高等数学(上册)复习总结
- 格式:doc
- 大小:38.50 KB
- 文档页数:7
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f).2.分段函数: ⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b)㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A ynn =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}n y 必定有界.2.函数的极限: ⑴当∞→x时,)(x f 的极限:Ax f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f xx =→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 000㈡无穷大量和无穷小量 1.无穷大量:+∞=)(lim x f称在该变化过程中)(x f 为无穷大量。
高数重点知识总结1、基本初等函数:反函数(y=arctanx),对数函数(y=lnx),幂函数(y=x),指数函数(xa y =),三角函数(y=sinx),常数函数(y=c) 2、分段函数不是初等函数。
3、无穷小:高阶+低阶=低阶 例如:1lim lim020==+→→x xxx x x x 4、两个重要极限:()e x ex xxxx xx x =⎪⎭⎫⎝⎛+=+=∞→→→11lim 1lim )2(1sin lim )1(10 经验公式:当∞→→→)(,0)(,0x g x f x x ,[])()(lim )(0)(1lim x g x f x g x x x x ex f →=+→例如:()33lim 10031lim -⎪⎭⎫ ⎝⎛-→==-→e ex x x xx x5、可导必定连续,连续未必可导。
例如:||x y =连续但不可导。
6、导数的定义:()0000')()(lim)(')()(limx f x x x f x f x f xx f x x f x x x =--=∆-∆+→→∆7、复合函数求导:[][])(')(')(x g x g f dxx g df ∙= 例如:xx x x x x x y x x y ++=++=+=24122211', 8、隐函数求导:(1)直接求导法;(2)方程两边同时微分,再求出dy/dx例如:yxdx dy ydy xdx y xy yy x y x -=⇒+-=⇒=+=+22,),2('0'22,),1(122左右两边同时微分法左右两边同时求导解:法 9、由参数方程所确定的函数求导:若⎩⎨⎧==)()(t h x t g y ,则)(')('//t h t g dt dx dt dy dx dy ==,其二阶导数:()[])(')('/)('/)/(/22t h dt t h t g d dt dx dt dx dy d dx dx dy d dx y d === 10、微分的近似计算:)(')()(000x f x x f x x f ∙∆=-∆+ 例如:计算 ︒31sin11、函数间断点的类型:(1)第一类:可去间断点和跳跃间断点;例如:xxy sin =(x=0是函数可去间断点),)sgn(x y =(x=0是函数的跳跃间断点)(2)第二类:振荡间断点和无穷间断点;例如:⎪⎭⎫⎝⎛=x x f 1sin )((x=0是函数的振荡间断点),x y 1=(x=0是函数的无穷间断点)12、渐近线:水平渐近线:c x f y x ==∞→)(lim铅直渐近线:.)(lim 是铅直渐近线,则若,a x x f ax =∞=→斜渐近线:[]ax x f b xx f a b ax y x x -==+=∞→∞→)(lim ,)(lim,即求设斜渐近线为例如:求函数11223-+++=x x x x y 的渐近线13、驻点:令函数y=f(x),若f'(x0)=0,称x0是驻点。
高等数学上册第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim 2) 函数极限δδε-<-<∀>∃>∀⇔=→Ax f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f x x +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim,~,~存在,则(无穷小代换)4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→xxxb)e xx xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x~1- (a x a xln ~1-)d) x x ~)1ln(+ (a xx a ln ~)1(log +)e)x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
