梯形、矩形渠道水力计算讲解学习
- 格式:xls
- 大小:137.50 KB
- 文档页数:5
流体力学辅导材料7第七章 明渠恒定流【教学基本要求】1、理解明渠分类,掌握梯形渠道和矩形渠道过流断面的水力要素计算。
2、理解明渠恒定均匀流形成条件,,掌握明渠恒定均匀流水力特征。
3、掌握明渠恒定均匀流水力计算基本公式。
4、理解水力最优断面与允许流速的概念。
5、会进行明渠恒定均匀流水力计算(求流量、底坡、断面尺寸的确定等)。
6、理解明渠恒定非均匀流形成条件及明渠恒定非均匀流水力特征。
6、理解明渠水流的流态(缓流、临界流、急流),掌握其判别标准。
7、理解断面单位能量s E 、临界水深K h 、临界底坡K i 等概念。
8、了解弗劳德数Fr 的物理意义,熟悉其数学表达式。
9、了解水跃、跌水现象和流动特征,知道水跃方程、共轭水深、水跃能量损失和跃的计算。
10、知道明渠恒定非均匀渐变流微分方程。
11、会进行棱柱形渠道水面曲线定性分析。
12、会进行棱柱形渠道恒定非均匀渐变流水面曲线计算(分段求和法)。
【学 习 重 点】1、明渠的分类,明渠恒定均匀流的水流特征,及其形成条件。
2、明渠恒定均匀流计算基本公式。
3、明渠断面形状、尺寸,底坡的设计及其水力计算。
4、缓流、急流、临界流及其判别标准。
5、断面单位能量、临界水深、临界底坡等概念。
6、跌水、水跃水流特征,共轭水深等概念。
7、棱柱形渠道恒定非均匀渐变流水面曲线的变化规律及其定性分析。
8、棱柱形渠道恒定非均匀渐变流水面曲线的计算(分段求和法)。
【内容提要和学习指导】一.概述明渠水流是指河道或渠道中水流,其自由表面为大气压,相对压强为0,亦称无压流。
本章介绍明渠的分类,明渠水流特征,及其水力计算。
本章分为两大部分:第一部分为明渠恒定均匀流。
第二部分为明渠恒定非均匀流。
这一章的基本概念较多,要多从物理意义上加以理解。
有些水力计算比较繁,如梯形断面渠道的断面尺寸的设计、共轭水深、水面曲线的计算,要求掌握其计算方法,利用相关资料会进行计算。
考核内容为基本概念和矩形断面渠道的水力计算。
梯形渠道断面尺寸、水深计算水深底宽边坡过水面积湿周水力半径糙率谢才系数坡比降流速流量h(m)b(m)m A(m*m)χ(m)R(m)n C(m^1/2/s)I v(m/s)Q(m^3/s) 0.400.30 1.000.280 1.4310.1960.025030.4760.01 1.3480.377 0.64 1.000.410 1.8100.2260.022534.6940.000250.2610.1070.600.600.500.540 1.9420.2780.012067.3270.03 6.150 3.321 0.400.500.500.280 1.3940.2010.018042.5130.03 3.3000.924 0.600.320.400.336 1.6120.2080.012064.1640.03 5.073 1.705 0.750.80 1.00 1.157 2.9150.3970.02534.2920.01 2.1607 2.5004说明:1、计算的范围为尾水(即尾0+000~尾0+017.5)。
2、计算时假设该渠水流为明渠均匀流进行水力计算。
3、该渠道的衬砌为浆砌块石衬砌,其糙率n值取为n=0.025。
水 深过水面积湿 周水力半径糙 率谢才系数底坡比降流 速流 量h(m)A(m*m)χ(m)R(m)n C(m^1/2/s)I v(m/s)Q(m^3/s)0.6700 1.608 3.740.42994650.022538.6117860.00120.8770 1.41030.40000.16 1.20.13333330.01259.5628140.03 3.76710.6027.0#VALUE!#VALUE!0.014#VALUE!0.0012#######VALUE!0.80000.56 2.30.24347830.01843.9006410.01 2.1662 1.21311.3800 2.208 4.360.5064220.02535.7118290.002 1.1365 2.50950.30000.090.90.10.01256.7743390.03 3.10970.27990 1.600.02500.0020.00000.00001.3770 2.2032 4.3540.50601750.02535.7070720.002 1.1359 2.50271.38002.2084.360.5064220.02535.7118290.002 1.13652.5095201882.400.401.800.70矩形渠道断面尺寸、水深计算底 宽b(m)1.601.600.301.601.60水 位湿 周水力半径糙 率比降h(m)χ(m)R(m)n I 4014 4.188810.064870.0810.0083401524.73240.6629390.0810.0083401641.99927 