数列求和常用的五种方法
- 格式:doc
- 大小:238.50 KB
- 文档页数:5
高考数学专题——数列(求S n )求s n 的四种方法总结常考题型:共5种大题型(包含倒序相加法、错位相减法、裂项相消法、分组转化法、并项求和法。
1、倒序相加法:实质为等差数列求和。
例1、【2019·全国2·文T18】已知{a n }是各项均为正数的等比数列,a 1=2,a 3=2a 2+16. (1)求{a n }的通项公式;(2)设b n =log 2a n .求数列{b n }的前n 项和.【解析】(1)设{a n }的公比为q,由题设得2q 2=4q+16,即q 2-2q-8=0,解得q=-2(舍去)或q=4. 因此{a n }的通项公式为a n =2×4n-1=22n-1.(2)由(1)得b n =(2n-1)log 22=2n-1,因此数列{b n }的前n 项和为1+3+…+2n-1=n 2. 2、错位相减法:实质为等差×等比求和。
错位相减法的万能公式及推导过程:公式:数列c n =(an +b )q n−1,(an +b )为等差数列,q n−1为等比数列。
前n 项和S n =(An +B )q n +C A =a q −1,B =b −Aq −1,C =−B S n =(a +b )+(2a +b )q +(3a +b )q 2+⋯[(n −1)a +b ]q n−2+(an +b )q n−1 ① qS n =(a +b )q +(2a +b )q 2+(3a +b )q 3+⋯[(n −1)a +b ]q n−1+(an +b )q n ② ②-①得:(q −1)s n =−(a +b )−a (q +q 2+⋯q n−1)+(an +b )q n=−(a +b )−a ⋅q(1−q n−1)1−q+(an +b )q n=(an +b −aq−1)q n −(b −aq−1)S n =(aq −1⋅n +b −a q −1q −1)⋅q n −b −aq −1q −1例2、【2020年高考全国Ⅰ卷理数】设{}n a 是公比不为1的等比数列,1a 为2a ,3a 的等差中项. (1)求{}n a 的公比;(2)若11a =,求数列{}n na 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得1232,a a a =+ 即21112a a q a q =+.所以220,q q +-= 解得1q =(舍去),2q =-. 故{}n a 的公比为2-.(2)设n S 为{}n na 的前n 项和.由(1)及题设可得,1(2)n n a -=-.所以112(2)(2)n n S n -=+⨯-++⨯-,21222(2)(1)(2)(2)n n n S n n --=-+⨯-++-⨯-+⨯-.可得2131(2)(2)(2)(2)n n n S n -=+-+-++--⨯-1(2)=(2).3n n n ---⨯-所以1(31)(2)99nn n S +-=-. 例3、【2020年高考全国III 卷理数】设数列{a n }满足a 1=3,134n n a a n +=-. (1)计算a 2,a 3,猜想{a n }的通项公式并加以证明; (2)求数列{2n a n }的前n 项和S n .【解析】(1)235,7,a a == 猜想21,n a n =+ 由已知可得 1(23)3[(21)]n n a n a n +-+=-+, 1(21)3[(21)]n n a n a n --+=--,……2153(3)a a -=-.因为13a =,所以2 1.n a n =+(2)由(1)得2(21)2n n n a n =+,所以23325272(21)2n n S n =⨯+⨯+⨯+++⨯. ①从而23412325272(21)2n n S n +=⨯+⨯+⨯+++⨯.②-①② 得23132222222(21)2n n n S n +-=⨯+⨯+⨯++⨯-+⨯,所以1(21)2 2.n n S n +=-+例4、【2020届辽宁省大连市高三双基测试数学】已知数列{}n a 满足:n a n ⎧⎫⎨⎬⎩⎭是公比为2的等比数列,2n n a ⎧⎫⎨⎬⎩⎭是公差为1的等差数列.(I )求12,a a 的值;(Ⅱ)试求数列{}n a 的前n 项和n S .【解析】(Ⅰ)方法一:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列 21221a a ∴=⨯ 214a a ∴=又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列 2121122a a ∴-=,解得1228a a =⎧⎨=⎩方法二:n a n ⎧⎫⎨⎬⎩⎭构成公比为2的等比数列,1112,n n a n a n+∴=1(1)2n n n a a n ++∴=.