小流量大温差
- 格式:doc
- 大小:134.50 KB
- 文档页数:6
大温差小流量的空调水系统方案随着人们生活水平的提高和环保意识的增强,人们对于居住环境的要求越来越高。
在现代建筑中,空调系统已经成为了必不可少的设备之一。
然而,空调系统中的水系统设计却不是很令人满意,特别是在大温差小流量的情况下。
因此,本文将从大温差小流量的角度出发,阐述一种空调水系统的方案。
一、大温差小流量的定义在空调水系统中,大温差小流量是指水输入和输出温差大,但是水流量却很小的情况。
例如,水输入温度为15℃,输出温度为10℃,但是水的流量却只有20L/H,这就是大温差小流量的例子。
二、大温差小流量的问题大温差小流量的空调水系统会带来一系列的问题,如下所述:1. 冷却效果差由于水流量很小,因此很难将室内的热量迅速带走,导致室内温度过高。
2. 能耗高由于水流量很小,空调系统需要不断地运转才能达到理想的冷却效果,导致能耗较高。
3. 漏水由于水流量小,容易导致管道的积水,从而造成管道的漏水问题。
三、解决方案在面对大温差小流量的空调水系统时,我们需要采取一些措施来解决这些问题。
以下是一些解决方案:1. 采用热交换器热交换器可以有效地提高水温差,同时增加水流量,从而提高空调系统的冷却效果。
热交换器的原理是将冷却水与室外环境中的水进行换热,从而降低冷却水的温度。
2. 采用超声波技术超声波技术可以清洗管道中的积水,从而避免漏水问题的发生。
同时,超声波技术也可以将管道中的杂质和污垢清除干净,从而提高水流量。
3. 优化空调系统的设计在空调系统的设计中,需要考虑到大温差小流量的问题。
例如,可以加装节流阀,调整水压和水流量,从而达到更好的冷却效果。
四、结论在大温差小流量的空调水系统中,我们需要采取一些有效的措施来解决这些问题。
以上提出的方案是比较常见和有效的解决方法,但是在实际应用中需要根据不同的情况灵活运用。
总之,仔细考虑空调水系统的方案,合理利用现代技术,能够有效地提高空调系统的性能,为人们提供更加舒适的环境。
系统简介大温差小流量是一个减少空调系统投资,降低能耗的先进观念。
大温差的目的是优化空调系统各设备间的能耗配比,在保证舒适度的前提下减少冷量输配的能耗,或是减少冷却塔和末端空调箱的能耗,同时降低系统初投资。
大温差可以在冷水侧或冷却水侧实现,也可以在空气侧实现。
系统优点节能当今(2000's)的系统能耗比例一般为:冷水机组约占机房年能耗58%,冷水泵和冷却水泵约占26%,冷却塔约占16%。
若能通过特别的系统设计,减少水泵和冷却塔的耗能,将大大节省运行费用。
我们选择一个1800冷吨(6329kW)的酒店空调系统来分析大温差设计的节能效果。
项目情况:该酒店位于上海,全年空调运行时间为5月至11月。
分析软件:采用System Analyzer 进行系统全年运行模拟分析,计算全年主机水泵和冷却塔的运行能耗。
我们可以得出常规和大温差的总体能耗比较。
• 常规温差:冷水侧7-12°C冷却水侧32-37°C• 大温差:冷水侧5-13°C冷却水侧32-40°C由此可见,采用大温差以后,• 冷却塔的年能耗降低23.1%;• 水泵的年能耗降低37.2%;• 冷水机组的年能耗增加7.8%。
以上三项汇总,年冷水机房总能耗降低6.1%。
由此可见,大温差可以有效地优化系统,达到运行节能的效果,它不是着眼于系统中的某一设备,而是作通盘的考虑,追求系统总效率的提升和初投资的降低。
减少初投资• 可以选择较小的水泵,节省初投资大温差低流量可以让设计师选用较小的水泵,从而使得投资与运行费用减少。
无论在冷水侧或是在冷却水侧,较小的水泵在部分负荷时的节能会比常规温差更有优势。
如下图4-1所示。
• 可以选择更小尺寸的管路,节省初投资大温差设计后,系统流量减小,则所需的钢管直径也会相应变小,这样在同样冷量情况下,可以大大节省钢管材料的费用。
我们对不同冷量下5°C温差与8°C温差的冷水管的管径进行了分析,得出1800RT~10RT内不同的冷量下大温差系统可节约管路费用平均为30%。