大一高数上所有知识点总结一、函数与极限1. 函数的概念与性质1.1 函数的定义1.2 函数的性质2. 极限的概念与性质2.1 极限的定义2.2 极限存在的充分条件2.3 极限的性质及四则运算法则3. 无穷小量与无穷大量3.1 无穷小量的概念与性质3.2 无穷大量的概念与性质4. 极限的计算4.1 用夹逼准则求极限4.2 用无穷小量比较求极限4.3 用洛必达法则求极限4.4 用泰勒公式求极限二、导数与微分1. 导数的概念与求导法则1.1 导数的概念1.2 导数的计算与求导法则1.3 隐函数的导数1.4 高阶导数2. 函数的微分与高阶导数2.1 函数的微分2.3 高阶导数的概念与计算3. 函数的增减性与凹凸性3.1 函数的单调性3.2 函数的最值与最值存在条件3.3 函数的凹凸性及拐点三、函数的应用1. 泰勒公式在误差估计中的应用2. 函数的极值及其应用3. 函数的图形与曲线的切线方程4. 收敛性与闭区间紧性的概念及应用四、不定积分1. 不定积分的概念与性质1.1 不定积分的定义1.2 不定积分的性质1.3 不定积分的基本公式2. 不定积分的计算2.1 一些特殊函数的不定积分2.2 有理函数的不定积分2.3 有理三角函数的不定积分2.4 特殊的不定积分解法五、定积分1. 定积分的概念与性质1.1 定积分的定义1.2 定积分的性质2. 定积分的几何应用2.1 定积分与曲线下面积2.2 定积分与旋转体的体积计算2.3 定积分与空间几何体的体积计算六、微分方程1. 微分方程的概念与基本性质1.1 微分方程的定义1.2 微分方程的基本性质2. 常微分方程的解法2.1 一阶微分方程的解法2.2 二阶微分方程的解法2.3 高阶微分方程的解法3. 微分方程在物理问题中的应用3.1 弹簧振动问题3.2 电路的动态特性问题3.3 理想气体的状态方程问题七、多元函数微积分1. 多元函数的概念与性质1.1 多元函数的定义1.2 多元函数的导数与偏导数1.3 多元函数的微分2. 多元函数的极值与条件极值2.1 多元函数的极值点2.2 多元函数的条件极值点3. 二重积分与三重积分3.1 二重积分的概念与性质3.2 二重积分的计算3.3 三重积分的概念与性质3.4 三重积分的计算4. 重积分在几何与物理中的应用4.1 重积分与平面图形的面积计算4.2 重积分与曲面旋转体的体积计算4.3 重积分与空间物体的质量与重心计算八、无穷级数1. 数项级数的概念与性质1.1 数项级数的概念1.2 数项级数收敛的充分条件1.3 数项级数的审敛法2. 幂级数2.1 幂级数的概念与性质2.2 幂级数的收敛域2.3 幂级数在收敛域上的一致收敛性3. 函数项级数3.1 函数项级数的概念与性质3.2 函数项级数收敛的判别法3.3 函数项级数的一致收敛性以上是大一高数的知识点总结,总结了函数与极限、导数与微分、函数的应用、不定积分、定积分、微分方程、多元函数微积分、无穷级数等内容。
高等数学(上)重要知识点归纳第一章 函数、极限与连续一、极限的定义与性质 1、定义(以数列为例),,0lim N a x n n ∃>∀⇔=∞→ε当N n >时,ε<-||a x n2、性质(1) )()()(lim 0x A x f A x f xx α+=⇔=→,其中)(x α为某一个无穷小。
(2)(保号性)若0)(lim 0>=→A x f xx ,则,0>∃δ当),(0δx U x o∈时,0)(>x f 。
(3)*无穷小乘以有界函数仍为无穷小。
二、求极限的主要方法与工具 1、*两个重要极限公式 (1)1sin lim=∆∆→∆ (2)e =◊+◊∞→◊)11(lim 2、两个准则 (1) *夹逼准则 (2)单调有界准则 3、*等价无穷小替换法常用替换:当0→∆时(1)∆∆~sin (2)∆∆~tan(3)∆∆~arcsin (4)∆∆~arctan(5)∆∆+~)1ln( (6)∆-∆~1e (7)221~cos 1∆∆- (8)nn ∆-∆+~114、分子或分母有理化法5、分解因式法 6用定积分定义 三、无穷小阶的比较* 高阶、同阶、等价1、连续的定义*)(x f 在a 点连续)()()()()(lim 0lim 0a f a f a f a f x f y ax x ==⇔=⇔=∆⇔-+→→∆2、间断点的分类⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧其他震荡型(来回波动))无穷型(极限为无穷大第二类但不相等)跳跃型(左右极限存在可去型(极限存在)第一类 3、曲线的渐近线*ax x f A y A x f ax x =∞===→∞→则存在渐近线:铅直渐近线:若则存在渐近线:水平渐近线:若,)(lim )2(,)(lim )1(五、闭区间连续函数性质 1、最大值与最小值定理 2、介值定理和零点定理第二章 导数与微分一、导数的概念 1、导数的定义*a f x f a f x a f