①又2n n a ⎧⎫⎨⎬⎩⎭构成公差为1的等差数列, 11122n nn na a ++∴-=② 由①②解得:2nn a n =⋅1228a a =⎧⎨=⎩ (Ⅱ)1122,1n n n a a n -=⋅= 2n n a n ∴=⋅123n n S a a a a =+++⋅⋅⋅+1231222322n n =⋅+⋅+⋅+⋅⋅⋅+⋅ 234121222322n n S n +∴=⋅+⋅+⋅+⋅⋅⋅+⋅两式作差可得:23122222n n n S n +-=+++⋅⋅⋅+-⋅()1212212n n n n S +-=-⋅--1(1)22n n n S +=⋅---, 1(1)22n n S n +∴=-⋅+.例5、【2020届江西省吉安市高三上学期期末数学】数列{}n a 的前n 项和为n S ,且满足11a =,121n n a S +-=.(I )求{}n a 的通项公式;(Ⅱ)若3log n n b a =,数列2221n n b b +⎧⎫⎨⎬⋅⎩⎭的前n 项和为n T ,求证:12nT <.【解析】(I )当1n =时,由11a =,2121a a -=得23a =;当2n ≥时,121n n a S --=,两式相减得()1120n n n n a a S S +----=, 即13n n a a +=(2)n ≥,又2133a a ==, 故13n n a a +=恒成立,则数列{}n a 是公比为3的等比数列,可得13-=n n a . (Ⅱ)由(I )得313log log 31n n n b a n -===-,则22211111(21)(21)22121n n b b n n n n +⎛⎫==- ⎪⋅-⋅+-+⎝⎭,则111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦111221n ⎛⎫=- ⎪+⎝⎭. 1021n >+ 11112212n ⎛⎫∴-< ⎪+⎝⎭ 故12n T <例6、【2017·天津·理T18】已知{a n }为等差数列,前n 项和为S n (n ∈N *),{b n }是首项为2的等比数列,且公比大于0,b 2+b 3=12,b 3=a 4-2a 1,S 11=11b 4. (1)求{a n }和{b n }的通项公式;(2)求数列{a 2n b 2n-1}的前n 项和(n ∈N *).【解析】(1)设等差数列{a n }的公差为d,等比数列{b n }的公比为q.由已知b 2+b 3=12,得b 1(q+q 2)=12,而b 1=2,所以q 2+q-6=0.又因为q>0,解得q=2. 所以,b n =2n.由b 3=a 4-2a 1,可得3d-a 1=8.①由S 11=11b 4,可得a 1+5d=16,②联立①②,解得a 1=1,d=3,由此可得a n =3n-2.所以,数列{a n }的通项公式为a n =3n-2,数列{b n }的通项公式为b n =2n.(2)设数列{a 2n b 2n-1}的前n 项和为T n ,由a 2n =6n-2,b 2n-1=2×4n-1,有a 2n b 2n-1=(3n-1)×4n, 故T n =2×4+5×42+8×43+…+(3n-1)×4n,4T n =2×42+5×43+8×44+…+(3n-4)×4n+(3n-1)×4n+1,上述两式相减,得-3T n =2×4+3×42+3×43+…+3×4n-(3n-1)×4n+1=12×(1-4n )1-4-4-(3n-1)×4n+1=-(3n-2)×4n+1-8.得T n =3n -23×4n+1+83. 所以,数列{a 2n b 2n-1}的前n 项和为3n -23×4n+1+83. 例7、【2020·石家庄模拟】设数列{a n }的前n 项和为S n ,且2S n =3a n -1. (1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和T n . 解:(1)由2S n =3a n -1,① 得2S n -1=3a n -1-1(n ≥2),② ①-②,得2a n =3a n -3a n -1, 所以a n a n -1=3(n ≥2),又2S 1=3a 1-1,2S 2=3a 2-1, 所以a 1=1,a 2=3,a 2a 1=3, 所以{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1.(2)由(1)得,b n =n3n -1,所以T n =130+231+332+…+n3n -1,③13T n =131+232+…+n -13n -1+n 3n ,④ ③-④得,23T n =130+131+132+…+13n -1-n 3n =1-13n1-13-n 3n =32-2n +32×3n ,所以T n =94-6n +94×3n . 3、裂项相消法:实质为a n =b n (n+a )形式的求和。
