高中物理必修3物理 全册全单元精选试卷培优测试卷
- 格式:doc
- 大小:1.32 MB
- 文档页数:38
高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。
C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2L,在空间加一个水平方向的匀强电场后A 处的质点处于静止。
试问: (1)该匀强电场的场强多大?其方向如何?(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?【答案】(1)22kQ L ,方向由A 指向C ;273kQ ;(3)22kQ mL 220kQ v mL+【解析】 【分析】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。
(2)质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,根据力的合成求解 (3)根据牛顿第二定律求出加速度,根据动能定理求出C 点时速度。
【详解】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,AO 间的库仑力为22Q F K L=;根据平衡条件得:sin F EQ θ= 2sin 2F KQE Q Lθ== 方向由A 指向C(2)该质点到达B 点时受竖直向下的O 点的库仑力和水平向右的电场力,库仑力为22'(sin60)Q F K L =;水平向右的电场力F EQ "=B点时所受的电场力2222]sin60)6F L== (3)质点到达C 点时进行受力分析,根据牛顿第二定律得2222sin Q K EQ F KQ L a m m mL θ+===合. 从A 点到C 点根据动能定理得221122o EQL mv mv =-; v =【点睛】本题的关键要耐心细致地分析物体的运动过程,对物体进行受力分析,运用动能定理、牛顿第二定律进行处理。
高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,真空中有两个点电荷A 、B ,它们固定在一条直线上相距L =0.3m 的两点,它们的电荷量分别为Q A =16×10-12C ,Q B =4.0×10-12C ,现引入第三个同种点电荷C ,(1)若要使C 处于平衡状态,试求C 电荷的电量和放置的位置?(2)若点电荷A 、B 不固定,而使三个点电荷在库仑力作用下都能处于平衡状态,试求C 电荷的电量和放置的位置? 【答案】(1)见解析(2)1216109C -⨯ ,为负电荷 【解析】 【分析】 【详解】(1)由分析可知,由于A 和B 为同种电荷,要使C 处于平衡状态,C 必须放在A 、B 之间某位置,可为正电荷,也可为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3 ∵ AC BC F F = ∴ 132322()Q Q Q Q kk x L x =- ∴1222()Q Q x L x =- ∴ 4(L -x)2=x 2 ∴ x =0.2m即点电荷C 放在距A 右侧0.2m 处,可为正电荷,也可为负电荷.(2)首先分析点电荷C 可能放置的位置,三个点电荷都处于平衡,彼此之间作用力必须在一条直线上,C 只能在AB 决定的直线上,不能在直线之外.而可能的区域有3个, ① AB 连线上,A 与B 带同种电荷互相排斥,C 电荷必须与A 、B 均产生吸引力,C 为负电荷时可满足;② 在AB 连线的延长线A 的左侧,C 带正电时对A 产生排斥力与B 对A 作用力方向相反可能A 处于平衡;C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡;C 带负电时对A 产生吸引力与B 对A 作用力方向相同,不可能使A 处于平衡;C 对B 的作用力为吸引力与A 对B 作用力方向相反,可能使B 平衡,但离A 近,A 带电荷又多,不能同时使A 、B 处于平衡.③ 放B 的右侧,C 对B 的作用力为推斥力与A 对B 作用力方向相同,不可能使B 平衡; 由分析可知,由于A 和B 为同种电荷,要使三个电荷都处于平衡状态,C 必须放在A 、B 之间某位置,且为负电荷.