y dy a f y ax x x a x a x -=-∆+=∆=='='→→∆→∆==)()(lim )()(lim lim |)(|002、左右导数 左导数ax a f x f x y a f a x x --=∆∆='--→→∆-)()(limlim)(0 右导数ax a f x f x y a f a x x --=∆∆='++→→∆+)()(limlim)(03、导数的几何意义*k a f a x f y a x 处的切线斜率在点(曲线))(,)(|='=4、导数的物理意义加速度)速度)则若运动方程:()()()(,)(()()(t a t v t s t v t s t s s ='=''='= 5、可导与连续的关系: 连续,反之不然。
高数〔上册〕期末复习要点第一章:1、极限〔夹逼准则〕2、连续〔学会用定义证明一个函数连续,判断间断点类型〕第二章:1、导数〔学会用定义证明一个函数是否可导〕注:连续不一定可导,可导一定连续2、求导法则〔背〕3、求导公式也可以是微分公式第三章:1、微分中值定理〔一定要熟悉并灵活运用--第一节〕2、洛必达法则3、泰勒公式拉格朗日中值定理4、曲线凹凸性、极值〔高中学过,不需要过多复习〕5、曲率公式曲率半径第四章、第五章:积分不定积分:1、两类换元法〔变dx/变前面〕2、分部积分法〔注意加C 〕〔最好都自己推导一遍,好记〕定积分: 1、定义 2、反常积分第六章:定积分的应用主要有几类:极坐标、求做功、求面积、求体积、求弧长第七章:向量问题不会有很难1、方向余弦2、向量积3、空间直线〔两直线的夹角、线面夹角、求直线方程〕 3、空间平面4、空间旋转面〔柱面〕高数解题技巧。
〔高等数学、考研数学通用〕高数解题的四种思维定势●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。
●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。
●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。
●第四句话:对定限或变限积分,假设被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。
线性代数解题的八种思维定势●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。
●第二句话:假设涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。
●第三句话:假设题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE 再说。
第一章 函数极限与连续(一) 本章重点(important points ):1. 了解极限的定义(重点是理解极限定义中的“任意”和“存在”,以及N 与ε的相关性;动态变化性)及求法,定义要从代数及几何两方面进行理解。
2. 理解以及运用两个重要的极限公式(及其拓展形式)。
3. 无穷小理论及其运用(主要是等价无穷小代换,在求极限以及一些证明题中会经常用到,so it is also important!)。
4. 函数的连续(这是以后很多公式定理运用的条件,所以必须掌握地very good !)。
5. 分段函数的连续性,可导性,及其极限值的求法。
(二) 知识点分析(analysis ):常用不等式1) 绝对值不等式: ||x |−|y ||≤|x ±y |≤|x |+|y | 2) 三角不等式: |x −z |=|x −y +y −z |≤|xy |+|yz | 3) Bernoulli Inequality(贝努力不等式):若 x>-1, n ∈z, 且n>=2 则(1+x )n ≥1+nx 4) Cauchy Inequality (柯西不等式):(∑x i y i )n i=12≤(∑x i 2n i=1)∙(∑y i 2n i=1)5) e x ≥1+x 6) ln(1+n)≤x 7) (1+1n )n<(1+1n+1)n+1&& (1+1n)n+1>(1+1n)n+2即:数列{(1+1n )n } 单调递增, 数列{(1+1n )n+1} 单调递减。
8) 设 x ∈z +, 则 1x+1<ln (1+1n )<1x9) 设 x ∈z +, 则2√n<1∗3∗5∗...∗(2n−1)2∗4∗6∗.. (2)<√2n+1二. 不等式的运用案例eg1. 证明柯西不等式 (∑x i y i )n i=12≤(∑x i 2n i=1)∙(∑y i 2n i=1)证法一:(构造一个关于t 的二次方程,并利用其判别式)因为 x i, y i ∈R, i =1,2,3…..,n. 所以 ∀t ∈R , 有(x i +ty i )2≥0.→f (t )=∑(x i +ty i )2n i=1=∑x i 2+(2∑x i y i n i=1)t +(∑y i 2n i=1)n i=1t 2≥0若∑y i 2=0,则。