数列求和常见五法一、公式法:如果一个数列是等差、等比数列或者是可以转化为等差、等比数列的数列,我们可以运用等差、等比数列的前n 项和的公式来求.①等差数列求和公式:()()11122n n n a a n n S na d +-==+ ②等比数列求和公式:()()()11111111n n n na q S a q a a q q qq ⎧=⎪=-⎨-=≠⎪--⎩ 二、倒序相加法:如果一个数列{}n a ,与首末两项等距的两项之和等于首末两项之和,可采用正序写和与倒序写和的两个和式相加,就得到一个常数列的和。
这一种求和的方法称为倒序相加法. 例1:设等差数列,公差为,求证:的前项和= 证明:...........① 倒序得:............②①+②得:又===...=针对训练:求值:222222222222123101102938101S =++++++++ 三、错位相减法:类似于等比数列的前n 项和的公式的推导方法。
若数列各项是由一个等差数列和一个等比数列对应项相乘得到,即数列是一个“差·比”数列,则采用错位相减法. 若n n n a b c =∙,其中{}n b 是等差数列,{}n c 是公比为q 等比数列,令112211n n n n n S b c b c b c bc --=++++ 则n qS =122311n n n n b c b c b c b c -+++++两式相减并整理即得例2、已知 12n n a n -=∙,求数列{a n }的前n 项和S n .解:01211222(1)22n n n S n n --=+++-+ ①12121222(1)22n n n S n n -=+++-+ ②②—①得01121222221n n n n n S n n -=---=-+小结:错位相减法的求解步骤:①在等式两边同时乘以等比数列{}n c 的公比q ;②将两个等式相减;③利用等比数列的前n 项和的公式求和.针对训练:、求和:()23230,1n n S x x x nx x x =++++≠≠四、裂项相消法:把数列的通项拆成两项之差,即数列的每一项都可按此法拆成两项之差,在求和时一些正负项相互抵消,于是前n 项的和变成首尾若干少数项之和,这一求和方法称为裂项相消法。
数列求和的常用方法1.公式法:①等差数列求和公式;②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.;③常用公式:1123(1)2n n n ++++=+,222112(1)(21)6n n n n +++=++,33332(1)123[]2n n n +++++=. 例1 、已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 练一练:等比数列{}n a 的前n 项和S n=2n-1,则2232221na a a a ++++ =_____ ;2.分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和. 所谓分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。
例题6:求S = 12 - 22 + 32 - 42 + … + (-1)n-1n 2(n ∈N *)解:①当n 是偶数时:S = (12 - 22) + (32 - 42) + … + [(n - 1)2 - n 2]= - (1 + 2 + … + n) = -②当n 是奇数时:S = (12 - 22) + (32 - 42) + … + [(n - 2)2 - (n - 1)2] + n 2= - [1 + 2 + … + (n - 1)] + n 2= -综上所述:S = (-1)n+1n(n+1)3.用倒序相加法求数列的前n 项和如果一个数列{a n },与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。
我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n 项和公式的推导,用的就是“倒序相加法”。
⾼中数学数列求和的五种⽅法⼀、公式法求和例题1、设 {an} 是由正数组成的等⽐数列,Sn为其前 n 项和,已知 a2 · a4=1 , S3=7,则 S5 等于( B )(A) 15/2 (B) 31/4 (C) 33/4 (D) 17/2解析:∵ {an} 是由正数组成的等⽐数列 , 且 a2 · a4 = 1, q > 0 ,例题1图注:等⽐数列求和公式图例题2、已知数列 {an} 的前 n 项和 Sn = an^2+bn (a、b∈R), 且 S25=100 , 则a12+a14等于( B )(A) 16 (B) 8 (C) 4 (D) 不确定解析:由数列 {an} 的前 n 项和 Sn = an^2 + bn (a、b∈R), 可知数列 {an} 是等差数列,由S25= 1/2 ×(a1 + a25)× 25 = 100 ,解得 a1+a25 = 8,所以 a1+a25 = a12+a14 = 8。
注:等差数列求和公式图⼆、分组转化法求和例题3、在数列 {an} 中, a1= 3/2 ,例题3图(1)解析:例题3图(2)故例题3图(3)∵ an>1,∴ S < 2="">∴有 1 < s=""><>∴ S 的整数部分为 1。