设电荷C 放在距A 右侧x 处,电荷量为Q 3对C :132322(0.3)Q Q Q Q kk x x =- ∴ x =0.2m 对B :321222()Q Q Q Q k k L L x =- ∴ 12316109Q C -=⨯,为负电荷. 【点睛】此题是库仑定律与力学问题的结合题;要知道如果只是让电荷C 处于平衡,只需在这点的场强为零即可,电性不限;三个电荷的平衡问题,遵循:“两同加一异”、“两大加一小”的原则.2.如图,ABD 为竖直平面内的绝缘轨道,其中AB 段是长为 1.25L m =的粗糙水平面,其动摩擦因数为0.1μ=,BD 段为半径R =0.2 m 的半圆,两段轨道相切于B 点,整个轨道处在竖直向下的匀强电场中,电场强度大小3510/E V m =⨯。
高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.有三根长度皆为l =0.3 m 的不可伸长的绝缘轻线,其中两根的一端固定在天花板的O 点,另一端分别栓有质量皆为m =1.0×10﹣2kg 的带电小球A 和B ,它们的电荷量分别为﹣q 和+q ,q =1.0×10﹣6C .A 、B 之间用第三根线连接起来,空间中存在大小为E =2.0×105N/C 的匀强电场,电场强度的方向水平向右.平衡时A 、B 球的位置如图所示.已知静电力常量k =9×109N•m 2/C 2重力加速度g =10m/s 2.求:(1)A 、B 间的库仑力的大小 (2)连接A 、B 的轻线的拉力大小. 【答案】(1)F=0.1N (2)10.042T N = 【解析】试题分析:(1)以B 球为研究对象,B 球受到重力mg ,电场力Eq ,静电力F ,AB 间绳子的拉力1T 和OB 绳子的拉力2T ,共5个力的作用,处于平衡状态,A 、B 间的静电力22q F k l=,代入数据可得F=0.1N(2)在竖直方向上有:2sin 60T mg ︒=,在水平方向上有:12cos 60qE F T T =++︒ 代入数据可得10.042T N = 考点:考查了共点力平衡条件的应用【名师点睛】注意成立的条件,掌握力的平行四边形定则的应用,理解三角知识运用,注意平衡条件的方程的建立.2.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求:(1)点电荷在该点受到的电场力?(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)方向:由A 指向B(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为方向:由A 指向B3.如图所示,质量为m 的小球A 穿在绝缘细杆上,杆的倾角为α,小球A 带正电,电量为q 。
高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,两块竖直放置的平行金属板A 、B ,两板相距d ,两板间电压为U ,一质量为m 的带电小球从两板间的M 点开始以竖直向上的初速度v 0运动,当它到达电场中的N 点时速度变为水平方向,大小变为2v 0 求(1)M 、N 两点间的电势差(2)电场力对带电小球所做的功(不计带电小球对金属板上电荷均匀分布的影响,设重力加速度为g )【答案】20MN Uv U dg=;【解析】 【详解】竖直方向上小球受到重力作用而作匀减速直线运动,则竖直位移大小为h =202v g小球在水平方向上受到电场力作用而作匀加速直线运动,则 水平位移x =022v t ⋅ h =2v t ⋅ 联立得,x =2h =20v g故M 、N 间的电势差为U MN =-Ex =-20v U d g =-20Uv gd从M 运动到N 的过程,由动能定理得 W 电+W G =12m 20(2)v -2012mv 所以联立解得W 电=202mv答:M 、N 间电势差为-20Uv gd,电场力做功202mv .2.如图所示,在光滑绝缘水平面上,质量为m 的均匀绝缘棒AB 长为L 、带有正电,电量为Q 且均匀分布.