高等数学知识点总结高等数学知识点总结(上)一、微积分微积分是数学中的一个重要分支,包括微分和积分两部分。
微分是研究函数变化率和极值,积分是求解曲线下面的面积。
1.导数和微分导数是函数变化率的衡量指标,定义为函数在一点处的切线斜率。
微分是导数的微小增量,通常用dx来表示。
常见的微分公式:(1)(x^n)' = nx^(n-1)(2)(sinx)’=cosx(3)(cosx)’=-sinx(4)(ex)’=ex2.微分应用微分在科学工程中的应用非常广泛,如曲线的近似计算、变化率的分析和优化问题的求解等。
常见的微分应用题:(1)求解函数在某个点处的导数;(2)求解曲线y=f(x)在某一点x=x0处的切线方程;(3)求解函数极值的位置;(4)求解函数的最大值和最小值。
3.积分积分是微积分的另一大分支,通常被用来求解曲线下的面积。
三种积分:(1)定积分(2)不定积分(3)曲线积分常见的定积分计算方法:(1)换元法(2)分部积分法(3)长条法4.积分应用积分在工程科学中的应用非常广泛,如求解曲线下的面积、物理量的计算、概率分布的求解等。
常见的积分应用题:(1)求解曲线下的面积;(2)求解物理量的分布规律;(3)求解概率分布函数。
二、数学分析数学分析是研究实数域函数极限、连续、可导性以及积分的方法和应用的分支。
可分为实数的函数分析和向量的函数分析两部分。
1.实数的函数分析实数函数的极限,连续性以及可导性是实数的函数分析中研究的重点。
常见的函数分析公式:(1)函数极限的定义(2)连续函数的定义(3)可导函数的定义2.向量的函数分析向量的函数分析是研究向量值函数的极限、连续、可导性以及曲线积分的方法和应用。
常见的向量的函数分析公式:(1)向量函数的极限(2)向量函数的连续性(3)向量函数的导数(4)向量函数的曲线积分3.数列和级数数列和级数是数学分析中的重要概念,常用于求解无限积分与求和等问题。
常见的数列公式:(1)数列极限的定义(2)数列序列收敛定理(3)调和数列发散定理常见的级数公式:(1)级数收敛的定义(2)级数收敛和发散判定标准(3)比值判别法和根值判别法三、线性代数线性代数是数学中的一个重要分支,主要研究向量、矩阵、行列式和线性方程组等内容。
知识点总结高数一一、极限与连续1. 极限的概念及性质极限是数列或函数在趋于某个值时的性质,其定义包括数列极限和函数极限两种情况。
数列极限定义为:对于任意的ε>0,存在N∈N,使得当n>N时,|an-a|<ε成立。
函数极限定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-L|<ε成立。
极限的性质包括唯一性、有界性、局部性、夹逼性等。
2. 极限运算法则极限运算法则包括四则运算法则、复合函数极限法则、比较大小法则、夹逼定理等,通过这些法则可以简化极限运算的复杂性。
3. 无穷小与无穷大无穷小是指当自变量趋于某个值时,函数值无穷小于此值的函数。
无穷大则是指当自变量趋于某个值时,函数值无穷大于此值的函数。
在极限运算中,无穷小和无穷大的性质十分重要。
4. 连续的概念及性质连续函数的定义为:对于任意的ε>0,存在δ>0,使得当0<|x-a|<δ时,|f(x)-f(a)|<ε成立。
连续函数的性质包括局部性、初等函数的连续性、复合函数的连续性等。
二、导数与微分1. 导数的概念与求导法则导数是函数在某一点处的变化率,导数的定义为:f'(x)=lim(h→0) (f(x+h)-f(x))/h。
求导法则包括基本导数公式、和差积商的求导法则、复合函数求导法则等。
2. 高阶导数与隐函数求导高阶导数为求导多次的结果,隐函数求导是指对于包含多个变量的函数,通过对某个变量求导来求得函数在该点的导数。
3. 微分的概念与微分公式微分是函数在某一点处的局部线性近似,微分的定义为:df(x)=f'(x)dx。
微分公式包括基本微分公式、换元法、分部积分法等。
4. 隐函数与参数方程的导数隐函数与参数方程的导数是指对于包含多个变量的方程,通过对某个变量求导来求得函数在该点的导数。
三、微分中值定理与泰勒公式1. 微分中值定理微分中值定理包括拉格朗日中值定理、柯西中值定理等,它们描述了函数在某些条件下的性质,对于函数的研究有重要意义。
高等数学教材上册知识总结高等数学是学习数学的一门重要课程,作为理工科学生必备的核心基础课之一,它包含了许多重要的知识点和概念。
下面是对高等数学教材上册内容的一些知识总结。
一、函数与极限1. 函数的定义与性质:函数是一种关系,通常表示为y=f(x),其中x是自变量,y是因变量。
函数的性质包括定义域、值域、单调性、奇偶性等。
2. 极限的概念与性质:极限是函数在某一点或无穷远处的趋势,常用极限运算法则进行计算,包括极限存在准则、夹逼定理、极限的四则运算等。
二、导数与微分1. 导数的定义与求法:导数表示函数在某一点的瞬时变化率,可以通过极限的方式进行求解,常见的导数求法包括基本求导公式、常用导数公式、隐函数求导等。