例题4、数列例题4图(1)例题4图(2)解析:例题4图(3)三、并项法求和例题5、已知函数 f(x) 对任意 x∈R,都有 f(x)=1-f(1-x), 则 f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) 的值是多少?解析:由条件可知:f(x)+f(1-x)=1,⽽x+(1-x)=1,∴f(-2)+f(3)=1,f(-1)+f(2)=1,f(0)+f(1)=1,∴ f(-2) + f(-1) + f(0) + f(1) + f(2) + f(3) = 3。
数列求和的八种方法及题型1、抽象加法法:把等差数列的元素抽象为某一个相同的数值(称为项数,式子为S),通过加法求出所求等差数列的和。
例题:这样一个等差数列:2、4、6、8……100,求这一数列的和是多少?答案:抽象加法法:元素个数n = 99,公差d = 2,首项a = 2。
由公式S=n*(a+l)/2可得:S = 99*(2+100)/2 = 99*102/2 = 4950。
2、数值加法法:直接对元素逐一加法求和。
例题:计算这一等差数列的和:1、3、5、7……99?答案:数值加法法:元素个数n = 49,即:1+3+5+7+...+99=49*100/2=4900。
3、改编组合法:将数列改编为组合形式,将大式化简,从这个组合计算其和。
例题:求这一等差数列的和:2、5、8、11……99?答案:改编组合法:元素个数n = 48,公差d = 3,首项a = 2。
将其转换为组合:2+48d ,即2+(48*3)=150,由公式S=n*(a+l)/2可得:S = 48*(2+150)/2 = 48*152/2 = 7344。
4、数表法:把数列列成表,统计其和。
例题:求这一等差数列的和:3、5、7、9……99?答案:数表法:数列:3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71 73 75 77 79 81 83 85 87 89 91 93 95 97 99和:3+5+7+9+11+13+15+17+19+21+23+25+27+29+31+33+35+37+39+41+43+ 45+47+49+51+53+55+57+59+61+63+65+67+69+71+73+75+77+79+81+83 +85+87+89+91+93+95+97+99=24505、立方法:一种特殊情形——这一数列两个元素的值等于这两个元素之间的位数的立方和。
数列求和的8种常用方法数列求和是数学中非常常见的问题,它的解法有很多种。
下面我将介绍8种常用的方法来求解数列的和,让我们一起来看看吧。
一、等差数列求和公式对于等差数列$a_n=a_1+(n-1)d$,其中$a_n$表示第n个数,$a_1$表示第一个数,d表示公差,我们可以利用等差数列求和公式求解:$S = \frac{n}{2}(a_1 + a_n) = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
二、等比数列求和公式对于等比数列$a_n = a_1 \cdot q^{(n-1)}$,其中$a_n$表示第n个数,$a_1$表示第一个数,q表示公比,我们可以利用等比数列求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1或者当q=1时,$S=a_1n$其中S表示数列的和,n表示数列的项数。
三、几何级数求和公式对于几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_1$表示第一个数,q表示公比,我们可以利用几何级数求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1}$,其中q≠1四、等差数列-等比数列混合求和公式对于等差数列-等比数列混合数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用等差数列-等比数列混合求和公式求解:$S = \frac{a_1(q^n - 1)}{q - 1} + \frac{n(n-1)d}{2}q^{(n-2)}$,其中q≠1五、反比例数列求和公式对于反比例数列$s_n = \frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n}$,其中$a_1$表示第一个数,我们可以利用反比例数列求和公式求解:$S = \frac{n}{a_1}$六、算术-几何级数求和公式对于算术-几何级数$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1 + (n-1)d$,$a_1$表示第一个数,d表示公差$S = \frac{a_1}{1-q} + \frac{d}{(1-q)^2}$,其中q≠1七、差分数列求和公式对于差分数列$s_n = a_1 + a_2 + \dots + a_n$,其中$a_n = a_1+ (n-1)d$,$a_1$表示第一个数,d表示公差,我们可以利用差分数列求和公式求解:$S = \frac{n}{2}(2a_1 + (n-1)d)$其中S表示数列的和,n表示数列的项数。