在水平面上O 点右侧有匀强电场,场强大小为E ,其方向为水平向左,BO 距离为x 0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B 端进入电场L /8时的加速度大小和方向; (2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O 点处电势为零) 【答案】(1)/8qE m ,向右(2)0()48qE Lx + (3)0(2)6qE x L + 【解析】 【分析】 【详解】(1)根据牛顿第二定律,得48QE L QE ma L -⋅=解得 8QE a m=,方向向右. (2)设当棒进入电场x 时,其动能达到最大,则此时棒受力平衡,有 4QE QE x L⋅= 解得14x L = 由动能定理得:()00044()()42442448K o QE QELQEQE L QE L E W x x x x x ====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场, 则有:()0042QE QEx L L +-=, 得 x 0=L ;()42QE QELL L ε+==当x 0<L ,棒不能全部进入电场,设进入电场x根据动能定理得()00 0042xQEQE L x x x ++--= 解之得:208L L Lx x ++=则2008 (4F L L Lx QE W x ε+++==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===3.一带正电的 A 点电荷在电场中某点的电场强度为 4.0×104N/C ,电荷量为+5.0×10-8 C 的 B 点电荷放在该点,求: (1)点电荷在该点受到的电场力?(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的电场强度? 【答案】(1)3210N -⨯,方向由A 指向B (2)4410/N C ⨯,方向由A 指向B 【解析】 【分析】 【详解】 (1)方向:由A 指向B(2)若在该点放上一个电荷量为-2.0×10-8 C 的 C 点电荷,则该点的场强不变,仍为方向:由A 指向B4.A 、B 是两个电荷量都是Q 的点电荷,相距l ,AB 连线中点为O 。
高中物理必修3物理全册全单元精选试卷培优测试卷一、必修第3册静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B端进入电场L/8时的加速度大小和方向;(2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O点处电势为零)【答案】(1)/8qE m ,向右(2)()48qE Lx+(3)0(2)6qE x L+【解析】【分析】【详解】(1)根据牛顿第二定律,得48QE L QEmaL-⋅=解得8QEam=,方向向右.(2)设当棒进入电场x时,其动能达到最大,则此时棒受力平衡,有4QE QExL⋅=解得14x L=由动能定理得:()0044()()42442448 K oQE QELQE QE L QE LE W x x x x x====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场,则有:()42QE QEx L L+-=,得 x0=L;()42QE QELL Lε+==当x0<L,棒不能全部进入电场,设进入电场x根据动能定理得()0042xQEQE Lx x x++--=解之得:208L L Lx x ++=则2008 ()4F L L Lx QE W x ε+++==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===2.如图所示,单层光滑绝缘圆形轨道竖直放置,半径r=lm ,其圆心处有一电荷量Q =+l×l0-4C 的点电荷,轨道左侧是一个钢制“隧道”,一直延伸至圆形轨道最低点B ;在“隧道”底部辅设绝缘层。
高中物理必修3物理全册全单元精选测试卷培优测试卷一、必修第3册静电场及其应用解答题易错题培优(难)1.如图所示,在光滑绝缘水平面上,质量为m的均匀绝缘棒AB长为L、带有正电,电量为Q且均匀分布.在水平面上O点右侧有匀强电场,场强大小为E,其方向为水平向左,BO距离为x0,若棒在水平向右的大小为QE/4的恒力作用下由静止开始运动.求:(1)棒的B端进入电场L/8时的加速度大小和方向;(2)棒在运动过程中的最大动能.(3)棒的最大电势能.(设O点处电势为零)【答案】(1)/8qE m ,向右(2)()48qE Lx+(3)0(2)6qE x L+【解析】【分析】【详解】(1)根据牛顿第二定律,得48QE L QEmaL-⋅=解得8QEam=,方向向右.