2. 微分的概念与应用:微分是函数在某一点的线性近似,可以用于求极值、判凹凸性等问题,同时也有微分中值定理、泰勒展开式等应用。
三、积分与不定积分1. 积分的定义与计算:积分是导数的逆运算,常见积分计算方法有换元积分法、分部积分法、有理函数的积分等。
2. 不定积分与定积分:不定积分表示函数的一类原函数,定积分是用于计算曲线下面的面积,同时有积分中值定理、变限积分等相关概念和应用。
四、级数与数项级数1. 级数的概念和性质:级数是数列的和,包括等差数列、等比数列等各种类型,常见级数有几何级数、调和级数等。
2. 数项级数的敛散性判定:敛散性判定是判断数项级数和的收敛或发散,常用方法有比较判别法、比值判别法、积分判别法等。
五、常微分方程1. 常微分方程的基本概念:常微分方程是关于未知函数及其导数的方程,包括一阶常微分方程和二阶常微分方程等。
2. 常微分方程的解法:常微分方程的解法包括分离变量法、齐次方程解法、一阶线性常微分方程解法等。
六、空间解析几何1. 空间直线与平面:空间直线的向量方程、参数方程及点线距离等相关内容,平面的一般方程及点法式方程等。
2. 空间曲线与曲面:空间曲线的参数方程、一般方程,曲面的一般方程、球面、圆锥面等的方程及性质。
高数大一上册知识点笔记1. 函数与极限:- 函数的概念及基本性质- 极限的定义与性质- 极限运算法则2. 导数与微分:- 导数的定义与计算- 导数的几何意义与物理意义- 微分的概念与计算3. 微分中值定理与高阶导数:- 罗尔定理- 拉格朗日中值定理- 柯西中值定理- 高阶导数的概念与计算4. 不定积分与定积分:- 不定积分的定义与基本性质- 基本积分公式与常用积分公式 - 定积分的概念与性质- 牛顿-莱布尼茨公式5. 定积分的应用:- 曲线长度与曲面面积- 物理应用:质量、质心与静力学6. 微分方程:- 高阶导数与高阶线性微分方程 - 一阶线性微分方程- 可分离变量的一阶微分方程- 齐次线性微分方程7. 无穷级数:- 数列极限与数列的收敛性质 - 正项级数与收敛判别法- 收敛级数的性质- 幂级数及其收敛域8. 函数序列与函数级数:- 函数序列的定义与性质- 函数序列的一致收敛性- 麦克劳林级数与泰勒级数9. 空间解析几何:- 空间直线与平面的方程- 空间曲线与曲面的方程- 空间直线与平面的位置关系 - 空间曲线与曲面的位置关系10. 多元函数与偏导数:- 多元函数的概念与性质- 偏导数的定义与计算- 高阶偏导数与混合偏导数11. 多元函数的极值与条件极值: - 多元函数的极值与最大最小值 - 条件极值与拉格朗日乘数法12. 重积分:- 二重积分的概念与计算- 二重积分的性质与应用- 三重积分的概念与计算- 三重积分的性质与应用13. 曲线与曲面积分:- 第一类曲线积分的概念与计算 - 第二类曲线积分的概念与计算- 曲面积分的概念与计算14. 广义积分:- 广义积分的概念与收敛性- 参数积分的概念与性质- Gamma函数与Beta函数的定义与性质这些是高数大一上册的主要知识点笔记,对于每个知识点,可以进一步展开,提供详细的定义、定理、公式和实例,以帮助理解和掌握相关内容。
大一上学期的高数课程重点在于奠定基础,熟练掌握这些知识点对于后续的学习和应用都具有重要意义。
高等数学上册重要知识点 第一章 函数与极限一. 函数的概念1 两个无穷小的比拟设0)(lim ,0)(lim ==x g x f 且l x g x f =)()(lim〔1〕l = 0,称f (x )是比g (x )高阶的无穷小,记以f (x)= 0[)(x g ],称g(x)是比f(x)低阶的无穷小。
〔2〕l ≠0,称f (x )与g (x )是同阶无穷小。
〔3〕l = 1,称f (x )与g (x )是等价无穷小,记以f (x ) ~ g (x )2 常见的等价无穷小当x →0时sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x1−cos x ~ 2/2^x , x e −1 ~ x ,)1ln(x +~ x ,1)1(-+αx ~ x α二 求极限的方法1.两个准那么准那么1.单调有界数列极限一定存在准那么2.〔夹逼定理〕设g (x ) ≤f (x ) ≤h (x ) 放缩求极限假设A x h A x g ==)(lim ,)(lim ,那么A x f =)(lim2.两个重要公式 公式11sin lim0=→xxx公式2e x x x =+→/10)1(lim3.用无穷小重要性质和等价无穷小代换 4.★用泰勒公式当x 0→时,有以下公式,可当做等价无穷小更深层次)()!12()1(...!5!3sin )(!...!3!2112125332++++-+++-=++++++=n n n n nxx o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n nn x o nx x x x x +-++-=++ )(!))