空调冷冻水供水温差的分析
近年来,随着制冷机技术的不断提高和完善,大温差小流量的空调冷冻水出水输送技术日趋成熟,这种简单易行的空调方案,在实际建筑工程中的最广泛运用已日益广泛。
目前,国内通常使用的空调冷冻水的供水温度为7℃,回水温度为12℃,供回水温差为5℃,而大温差冷气系统冷冻水的供回水温差一般为6~10℃。
由于空调系统的冷冻水的供回水温差加大,相同制冷量下的空调水循环量将减小,空调冷冻水管管径、冷冻水泵的型号都将随之减小,冷冻水泵的能耗随之降低。
空调冷冻水系统采用大温差,还可以降低水泵的型号、减小锅底管的直径、缩减冷却水系统系统的一次投资、降低工程造价等。
一般而言,制冷机单位制冷量的中随蒸发器能耗蒸发温度的升高而降低,随蒸发水温降低而升高。
因此,蒸发温度对制冷机单位制冷量的能耗影响较大,而温度的高低直接影响制冷机冷冻水出水温度的高低。
当制冷机的热交换器冷冻水出水温度等于或少于7℃时,对于相同的制冷量,10℃温差与5℃温差时,冷水机组的生产成本基本相同。
然而,当制冷机的出水温度低于7℃,尤其是低于5℃时,制冷机单位制冷量的耗电能耗明显上升。
若制冷机的出水温度过低,制冷机能耗的上升将大大抵消了大温差冷冻水系统水泵节省的能耗,甚至超过水泵节省的能耗。
中央空调系统中,大温差小流量系统的应用,整个系统是否节能?谈谈理由。
由于对空调节能的越来越重视,空调水系统大温差的设计也越来越普遍,大温差是否节约初投资,运行是否节能,在很多的论文上都有似乎很充分的论证,但是对于主机及空调末端对大温差都有一定的适用性和适应性,不是说一味的加大空调水系统的温差设置,空调系统就会节约成本,后期运行就会节能,这里可能我们要把握一个度,这个度一方面指的是多大的系统适合加大温差设计,另一方面在设计大温差时多大的温差才是合理的?(所谓合适合理,指的是相对常规温差节约初投资及运行费,或者说回收期能控制在5年以内。
)2013年的注册考试中也出现了这样一个题目:某办公见建筑的舒适性空调采用风机盘管+新风系统,设计方案对比时,若夏季将空调冷冻水供回水温度从7℃/12℃调整为7℃/17℃,调整后与调整前相比,以下说法哪几项是正确的?(A) 空调系统的总能耗一定会减少(B) 空调系统的总能耗并不一定会减少(C) 空调系统的投资将增加(D) 空调系统的投资将减少欢迎大家对大温差问题进行热烈讨论,更欢迎给出你详细的数据分析。
•网友评论•获奖公告特邀专家艾为学点评:不提高出水温度,仅仅提高回水温度的冷媒水大温差,直接造成机组cop值降低,如保证制冷机组cop,还应分别提高出水温度,依靠增加出力取保cop,此时,压缩制冷和吸收式制冷取出水温度仍不同。
【此说法不妥,正如讨论题指出多大的温差是合理的,值得探讨。
提高回水温度的冷水大温差,当供冷量不变,则冷水流量下降,会降低蒸发器冷水侧的放热,蒸发器的传热系数的主导部分是制冷剂侧的沸腾放热,会导致蒸发器的传热系数有所降低,即导致蒸发器供冷量下降。
同时,冷水的平均温度提高,若维持原蒸发温度,会使传热温差加大,即导致蒸发器供冷量提高。
这种降与升的关系,应该说和温差数值的大小、冷水机组的性能密切相关。
若冷凝温度维持不变,不一定要求机组的蒸发温度降低,所以,对机组的COP值的变化影响,在不同的温差数值时,可以会有提高或基本保持或有所降低的三种情况发生,进而结论是,在相同供应冷量、相同冷凝温度的条件下,加大温差运行的冷水机组的能耗变化可以有降低、基本持平和增加的现象发生。
大温差小流量的空调水系统方案随着现代建筑的崛起,空调水系统被广泛应用于商业和住宅建筑中。
在设计空调水系统时,考虑到大温差小流量的需求是至关重要的。
大温差小流量的方案可以提高能效,减少能源消耗和碳排放,并增加系统的运行稳定性。
本文将分析和提出大温差小流量的空调水系统方案。
首先,大温差小流量的空调水系统需要选择适当的设备。
冷却机组和水泵是空调水系统中的关键设备。
对于大温差小流量的方案,可以选择具有高效换热器和变频控制功能的冷却机组和水泵。
