几何体的每个面有什么特点?面与面之间有什么关系?思考1:在我们周围存在着各种各样的物体,它们都占据着空间的一部分。
如果我们只考虑这些物体的形状和大小,而不考虑其他因素,那么由这些抽象出来的空间图形就叫做空间几何体。
请列举一些空间几何体的实例。
二、质疑提问1.在平面几何中,我们认识了三角形、正方形、矩形、菱形、梯形、圆、扇形等平面图形。
那么对空间中各种各样的几何体,我们如何认识它们的结构特征?2.对空间中不同形状、大小的几何体,我们如何理解它们的联系和区别?思考2:观察下列图片,你知道这些图片在几何中分别叫什么名称吗?三、问题探究思考3:如果将这些几何体进行适当分类,你认为可以分成哪几种类型?思考4:图(2)、(5)、(7)、(9)、(13)、(14)、(15)、(16)有何共同特点?这些几何体可以统一叫什么名称?思考5:图(1)、(3)、(4)、(6)、(8)、(10)、(11)、(12)有何共同特点?这些几何体可以统一叫什么名称?思考6:一般地,怎样定义多面体?围成多面体的各个多边形,相邻两个多边形的公共边,以及这些公共边的公共顶点分别叫什么名称?思考7:一般地,怎样定义旋转体?由一个平面图形绕它所在平面内的一条定直线旋转所形成的封闭几何体叫做旋转体。
思考1:我们把下面的多面体取名为棱柱,你能说一说棱柱的结构有哪些特征吗?据此你能给棱柱下一个定义吗?思考2:下列多面体都是棱柱吗?如何在名称上区分这些棱柱?如何用符号表示?体的结构特征解决实际问题.1.通过观察实物、图片,使学生理解并能归纳出组合体的结构特征;2.让学生自己观察,通过直观感加强理解;3.培养学生善于通过观察实物形状到归纳其性质的能力.教学内容1.什么是简单组合体?它由哪些基本几何体组成?2.如何通过基本几何体的结构特征来识别简单组合体?3.如何计算简单组合体的表面积和体积?备注思考1:如何计算一个简单组合体的表面积和体积?思考2:如何通过简单组合体的结构特征来识别它?思考3:现实生活中有哪些物体是简单组合体?三、问题探究四、课堂检测1.下列几何体中是简单组合体的是()五、小结评价本节课我们主要是通过观察实例,探究发现了由柱、锥、台、球组成的简单组合体的结构特征,研究了如何通过基本几何体的结构特征来识别简单组合体,以及如何计算简单组合体的表面积和体积,要能灵活运用这些知识解决实际问题.教材版本:必修二教学内容:实际模型的结构特征教学目标:1.了解实际模型的结构特征。
第一章:空间几何体1.1空间几何体的结构一、教学目标:(1)通过实物操作,增强学生的直观感知。
(2)能根据几何结构特征对空间物体进行分类。
(3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。
(4)会表示有关于几何体以及柱、锥、台的分类。
(5) 能判断组合体是由哪些简单几何体构成的。
二、教学重点、难点重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。
难点:柱、锥、台、球的结构特征的概括及判断组合体是由哪些简单几何体构成的。
三、教学过程一、创设情景,揭示课题:在现实生活中,我们的周围存在着各种各样的物体,它们具有不同的几何形状。
由这些物体抽象出来的空间图形叫做空间几何体。
下面请同学们观察课本P2图1.1-1的物体,然后回答以下问题:这些图片中的物体具有什么样的几何结构特征?你能对它们进行分类吗?学生观察思考,发现上图中的物体大体可分为两大类.其中(2),(5),(7),(9),(13),(14),(15),(16) 具有相同的特点:组成几何体的每个面都是平面图形,并且都是平面多边形;(1),(3),(4),(6),(8),(10),(11),(12) 具有相同的特点:组成它们的面不全是平面图形.想一想,我们应该给上述两大类几何体取个什么名称才好呢?(一)由若干个平面多边形围成的几何体叫做多面体。
围成多面体的各个多边形叫做多面体的面。
相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做多面体的顶点。
(二)由一个平面图形绕它所在的平面内的一条定直线旋转所形成的封闭几何体,叫做旋转体,这条定直线叫做旋转体的轴。
这节课我们主要学习多面体——柱、锥的结构特征。
二、研探新知:1. 棱柱的结构特征:请同学们仔细观察下列几何体,说说他们的共同特点.(师生共同讨论,总结出棱柱的定义及其相关概念)(1)定义:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。
空间几何体复习教案一、教学目标:1. 知识与技能:使学生掌握空间几何体的基本概念、性质和判定方法,提高空间想象能力。
2. 过程与方法:通过观察、操作、猜想、验证等方法,培养学生的空间思维能力。
3. 情感态度与价值观:激发学生对空间几何体的兴趣,培养学生的创新意识和合作精神。
二、教学内容:1. 空间几何体的定义及分类。
2. 空间几何体的性质和判定。
3. 空间几何体的直观图和斜二测画法。
4. 空间几何体的计算。