(2)设当棒进入电场x时,其动能达到最大,则此时棒受力平衡,有4QE QExL⋅=解得14x L=由动能定理得:()0044()()42442448 K oQE QELQE QE L QE LE W x x x x x====+⨯∑+-+-+⨯(3)棒减速到零时,棒可能全部进入电场,也可能不能全部进入电场,设恰能全部进入电场,则有:()42QE QEx L L+-=,得 x0=L;()42QE QELL Lε+==当x0<L,棒不能全部进入电场,设进入电场x根据动能定理得()0042xQEQE Lx x x++--=解之得:208L L Lx x ++=则2008 ()4F L L Lx QE W x ε+++==当x 0>L ,棒能全部进入电场,设进入电场x ()()0042QE QEx x L QE x L +---= 得:023x Lx += 则()()000242 4436QE x L x L QE QE x x ε+++⋅===2.如图,真空中xOy 平面直角坐标系上的ABC 三点构成等边三角形,边长L =2.0m 。
若将电荷量均为q =+2.0×10-6C 的两点电荷分别固定在A 、B 点,已知静电力常量k =9.0×109N·m 2/C 2。
高中物理必修3物理 全册全单元精选试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一质量m =0.5 kg 、电荷量q =+2×10-3 C 的带电小球,有一根长L =0.1 m 且不可伸长的绝缘轻细线系在一方向水平向右、分布的区域足够大的匀强电场中的O 点.已知A 、O 、C 点等高,且OA =OC =L ,若将带电小球从A 点无初速度释放,小球到达最低点B 时速度恰好为零,g 取10 m/s 2.(1)求匀强电场的电场强度E 的大小;(2)求小球从A 点由静止释放运动到B 点的过程中速度最大时细线的拉力大小; (3)若将带电小球从C 点无初速度释放,求小球到达B 点时细线张力大小. 【答案】(1)2.5×103 N/C (2)2-10) N (3)15N 【解析】 【详解】(1)小球到达最低点B 时速度为零,则0=mgL -EqL . E =2.5×103 N/C(2) 小球到达最低点B 时速度为零,根据对称性可知,达到最大速度的位置为AB 弧的中点,即当沿轨迹上某一点切线方向的合力为零时,小球的速度有最大值,由动能定理有12mv 2-0=mgL sin 45°-Eq (L -L cos 45°). m 2v L=F -2mg cos 45°. F =2-10) N.(3)小球从C 运动到B 点过程,由动能定理得2102mgL qEL mV +=-. 解得:24V =在B 点02(cos 45)V T mg mL-= 以上各式联立解得T =15N.2.A、B 是两个电荷量都是Q 的点电荷,相距l ,AB 连线中点为O 。
现将另一个电荷量为q 的点电荷放置在AB 连线的中垂线上,距O 为x 的C 处(图甲)。
(1)若此时q 所受的静电力为F 1,试求F 1的大小。
(2)若A 的电荷量变为﹣Q ,其他条件都不变(图乙),此时q 所受的静电力大小为F 2,求F 2的大小。
高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。
【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.2.竖直放置的平行金属板A 、B 带等量异种电荷(如图),两板之间形成的电场是匀强电场.板间用绝缘细线悬挂着的小球质量m=4.0×10-5kg ,带电荷量q=3.0×10-7C ,平衡时细线与竖直方向之间的夹角α=37°.求:(1)A 、B 之间匀强电场的场强多大?(2)若剪断细线,计算小球运动的加速度,小球在A 、B 板间将如何运动? 【答案】(1)E =1×103N/C (2) 12.5m/s 2 【解析】 【详解】(1)小球受到重力mg 、电场力F 和绳的拉力T 的作用,由共点力平衡条件有:F =qE =mg tan α解得:537tan 410100.75 1.010N/C 310mg E q α--⨯⨯⨯===⨯⨯ 匀强电场的电场强度的方向与电场力的方向相同,即水平向右;(2)剪断细线后,小球做偏离竖直方向,夹角为37°匀加速直线运动,设其加速度为a 由牛顿第二定律有:cos mgma θ= 解得:212.5m/s cos ga θ== 【点睛】本题是带电体在电场中平衡问题,分析受力情况是解题的关键,并能根据受力情况判断此后小球的运动情况.3.