高效换热器可以提高换热效率,降低能耗。
变频控制功能可以根据实际负荷需求调整设备运行状态,实现流量控制和节能。
其次,大温差小流量的空调水系统需要考虑水力平衡。
水力平衡是指在整个空调水系统中保持恒定的水压和水流分布。
水力平衡可以通过合理设计管道布局和安装调节阀来实现。
大温差小流量的方案可以采用较小直径的管道,减少水流阻力,提高系统的水力效果。
另外,大温差小流量的空调水系统需要考虑温控措施。
温控措施是指根据实际需求调节冷却机组和水泵的运行状态。
大温差小流量的方案可以采用智能控制系统,实时监测室内外温度、湿度和实际负荷,通过调整冷却机组和水泵的供水温度和流量,实现精确的温控。
此外,大温差小流量的空调水系统还可以结合其他节能措施。
例如,可以采用地源热泵或太阳能热泵作为供热和供冷设备,利用低温热源或太阳能热能提供热量。
同时,可以安装热回收装置,将冷却机组的废热回收利用,提高能效。
此外,还可以合理设计控制策略,利用夜间低峰期进行热储存,减少白天的能耗。
综上所述,大温差小流量的空调水系统方案需要综合考虑设备选择、水力平衡、温控措施和其他节能措施。
通过合理的设计和调整,可以提高能效,减少能源消耗和碳排放,并增加系统的运行稳定性。
大温差小流量的空调水系统方案是未来建筑节能和环保的重要发展方向。
小流量、大温差”的运行方式可以实现了一.问题的提出我国实施集中供热30多年以来,设计供回水温差是25C ,而实际运行都在15C左右,能不能拉到25 C ?答案是肯定的,实际上拉到40 C现在也容易实现了,为什么温差一直拉不开呢?传统的室内供暖运行方式,散热器的连接无论是并联系统还是串联系统,通过每组散热器的流量是不可控的,造成了散热量的不可控制。
由于近端的散热器的流量很大,是所需流量的几倍,一般每平米建筑面积的流量是5kg/h 以上,因此供水温度不用太高(一般是55C左右,回水温度在45C ,温差只有10 C左右),室内即可达到设计温度,且大部分近端的室内温度在23C以上(浪费了大量的电能和热能)。
也就是说,一直以来“大流量、小温差”的运行模式,其主要原因是散热器的流量不可控造成的,供暖要想实现“小流量、大温差”的理想运行方式,把节能潜力全部挖掘出来,真正提高供暖质量,必须使每组散热器的流量均可调控。
为什么一直以来就没有解决这一问题呢?一是对流量控制的重要性认识不高,总认为供热就是一个热源、两根管线和几组暖器片,只要锅炉一烧、循环泵一转就行了。
二是没有较好的流量控制产品和手段,对控制散热器流量来说,一直以来没有一种简单易行的产品,现行的产品调试相当繁琐,给调试人员和用户都带来很多的不便。
现在,是到了解决这一问题的时候了,首先国家提倡节能减排,给了很好的优惠政策;二是多年来的供热发展,供热水平也得到了巨大提升,人们也越来越认识到流量控制对提高供热质量的重要性;三是经过多年来的探讨与实践,真正适合中国国情、简单易行控制散热器流量的产品和方法问世了。
二.均流阀、锁闭流量阀和差压阀的配合应用是实现每组散热器的流量均可调控的极佳方案1 •示意图此方案主要由均流阀、锁闭流量阀和差压阀三种控制设备配合使用构成的,差压阀装在单元(或楼)的热入口,保障楼内系统的压差不超过0∙1Mpa,它的作用是保证锁闭流量阀的控制精度和低噪音;锁闭流量阀装在每户热入口,将每户流量调到每平米1kg∕h ;均流阀装在每组散热器上,将每组散热器流量调到每平米1kg∕h左右。
大温差小流量是一个减少空调系统投资,降低能耗的先进观念。
大温差的目的是优化空调系统各设备间的能耗配比,在保证舒适度的前提下减少冷量输配的能耗,或是减少冷却塔和末端空调箱的能耗,同时降低系统初投资。
大温差可以在冷水侧或冷却水侧实现,也可以在空气侧实现。
节能当今(2000's)的系统能耗比例一般为:冷水机组约占机房年能耗58%,冷水泵和冷却水泵约占26%,冷却塔约占16%。
若能通过特别的系统设计,减少水泵和冷却塔的耗能,将大大节省运行费用。
我们选择一个1800冷吨(6329kW)的酒店空调系统来分析大温差设计的节能效果。