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα)(12)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法那么定理1 设函数)(x f 、)(x F 满足以下条件:〔1〕0)(lim 0=→x f x x ,0)(lim 0=→x F x x ;〔2〕)(x f 与)(x F 在0x〔3〕)()(lim 0x F x f x x ''→这个定理说明:当)()(lim 0x F x f x x ''→存在时,)(lim 0x F x x →也存在且等于)()(lim 0x F x f x x ''→;当)()(lim0x F x f x x ''→为无穷大时,)()(lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达〔H L 'ospital 〕法那么.例1计算极限0e 1lim x x x→-.解该极限属于“00〞型不定式,于是由洛必达法那么,得0e 1lim x x x→-0e lim 11x x →==. 例2计算极限0sin lim sin x axbx →.解该极限属于“0〞型不定式,于是由洛必达法那么,得00sin cos lim lim sin cos x x ax a ax a bx b bx b→→==. 注假设(),()f x g x ''仍满足定理的条件,那么可以继续应用洛必达法那么,即()()()lim lim lim ()()()x a x a x a f x f x f x g x g x g x →→→'''==='''二、∞∞型未定式 定理2 设函数)(x f 、)(x F 满足以下条件: 〔1〕∞=→)(lim 0x f x x ,∞=→)(lim 0x F x x ;〔2〕)(x f 与)(x F 在0x 的某一去心邻域可导,且0)(≠'x F ;〔3〕)()(lim 0x F x f x x ''→注:上述关于0x x →时未定式∞∞时未定式∞∞型同样适用.例3计算极限lim (0)nx x x n e →+∞>.解所求问题是∞∞型未定式,连续n 次施行洛必达法那么,有lim e n x x x →+∞1lim e n x x nx -→+∞=2(1)lim e n xx n n x -→+∞-= !lim 0e x x n →+∞===. 使用洛必达法那么时必须注意以下几点: 〔1〕洛必达法那么只能适用于“00〞和“∞∞〞型的未定式,其它的未定式须先化简变形成“0〞或“∞∞〞型才能运用该法那么; 〔2〕只要条件具备,可以连续应用洛必达法那么;〔3〕洛必达法那么的条件是充分的,但不必要.因此,在该法那么失效时并不能断定原极限不存在.7.利用导数定义求极限根本公式)()()(lim 0'000x f xx f x x f x =∆-∆+→∆(如果存在〕8.利用定积分定义求极限根本格式⎰∑==∞→101)()(1lim dx x f n kf n n k n 〔如果存在〕三.函数的连续点的分类函数的连续点分为两类: (1)第一类连续点设0x 是函数y = f (x )的连续点。
高等数学知识点总结大一大一高等数学知识点总结。
一、函数与极限。
1. 函数。
- 定义:设数集D⊆ R,则称映射f:D→ R为定义在D上的函数,通常记为y = f(x),x∈ D。
- 函数的特性。
- 有界性:若存在M>0,使得对任意x∈ X⊆ D,都有| f(x)|≤ M,则称f(x)在X上有界。
- 单调性:设函数y = f(x)的定义域为D,区间I⊆ D。
如果对于区间I上任意两点x_1及x_2,当x_1 < x_2时,恒有f(x_1)(或f(x_1)>f(x_2)),则称函数y =f(x)在区间I上是单调增加(或单调减少)的。
- 奇偶性:设函数y = f(x)的定义域D关于原点对称,如果对于任意x∈D,有f(-x)=f(x),则称f(x)为偶函数;如果对于任意x∈ D,有f(-x)= - f(x),则称f(x)为奇函数。
- 周期性:设函数y = f(x)的定义域为D,如果存在一个正数T≠0,使得对于任意x∈ D有(x± T)∈ D,且f(x + T)=f(x),则称y = f(x)为周期函数,T称为y = f(x)的周期。
- 复合函数:设函数y = f(u)的定义域为D_1,函数u = g(x)在D上有定义且g(D)⊆ D_1,则由下式确定的函数y = f[g(x)],x∈ D称为由函数u = g(x)与函数y = f(u)构成的复合函数,它的定义域为D,变量u称为中间变量。
- 反函数:设函数y = f(x)的定义域为D,值域为W。
如果对于值域W中的任一y值,从关系式y = f(x)中可确定唯一的一个x值,则称变量x为变量y的函数,记为x = f^-1(y),y∈ W,称x = f^-1(y)为函数y = f(x)的反函数。
习惯上y = f(x)的反函数记为y = f^-1(x)。