如图所示的绝缘细杆轨道固定在竖直面内,半径为R 的1/6圆弧段杆与水平段杆和粗糙倾斜段杆分别在A 、B 两点相切,圆弧杆的圆心O 处固定着一个带正电的点电荷.现有一质量为m 83gR 速度通过A 点,小球能够上滑的最高点为C ,到达C 后,小球将沿杆返回.若∠COB =30°,小球第一次过A 点后瞬间对圆弧细杆向下的弹力大小为83mg ,从A 至C 小球克服库仑力做的功为232mgR -,重力加速度为g .求:(1)小球第一次到达B 点时的动能; (2)小球在C 点受到的库仑力大小;(3)小球返回A 点前瞬间对圆弧杆的弹力.(结果用m 、g 、R 表示) 【答案】(1)56mgR (2)34mg (3)2(833)- 【解析】 【分析】(1)由动能定理求出小球第一次到达B 点时的动能.(2)小球第一次过A 点后瞬间,由牛顿第二定律和库仑定律列式.由几何关系得到OC 间的距离,再由库仑定律求小球在C 点受到的库仑力大小.(3)由动能定理求出小球返回A 点前瞬间的速度,由牛顿运动定律和向心力公式求解小球返回A 点前瞬间对圆弧杆的弹力. 【详解】(1)小球从A 运动到B ,AB 两点为等势点,所以电场力不做功,由动能定理得:()0211cos602KB A mgR E mv --=-代入数据解得:56KB E mgR =(2)小球第一次过A 时,由牛顿第二定律得:22A v QqN k mg m R R+-=由题可知:83N mg =联立并代入数据解得:2Qqkmg R= 由几何关系得,OC 间的距离为:23cos30R r R ==︒小球在C 点受到的库仑力大小 :2223Qq QqF kk r R ==⎛⎫ ⎪⎝⎭库联立解得3=4F mg 库 (3)从A 到C ,由动能定理得:2102f A W mgR W mv ---=-电从C 到A ,由动能定理得:212f A W mgR W mv +='-电 由题可知:232W mgR -=电 小球返回A 点时,设细杆对球的弹力方向向上,大小为N ′,由牛顿第二定律得:22Av Qq N k mg mR R'-'+= 联立以上解得: ()28333N mg -'=,根据牛顿第三定律得,小球返回A 点时,对圆弧杆的弹力大小为()28333mg -,方向向下.4.如图,在空间中水平面MN 的下方存在竖直向下的匀强电场,质量为m 的带电小球由MN 上方H 处的A 点以初速度v 水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平,A 、B 、C 三点在同一直线上,且AB =2BC ,求:(1)A 、B 两点间的距离(2)带电小球在电场中所受的电场力【答案】2228v H H +mg【解析】 【详解】(1)小球在MN 上方做平抛运动竖直方向:212H gt = 水平方向:x vt =A 、B 两点间的距离22L H x =+联立以上各式解得222v HL H g=+ (2)带电小球进入电场后水平方向做匀速直线运动,竖直方向做匀减速直线运动,对带电小球运动的全过程,由动能定理得:()022H Hmg H F +-⋅= 解得F =3mg5.如图,绝缘细杆AB 倾角为α,在杆上B 点处固定有一电荷量为Q 的正电荷.现将带正电的小球由距B 点竖直高度为H 的A 点处无初速释放,小球下滑过程中电荷量不变.己知小球的质量为m 、电荷量为q .不计小球与细杆间的摩擦,整个装置处在真空中.静电力常量为k ,重力加速度为g .求:(1)正电荷Q 在A 处产生的场强大小; (2)小球刚释放时的加速度大小;(3)若A 、B 间的距离足够大,小球动能最大时球与B 点间的距离.【答案】(1) 22sin A Q E k H α=(2)22sin sin kQq a g mHαα=- (3)sin kQq R mg α=【解析】 【详解】 (I)根据2QE kr = 又因为sin Hr α=所以22sin A Q E kHα= (2)根据牛顿第二定律sin mg F ma α-=根据库仑定律Qq F kr= 解得22sin sin kQq a g mH αα=-(3)当小球受到的合力为零,即加速度为零时,动能最大 设此时小球与B 点间的距离为R ,则2sin kQqmg R α=解得sin kQqR mg α=答案:(1) 22sin A Q E k H α=(2)22sin sin kQq a g mHαα=- (3)sin kQq R mg α=6.