项目情况:该酒店位于上海,全年空调运行时间为5月至11月。
分析软件:采用System Analyzer 进行系统全年运行模拟分析,计算全年主机水泵和冷却塔的运行能耗。
我们可以得出常规和大温差的总体能耗比较。
• 常规温差:冷水侧7-12°C冷却水侧32-37°C• 大温差:冷水侧5-13°C冷却水侧32-40°C由此可见,采用大温差以后,• 冷却塔的年能耗降低23.1%;• 水泵的年能耗降低37.2%;• 冷水机组的年能耗增加7.8%。
以上三项汇总,年冷水机房总能耗降低6.1%。
由此可见,大温差可以有效地优化系统,达到运行节能的效果,它不是着眼于系统中的某一设备,而是作通盘的考虑,追求系统总效率的提升和初投资的降低。
减少初投资• 可以选择较小的水泵,节省初投资大温差低流量可以让设计师选用较小的水泵,从而使得投资与运行费用减少。
无论在冷水侧或是在冷却水侧,较小的水泵在部分负荷时的节能会比常规温差更有优势。
如下图4-1所示。
• 可以选择更小尺寸的管路,节省初投资大温差设计后,系统流量减小,则所需的钢管直径也会相应变小,这样在同样冷量情况下,可以大大节省钢管材料的费用。
我们对不同冷量下5°C温差与8°C温差的冷水管的管径进行了分析,得出1800RT~10RT内不同的冷量下大温差系统可节约管路费用平均为30%。
“小流量、大温差”的运行方式可以实现了一.问题的提出
我国实施集中供热30多年以来,设计供回水温差是25℃,而实际运行都在15℃左右,能不能拉到25℃?答案是肯定的,实际上拉到40℃现在也容易实现了,为什么温差一直拉不开呢?传统的室内供暖运行方式,散热器的连接无论是并联系统还是串联系统,通过每组散热器的流量是不可控的,造成了散热量的不可控制。
由于近端的散热器的流量很大,是所需流量的几倍,一般每平米建筑面积的流量是5kg/h以上,因此供水温度不用太高(一般是55℃左右,回水温度在45℃,温差只有10℃左右),室内即可达到设计温度,且大部分近端的室内温度在23℃以上(浪费了大量的电能和热能)。
也就是说,一直以来“大流量、小温差”的运行模式,其主要原因是散热器的流量不可控造成的,供暖要想实现“小流量、大温差”的理想运行方式,把节能潜力全部挖掘出来,真正提高供暖质量,必须使每组散热器的流量均可调控。
为什么一直以来就没有解决这一问题呢?一是对流量控制的重要性认识不高,总认为供热就是一个热源、两根管线和几组暖器片,只要锅炉一烧、循环泵一转就行了。
二是没有较好的流量控制产品和手段,对控制散热器流量来说,一直以来没有一种简单易行的产品,现行的产品调试相当繁琐,给调试人员和用户都带来很多的不便。
现在,是到了解决这一问题的时候了,首先国家提倡节能减排,给了很好的优惠政策;二是多年来的供热发展,供热水平也得到了巨大提升,人们也越来越认识到流量控制对提高供热质量的重要性;三是经过多年来的探讨与实践,真正适合中国国情、简单易行控制散热器流量的产品和方法问世了。
二.均流阀、锁闭流量阀和差压阀的配合应用是实现每组散热器的流量均可调控的极佳方案
2.方案构成及调试说明
此方案主要由均流阀、锁闭流量阀和差压阀三种控制设备配合使用构成的,差压阀装在单元(或楼)的热入口,保障楼内系统的压差不超过0.1Mpa,它的作用是保证锁闭流量阀的控制精度和低噪音;锁闭流量阀装在每户热入口,将每户流量调到每平米1kg/h;均流阀装在每组散热器上,将每组散热器流量调到每平米1kg/h左右。
锁闭流量阀:是专门为每家每户供暖设计的小口径流量控制阀,它既有流量设定功能,又有锁闭功能,即锁闭后,别人不易乱动。
均流阀:通过切换孔径来改变流通能力的阀门,是利用孔板原理设计的一种新阀门,它由大小不同的几个标准孔组成,每组散热器装一个,均衡每组散热器的流量。
3.方案运行说明
运行时,供水温度调到70℃左右,回水温度约为30℃,那么温差可拉到40℃,我们把每个房间散热器的流量均调到了每平米1kg/h,则每个房间每平米获得的热量均是