2. 极限。
- 极限的定义。
- 数列极限:设{x_n}为一数列,如果存在常数a,对于任意给定的正数varepsilon(不论它多么小),总存在正整数N,使得当n > N时,不等式| x_n - a|都成立,那么就称常数a是数列{x_n}的极限,或者称数列{x_n}收敛于a,记为lim_n→∞x_n=a。
高数上册知识点总结高等数学是大多数理工科学生在大学学习的重要课程之一。
高等数学上册主要涵盖了一元函数、极限与连续、导数与微分、微分中值定理、不定积分等内容。
本文将对高等数学上册的主要知识点进行总结与归纳,希望对学习该课程的同学提供一些帮助。
一、一元函数一元函数是高等数学的基础,它是一种将输入的实数映射为输出实数的数学关系。
在高等数学上册中,我们主要关注函数的定义域、值域、奇偶性、周期性、反函数以及函数图像等方面的内容。
在学习一元函数时,需要掌握常见函数的性质和图像,比如幂函数、指数函数、对数函数和三角函数等。
二、极限与连续极限是高等数学的核心概念之一。
在学习极限时,需要了解数列极限与函数极限的定义,熟练掌握极限的计算方法,掌握常用极限的性质和相关定理。
在极限的概念基础上,我们可以进一步学习函数的连续性和间断点的分类,包括可去间断点、跳跃间断点和无穷间断点等。
三、导数与微分导数是描述函数变化率的重要工具,也是微分学的基础。
在学习导数与微分时,需要掌握导数的定义、导数的计算、导数的性质以及常用函数的导数。
此外,需要了解微分的概念和微分中值定理,以及利用导数求函数的单调性、极值和凹凸性等相关内容。
四、微分中值定理微分中值定理是微积分中的重要定理,它是导数与函数的关系的基本结论。
微分中值定理包括拉格朗日中值定理、柯西中值定理和罗尔中值定理等。
在学习微分中值定理时,需要理解定理的假设条件,掌握定理的几何和物理意义,并能熟练运用定理解决相关问题。
五、不定积分不定积分是微积分中的重要内容,它是定积分的逆运算。
在学习不定积分时,需要了解不定积分的定义和性质,熟练掌握不同类型函数的不定积分计算方法,包括基本初等函数的不定积分、换元积分法和分部积分法等。
此外,还需要掌握不定积分求解定积分和求解微分方程等应用。
六、小结高等数学上册涵盖了一元函数、极限与连续、导数与微分、微分中值定理、不定积分等重要内容。
在学习这些知识点时,需要掌握其基本定义和性质,熟练掌握计算方法和相关定理,并能够灵活运用于解决实际问题。
高等数学上册知识点第一章 函数与极限 (一) 函数1、 函数定义及性质(有界性、单调性、奇偶性、周期性);2、 反函数、复合函数、函数的运算;3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数、双曲函数、反双曲函数; 4、 函数的连续性与间断点;函数)(x f 在0x 连续 )()(lim 00x f x f xx =→第一类:左右极限均存在。
间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在。
无穷间断点、振荡间断点5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定理及其推论。
(二) 极限 1、 定义 1) 数列极限εε<->∀N ∈∃>∀⇔=∞→a x N n N a x n n n , , ,0lim2) 函数极限εδδε<-<-<∀>∃>∀⇔=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00时,当左极限:)(lim )(00x f x f x x -→-= 右极限:)(lim )(00x f x f xx +→+= )()( )(lim 000+-→=⇔=x f x f A x f x x 存在2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤2)a z y n n n n ==→∞→∞lim lim a x n n =∞→lim2) 单调有界准则:单调有界数列必有极限。
3、 无穷小(大)量1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量。
2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ααββαo +=⇔;Th2 αβαβαβββαα''=''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则;3) 极限运算准则及函数连续性; 4) 两个重要极限:a) 1sin lim 0=→xx x b)e x x xx xx =+=++∞→→)11(lim )1(lim 10 5) 无穷小代换:(0→x ) a)x x x x x arctan ~arcsin ~tan ~sin ~b) 221~cos 1x x -c) x e x ~1- (a x a x ln ~1-) d) x x ~)1ln(+ (ax x a ln ~)1(log +)e) x x αα~1)1(-+第二章 导数与微分 (一) 导数1、 定义:000)()(lim )(0x x x f x f x f x x --='→ 左导数:000)()(lim )(0x x x f x f x f x x --='-→-右导数:000)()(lim )(0x x x f x f x f x x --='+→+ 函数)(x f 在0x 点可导)()(00x f x f +-'='⇔2、 几何意义:)(0x f '为曲线)(x f y =在点())(,00x f x 处的切线的斜率。