如图所示,将带正电的中心穿孔小球A 套在倾角为θ的固定光滑绝缘杆上某处,在小球A 的正下方固定着另外一只带电小球B ,此时小球A 恰好静止,且与绝缘杆无挤压.若A 的电荷量为q ,质量为m ;A 与B 的距离为h ;重力加速度为g ,静电力常量为k ;A 与B 均可视为质点.(1)试确定小球B 的带电性质; (2)求小球B 的电荷量;(3)若出于某种原因,小球B 在某时刻突然不带电,求小球A 下滑到与小球B 在同一水平线的杆上某处时,重力对小球做功的功率.【答案】(1)带正电 (2)2B mgh q kq= (3)sin 2P mg gh =【解析】(1)由题意A 静止且与杆无摩擦,说明A 只受重力和库仑力,故AB 之相互排斥,A 的受力才能平衡,可知B 的电性(2)由库仑定律可得AB 间的库仑力,在对A 列平衡方程可得B 的电量(3)B 不带电后A 只受重力,故由机械能守恒,可得A 的速度,进而得到重力功率 【详解】(1)根据题意:小球A 受到B 的库仑力必与A 受到的重力平衡,即A 、B 之间相互排斥,所以B 带正电.(2)由库仑定律,B 对A 的库仑力为F =2Bkqq h , 由平衡条件有mg =2Bkqq h 解得q B =2mgh kq. (3)B 不带电后,小球A 受到重力、支持力作用沿杆向下做匀加速直线运动,设到达题中所述位置时速度为v ,由机械能守恒定律有mgh =12mv 2, 解得v =2gh所以重力的瞬时功率为P =mgv sin θ=mg sin θ2gh .二、必修第3册 静电场中的能量解答题易错题培优(难)7.如图所示,水平面上有相距02m L =的两物体A 和B ,滑块A 的质量为2m ,电荷量为+q ,B 是质量为m 的不带电的绝缘金属滑块.空间存在有水平向左的匀强电场,场强为0.4mgE q=.已知A 与水平面间的动摩擦因数10.1μ=,B 与水平面间的动摩擦因数20.4μ=,A 与B 的碰撞为弹性正碰,且总电荷量始终不变(g 取10m/s 2).试求:(1)A 第一次与B 碰前的速度0v 的大小; (2)A 第二次与B 碰前的速度大小; (3)A 、B 停止运动时,B 的总位移x . 【答案】(1)2m/s (2)2m/s 3(3)2m 【解析】【详解】(1)从A 开始运动到与B 碰撞过程,由动能定理:201001222EqL mgL mv μ-⋅=⋅解得:v 0=2m/s(2)AB 碰撞过程,由动量守恒和能量守恒可得:01222mv mv mv =+22201211122222mv mv mv ⋅=⋅+ 解得:12m/s 3v =28m/s 3v =(另一组解舍掉) 两物体碰撞后电量均分,均为q/2,则B 的加速度:222122m/s 2B E q mgqE a g m mμμ⋅-==-=- , A 的加速度:11122024A E q mgqE a g m mμμ⋅-⋅==-= 即B 做匀减速运动,A 做匀速运动;A 第二次与B 碰前的速度大小为12m/s 3v =; (3)B 做减速运动直到停止的位移:221216m 23B v x a ==AB 第二次碰撞时:1122222mv mv mv =+2221122211122222mv mv mv ⋅=⋅+ 解得:12112m/s 39v v == ,2212488m/s=m/s 393v v ==B 再次停止时的位移2222416m 23B v x a == 同理可得,第三次碰撞时,12132322mv mv mv =+22212132311122222mv mv mv ⋅=⋅+可得131212m/s 327v v ==,23123488m/s m/s 3273v v === B 第3次停止时的位移2223616m 23B v x a == 同理推理可得,第n 次碰撞,碰撞AB 的速度分别为:11n-112m/s 33n n v v ==(),2n 1n-1)48m/s 33nv v ==( B 第n 次停止时的位移:22n 216m 23n nB v x a ==则A 、B 停止运动时,B 的总位移12324622++16161616m m+m+m 33331=2(1-)m3nn n x x x x x =+⋅⋅⋅+=+⋅⋅⋅+ 当n 取无穷大时, A 、B 停止运动时,B 的总位移2m x =.8.