40kcal/h,即是46.5w,从而每个房间均能达到所需的温度。
对楼房两侧的山墙等住户,可适当的增加流量,保障所需的供暖温度。
三.与传统方案效果对比
1.节约电能90%以上
传统方案的循环流量为每平米3.5kg/h左右,本方案的循环流量大约是1kg/h,
流量与耗电功率的关系式:N1/N2=G13/G23
N1、N2——平衡前、后的耗电功率kW
G1、G2——平衡前、后的循环流量kg/h
将G1=3.5 G2=1代入上式
得N1/N2=12.25
即本方案实施以后,循环泵可节约电能90%以上。
2.室内可节约热能20%以上
传统方案由于流量控制不到位,近端用户的房间温度均在20℃以上,有的在25℃以上,供热时,房间温度高于所需温度1℃将引起能耗增加,此增加量可由以下公式估算(瑞典公式):
式中:t ic——房间设计温度,℃;
t ec——室外设计温度,℃;
ai——内部得热影响房间温度,以温度值表示,2℃;
Sc——季节平均供热量与最大需热量之比,0.4;
S%——房间温度升高引起的能耗增加量,以季节能耗的百分数计算。
例:当房间温度18℃,室外温度-9℃(北京地区室外计算温度为-9℃)
即本方案实施后,室内平均温度可以降低2℃以上,在北京地区可节约热能20%以上。
3.节约钢材50%左右、减少投资50%以上
本方案运行的循环流量不足传统方案的30%,则输送管道的直径可比传统方案小两个规格,从管材重量表可以查得,小两个规格可减小50%左右的重量,同时减少了土建、人工等费用,可节约建设投资50%以上。
4.可节约用地30%以上
由于管径的缩小,可节约用地30%以上,减少了用地及空间,也减少了对市政建设的影响。
5.可扩大到3倍的供热面积
本方案运行的循环流量不足传统方案的30%,反过来就是同样的外网布置管网,本方案可比传统方案增大到3倍的供热面积。
6.每个房间的温度均可调控
传统方案不能做到每个房间的温度均可调控,对每户的、每个单元的温度都很难调控,甚至连楼的温度都很难做到调控,而本方案可对每个房间的温度均可调控,大大地提高了供暖质量。
7.一次网也一样变得温差更大、流量更小
二次回水温度30℃时,一次回水也可降到趋于30℃,如果供水供到130℃,则一次供回水温差有100℃的潜力,每平米建筑面积一次流量可降到0.2~0.4kg/h。
因此,本方案也使一次网获得与二次网一样的效益。
8.流量调控方便、简单、且易于掌握
本方案,差压阀不用调整;锁闭流量阀自有流量刻度,可根据用户面积按每平米1kg/h 算得每户流量,按此流量设定即可;均流阀上有5个档,一般调到3档即可,只有个别情况增大或减小档位。
四.每户装流量控制阀与热计量并不矛盾
目前,我国供热行业正在推广热计量工作,热网平衡是热计量的基础工作,一旦热计量的条件成熟,可直接按热计量收费,锁闭流量控制阀不再起作用,也不起不利作用。
原因是这样的,当按面积设定流量时,是以每户都热为前提的,即每户的流量总数按1.0kg/h.m2设定的,流量还是满足在室外气温最低时的用户需求的,也就是说,设定的流量在绝大部分供暖时间是超需求的,当将恒温阀设定温度变小(设定为20℃,恒温阀最大设定温度为28℃),同时应用太阳光和人发出的热能,恒温阀对流量进行自动设定,每组散热器上恒温
阀自动设定的流量的总和,肯定小于锁闭流量控制阀设定的流量,这时锁闭流量控制阀就不起截流作用了,即不影响热计量的正常工作。
总之,我们希望在分户改造的条件下,室内系统应设计成并联形式,应在每户装一个锁闭流量控制阀,在每组散热器上装一个均流阀,这是节能降耗、利国利民的大事,也是解决眼前热网水平失调,特别是垂直失调的极佳途径。
供热对系统的要求:一是保证每个房间的室温都达到用户需求;
二是最大限度地减少设备投资和运行费用,做到节能减排;三是调试简单,易于掌握,用工要少。
综上所述,均流阀、锁闭流量阀和差压阀的配合应用,完全可以满足上述要求,是极佳的供热循环控制系统,如果这一方案在供热界得到广泛的有效实施,必将为我国供热事业的节能降耗、提高供热质量做出巨大贡献。