1.1770520.0810.0083401756.68853 1.7723470.0810.0083401860.01827 2.6099290.0810.0083401963.96554 3.3681810.0810.0083402068.29129 4.0660120.0810.0083402171.52681 4.7937480.0810.0083402274.59941 5.4991830.0810.0083402377.67202 6.1762850.0810.0083402480.744616.8282910.0810.008314.0209061270931,401561.9852860896954,4016165.499744002757,40170.0493423963017573,4014水位~流量关系795.6114.02156.643397215.447505277.673195河道流量~水位关系曲线333.978518041592,4018544.493160351384,4019795.610327806321,4020流 量Q(m 3/s)0.05A(m 2)过水面积0.27172916.39606949.435331100.471771479.724499342.881492410.235771437.541816.34551.3476792231.971437.53901810852,40221816.34129695998,40232231.96604967931,402461.99165.50333.981096.43156212984,40211096.43544.49河道流量~水位关系曲线河道流量~水位关系曲线河道流量~水位关系曲线河道流量~水位关系曲线河道流量~水位关系曲线河道流量~水位关系曲线河道流量~水位关系曲线0.2780.466.90.160.2231780.040.2975713 1.1902850.12419166860325393625640高程261577.6 470332.55293136.569967 2.054854796.280.507464530.8910 2.29723770110.9594720.8916220.58413933690.4333332860.2780.552.80.790.1076410.2780.552.80.10.73392高程45128267891096110.58120.413142775 1.250.7224030.043000高程39008400 4400 5450 646.379.27416.379474723.185 4.6378.18547220 895449 1.3842694561011121315.7-0.0079614高程4567891011121314实际堆渣量可堆渣量(万m3)(万m3)1#废石场新建矿区道路下方0.490.52103024m~3034m0.21沟谷地,但坡度较陡、坡度在30°左右。
计算方法说明明渠均匀流求正常水深程序是针对棱柱体明渠(过水断面为对称梯形或矩形)恒定均匀流,已知河床底坡i ,河床糙率n,过水断面形状(b,m ),流量Q ,求解正常水深h 0。
明渠断面示意图按照谢才公式:Ri CA =Q谢才系数:611R n=C过水断面面积:h mh b A )(+= 湿周:212m h b ++=χ 水力半径:χ/A R =由此解得正常水深:)/()12()(04.0203.0220mh b m h b iQ n +++=h算法:采用迭代法求解非线性代数方程。
1. 正常水深的迭代方程为:)/()12()(04.0203.02201n n n mh b m h b iQ n h +++=+;2.假设。
进行迭代求解h ; m h 0.100=....321000h h ⇒⇒3.迭代结束的判断依据为ε<Q Q Q /|-计算|,ε为一个小值。
求临界水深程序是针对棱柱体明渠(过水断面为对称梯形或矩形)恒定均匀流,已知过水断面形状(b,m ),流量Q ,动能校正系数α,求解临界水深hc 。
明渠断面示意图临界水深公式:0132=−=c c s B gA Q dh dE α其中,――断面单位能量。
s E 由此可得:cc B A g Q 32=α过水断面面积:h mh b A )(+= 水面宽度:mh b B 2+=由此解得临界水深: 3132])/()2()/[(c c c mh b mh b g Q h ++×=算法:采用迭代法求解非线性代数方程。
1. 临界水深的迭代方程为:3132])/()2()/[(1n n n c c c mh b mh b g Q h ++×=+; 2.假设。
进行迭代求解h ;m h c 0.10=....321c c c h h ⇒⇒3.迭代结束的判断依据为ε<+n n n c c c h h h /|1-|并且ε<++11/|n n n c c c h h h -|,ε为一个小值。