高等数学(上册)复习总结
第一章函数、极限与连续
主要知识点:函数的概念;函数的奇偶性、有界性;复合函数;初等函数;极限的概念;极限的性质(唯一性、有界性、保号性);夹逼准则、单调有界原理、两个重要极限;无穷小的概念、无穷小阶的比较;等价无穷小代换性质、无穷小与有界函数乘积仍为无穷小之性质;函数的双侧极限与单侧极限(即左右极限)之关系;函数连续的概念及定义;判别间断点的类型;闭区间上连续函数的性质(零点定理、最值定理)。
主要技能测试点:
1.对极限概念的理解,并能灵活运用计算极限的各种方法计算极限;
2.对连续概念的理解,会讨论函数的连续、间断情形,并能判别间断点的类型。
主要题型:
1.函数复合;
2.计算各种类型的极限;
3.确定极限式中所含的参数;
3.无穷小阶的比较;
4.函数连续性的讨论及确定函数式中的参数(已知函数连续);5.判别间断点的类型;
6.利用零点定理讨论方程根的存在。
第二讲导数与微分
主要知识点:
导数定义;左右导数的定义及左右导数与导数的关系;可导与连续的关系;导数作为函数变化率的几何意义、物理意义;曲线的切线与法线方程;导数公式;求导法则(四则运算、复合函数、反函数);微分的概念;高阶导数。
主要技能测试点:
1、对导数定义的理解,运用导数定义求导数及求具有导数结构的极限;
2、掌握计算导数的各种方法,会求各类函数的导数。
3.运用导数的几何、物理意义解决有关曲线的斜率、瞬时速度等实际问题。
主要题型:
1、利用导数定义求导数及求具有导数结构的极限;
2、讨论函数在一点的连续性与可导性的;
3、求复合函数的导数(包括抽象复合函数的求导);
4、求隐函数和由参数方程所确定的函数的一、二阶导数;
5、求幂指函数的导数;
6、求高阶导数
第三讲 中值定理与导数应用
主要知识点:三个中值定理(罗尔、拉格郎日、柯西);洛必达法则;利用导数判别函数的单调性;极值的概念;函数取得极值的充分与必要条件;极值的判别法(一阶导数判别法、二阶导数判别法);求最值的方法;曲线的凹凸性的判别法及求拐点的方法;曲线的渐近线。
主要技能测试点:
1.对罗尔定理、拉格郎日定理的理解,会运用罗尔定理讨论)(x f '的零点(即方程0)(='x f 的根)问题及证明问题;
2.以导数作为研究函数的工具,综合研究函数的各种性态(单调性、极值、零点、凹凸性、拐点)的能力;
3.灵活运用洛必达法则求极限。
主要题型:
1.利用罗尔定理讨论)(x f '的零点(即方程0)(='x f 的根)问题及
证明问题;
2.利用洛必达法则求极限;
3.利用单调性证明不等式;
4.求函数的极值;
5.利用极值讨论方程0
f的根的个数;
x
)
(
6.求函数的最值;
7.判别曲线的凹凸与拐点;求曲线的渐近线。
第四讲不定积分
主要知识点:原函数与不定积分的概念;不定积分的性质(重点是积分与微分互为逆运算的性质);基本积分表;第一类换元积分法;第二类换元积分法;常用的变量代换有哪些?分部积分法。
主要技能测试点:
1.考察对原函数与不定积分的概念的理解、对积分与微分互为逆运算的性质的理解;
2.掌握计算不定积分的三种基本方法(凑微分法、换元法、分部积分法)
主要题型:
1.考察对原函数与不定积分的概念的理解;
2.利用凑微分法计算不定积分;
3.利用换元法计算不定积分;
4.利用分部积分法计算不定积分;
第五讲定积分及其应用
主要知识点:定积分的定义及其几何意义;定积分的性质;积分上限函数及其导数;牛顿——莱布尼兹公式;定积分换元积分公式;定积分分部积分公式。
主要技能测试点:
1.掌握计算定积分的三种基本方法(牛顿——莱布尼兹公式;换元法、分部积分法);
2.会使用定积分的换元法证明积分恒等式;
3.综合运用微分学与积分学知识分析问题和解决问题的能力(重点为有关积分上限函数的综合性题目);
4.利用定积分计算平面图形的面积及旋转体体积。
主要题型:
1.有关考察定积分性质的题目;
2.利用牛顿——莱布尼兹公式计算定积分;
3.利用定积分的换元法计算定积分及证明积分恒等式;4.计算带绝对值的积分;
5.利用函数的奇偶性计算定积分;
5.有关积分上限函数的综合性题目;
6.利用分部积分法计算积分;
7.利用定积分计算平面图形的面积、旋转体体积、曲线的弧长。
(注:本资料素材和资料部分来自网络,仅供参考。
请预览后才下载,期待你的好评与关注!)。