5. 空间几何体在实际问题中的应用。
三、教学重点与难点:1. 教学重点:空间几何体的基本概念、性质和判定方法。
2. 教学难点:空间几何体的直观图和斜二测画法,以及空间几何体在实际问题中的应用。
四、教学方法:1. 采用问题驱动法,引导学生主动探究空间几何体的性质和判定方法。
2. 利用多媒体手段,展示空间几何体的直观图和实际应用,提高学生的空间想象能力。
3. 组织小组讨论,培养学生的合作精神和创新能力。
4. 进行适量练习,巩固所学知识。
五、教学过程:1. 导入:回顾空间几何体的基本概念,引导学生思考空间几何体在现实生活中的应用。
2. 新课导入:讲解空间几何体的性质和判定方法,引导学生通过观察、操作、猜想、验证等方法,掌握空间几何体的基本性质。
3. 案例分析:利用多媒体展示空间几何体的直观图和实际应用,让学生体会空间几何体在现实生活中的重要性。
4. 小组讨论:让学生围绕某一空间几何体展开讨论,探讨其性质和判定方法,培养学生的合作精神和创新能力。
5. 课堂练习:布置适量练习题,巩固所学知识。
6. 总结与反思:对本节课的内容进行总结,引导学生思考空间几何体在实际问题中的运用。
7. 课后作业:布置课后作业,巩固所学知识。
8. 教学评价:根据学生的课堂表现、练习情况和作业完成情况进行评价,了解学生对空间几何体的掌握程度。
六、教学策略与实施1. 采用问题驱动法,引导学生主动探究空间几何体的性质和判定方法。
2. 利用多媒体手段,展示空间几何体的直观图和实际应用,提高学生的空间想象能力。
高中必修二数学教案(最新8篇)高中数学必修2优秀教案篇一一、教材分析在上一节认识空间几何体结构特征的基础上,本节来学习空间几何体的表示形式,以进一步提高对空间几何体结构特征的认识。
主要内容是:画出空间几何体的三视图。
比较准确地画出几何图形,是学好立体几何的一个前提。
因此,本节内容是立体几何的基础之一,教学中应当给以充分的重视。
画三视图是立体几何中的基本技能,同时,通过三视图的学习,可以丰富学生的空间想象力。
“视图”是将物体按正投影法向投影面投射时所得到的投影图。
光线自物体的前面向后投影所得的投影图称为“正视图”,自左向右投影所得的投影图称为“侧视图”,自上向下投影所得的投影图称为“俯视图”。
用这三种视图即可刻画空间物体的几何结构,这种图称之为“三视图”。
教科书从复习初中学过的正方体、长方体……的三视图出发,要求学生自己画出球、长方体的三视图;接着,通过“思考”提出了“由三视图想象几何体”的学习任务。
进行几何体与其三视图之间的相互转化是高中阶段的新任务,这是提高学生空间想象力的需要,应当作为教学的一个重点。
三视图的教学,主要应当通过学生自己的亲身实践,动手作图来完成。
因此,教科书主要通过提出问题,引导学生自己动手作图来展示教学内容。
教学中,教师可以通过提出问题,让学生在动手实践的过程中学会三视图的作法,体会三视图的作用。
对于简单几何体的组合体,在作三视图之前应当提醒学生细心观察,认识了它的基本结构特征后,再动手作图。
教材中的“探究”可以作为作业,让学生在课外完成后,再把自己的作品带到课堂上来展示交流。
值得注意的问题是三视图的教学,主要应当通过学生自己的亲身实践、动手作图来完成。
另外,教学中还可以借助于信息技术向学生多展示一些图片,让学生辨析它们是平行投影下的图形还是中心投影下的图形。
二、教学目标1、知识与技能(1)掌握画三视图的基本技能(2)丰富学生的空间想象力2、过程与方法主要通过学生自己的亲身实践,动手作图,体会三视图的作用。
第一章空间几何体
复习小结
【教学目标】
1.知识与技能:
(1). 类比记忆棱柱、棱锥、棱台、圆柱、圆锥、圆台及球的定义,并理解空间几何体及组合体的结构特征;
(2). 能正确画出空间图形的三视图并能识别三视图所表示的立体模型;
(3). 在了解斜二测画法的基础上会用斜二测画法画出一些简单图形的直观图;
(4). 掌握柱体、椎体、台体、球体的表面积与体积的求法,并能通过一些计算方法求出组合体的表面积与体积。
2.过程与方法:通过学生自主学习和动手实践,进一步增强他们的空间观念,用三视图和直观图表示现实世界中的物体。
掌握柱体、椎体、台体、球体的表面积与体积的求法;提高学生分析问题和解决问题的能力。
3.情感态度价值观:
体现运动变化的思想认识事物的辩证唯物主义观点,通过和谐、对称、规范的图形,给学生以美的享受,引发学生的学习兴趣。
【重点难点】
1.教学重点:几何体的表面积与体积.
2.教学难点:三视图和直观图
【教学策略与方法】
1.教学方法:启发讲授式与问题探究式.
2.教具准备:多媒体
【教学过程】
A.4
B.4
C.2
D.8
A.4812
B.4824
C.3612
D.3624
++++规律方法 由三视图还原几何体时
(1) (2)
A.(1+22)a2 B.(2+2)a2
C.(3-22)a2 D.(4+2)a2 A.6 B.9 C.12 D.18
由三视图可知该几何体
9,故选B.
,从母线AB的中点点,求这条绳子长度的最小值.
图2
A . 2
B .2
C .4
D .32。