如图所示,在直角坐标系xoy 的第一象限中,存在竖直向下的匀强电场,电场强度大小为4E 0,虚线是电场的理想边界线,虚线右端与x 轴的交点为A ,A 点坐标为(L 、0),虚线与x 轴所围成的空间内没有电场;在第二象限存在水平向右的匀强电场.电场强度大小为E 0.()M L L -、和()0N L -、两点的连线上有一个产生粒子的发生器装置,产生质量均为m ,电荷量均为q 静止的带正电的粒子,不计粒子的重力和粒子之间的相互作用,且整个装置处于真空中.已知从MN 上静止释放的所有粒子,最后都能到达A 点:(1)若粒子从M 点由静止开始运动,进入第一象限后始终在电场中运动并恰好到达A 点,求到达A 点的速度大小;(2)若粒子从MN 上的中点由静止开始运动,求该粒子从释放点运动到A 点的时间; (3)求第一象限的电场边界线(图中虚线)方程. 【答案】(1)010qE L v m=2)0322mL t qE =3)22()y Lx x L =-(0)x L ≤≤【解析】试题分析:(1)由动能定理:200142qE L qE Lmv +=,得:010qE L v m= (2)分析水平方向的运动:粒子先匀加速位移L ,再匀速位移L 到第一象限的速度20012qE L mv =,匀加速时间102L t v =,匀速时间20L t v =,则总时间120322mL t t t qE =+= (3)设粒子从MN 线上某点由静止释放,经第一象限电场边界交点(,)Q x y ,后做匀速直线运动到A 点,在第一象限做类平抛运动,水平:0x v t =,竖直方向:212h at =反向延长AQ 与水平位移交点为其中点,还有以下几何关系:201()22x a v yx L x=-, 且202v a L =',003/4/qE m a a qE m'== 推出边界方程:22()y Lx x L=-(0)x L ≤≤ 考点:本题考查了带电粒子在电场中的运动、类平抛运动、运动的分解、动能定理.9.静电场方向平行于x 轴,其电势ϕ随x 的分布可简化为如图所示的折线,图中0ϕ和d 为已知量。
高中物理必修3物理 全册全单元精选测试卷培优测试卷一、必修第3册 静电场及其应用解答题易错题培优(难)1.如图所示,在竖直平面内有一固定的光滑绝缘轨道,圆心为O ,半径为r ,A 、B 、C 、D 分别是圆周上的点,其中A 、C 分别是最高点和最低点,BD 连线与水平方向夹角为37︒。
该区间存在与轨道平面平行的水平向左的匀强电场。
一质量为m 、带正电的小球在轨道内侧做完整的圆周运动(电荷量不变),经过D 点时速度最大,重力加速度为g (已知sin370.6︒=,cos370.8︒=),求:(1)小球所受的电场力大小;(2)小球经过A 点时对轨道的最小压力。
【答案】(1)43mg ;(2)2mg ,方向竖直向上. 【解析】 【详解】(1)由题意可知 :tan 37mgF︒= 所以:43F mg =(2)由题意分析可知,小球恰好能做完整的圆周运动时经过A 点对轨道的压力最小. 小球恰好做完整的圆周运动时,在B 点根据牛顿第二定律有:2sin 37B v mgm r︒= 小球由B 运动到A 的过程根据动能定理有:()22111sin 37cos3722B A mgr Fr mv mv ︒︒--+=-小球在A 点时根据牛顿第二定律有:2AN v F mg m r+=联立以上各式得:2N F mg =由牛顿第三定律可知,小球经过A 点时对轨道的最小压力大小为2mg ,方向竖直向上.2.如图所示,在光滑绝缘水平面上B 点的正上方O 处固定一个质点,在水平面上的A 点放另一个质点,两个质点的质量均为m ,带电量均为+Q 。
C 为AB 直线上的另一点(O 、A 、B 、C 位于同一竖直平面上),AO 间的距离为L ,AB 和BC 间的距离均为2L,在空间加一个水平方向的匀强电场后A 处的质点处于静止。
试问: (1)该匀强电场的场强多大?其方向如何?(2)给A 处的质点一个指向C 点的初速度,该质点到达B 点时所受的电场力多大? (3)若初速度大小为v 0,质点到达C 点时的加速度和速度分别多大?【答案】(1)22kQ L ,方向由A 指向C ;273kQ ;(3)22kQ mL 220kQ v mL+【解析】 【分析】(1)在空间加一个水平方向的匀强电场后A 处的质点处于静止,对A 进行受力分析,根据平衡条件求解。