专题十一 数列求和的常用方法一、公式法①等差数列求和公式;②等比数列求和公式;③常用公式:)1(211+==∑=n n k S nk n ,)12)(1(6112++==∑=n n n k S nk n ,213)]1(21[+==∑=n n k S nk n二、.并项求和法:将数列的相邻的两项(或若干项)并成一项(或一组)得到一个新的且更容易求和的数列.三、分组求和法:将数列分成可以求和的几组。
四.裂项相消法:将数列的每一项拆(裂开)成两项之差,使得正负项能互相抵消,剩下首尾若干项. ①111(1)1n n n n =-++ ②1111(k)k k n n n n =-++()③1111[](1)(2)2(1)(1)(2)n n n n n n n =--++++;④n n n n a n -+=++=111五.错位相减法:若}{n a 是等差数列,{n b }是等比数列,则数列{n n b a ⋅}的求和运用错位求和方法,这是仿照推导等比数列前n 项和公式的方法.六.倒序相加法:将一个数列的倒数第k 项(k =1,2,3,…,n )变为顺数第k 项,然后将得到的新数列与原数列相加,这是仿照推导等差数列前n 项和公式的方法. 七、通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。
【课前热身】1、数列2, ,21,,814,413,2121-+n n 的前n 项之和为n n n+112122⎡⎤+-⎢⎥⎣⎦()() 2、设5033171,)1(4321S S S n S n n ++⋅-++-+-=-则 = 1 ;3、数列1,(1+2),(1+2+22),…,(1+2+22+…+n-12),…的前n 项和等于n+12-2-n4、 已知数列{n a }的通项公式是n n n a n 则前,6512++=项和为n3n 3+() 典型例题:例1、(1)求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值(2)求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 解:(1)设S n =89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++则S n =22222sin 89sin 88sin 87sin 2sin 1+++⋅⋅⋅++ ∴2S n =89,故S n =892(2)设T n =01n-13(21)(21)nn n n n C C n C n C ++⋅⋅⋅+-++,则T n =n-110(21)(21)3n n n n n n C n C C C ++-+⋅⋅⋅++∴2T n =01n-1n(22)n n n n n C C C C ⎡⎤+++⋅⋅⋅++⎣⎦=n(22)2n +⋅ ∴nn n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++注:本例是运用倒序相加法求和。
数列求和的常用方法总结数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。
关键是找数列的通项结构。
1、分组法求数列:通项虽然不是等差等比数列,但通过拆分可以化为由等差、等比的和的形式,再分别用公式法求和。
例:已知数列}{n a 的通项为:n n n a 32+=,求n S例:在等差数列{}n a 中,11=a ,2=d ,依次抽取这个数列的第1,3,23,……,13-n 项,组成数列{}n b ,求数列{}n b 的通项n b 和前n 项和n S2、错位相减法:利用等比数列前n 项和公式的推导方法求解,一般可解决一个等差数列和一个等比数列对应项相乘所得数列的求和。
例:已知数列}{n a 的通项为:nn n a 2)12(-=,求n S说明:(1)一般地,如果数列{}n a 是等差数列,{}n b 是等比数列且公比为q ,求数列{}n n b a ⋅的前n 项和时,可采用这一思路和方法。
具体做法是:乘以常数q ,然后错位相减,使其转化为等比数列问题求解。
要善于识别题目类型,特别是当等比数列部分中公比为负数的情形更值得注意。
(2)在写出“n S ”与“n qS ”的表达式时,应特别注意将两式“错项对齐”,以便于下一步准确写出“n n qS S -”的表达式;3、裂项相消法:将数列的通项裂成两项之差求和时,正负相消,剩下首尾若干若。
常见裂项有:)11(1)(1k n n k k n n +-=+、)(11n k n k nk n -+=++例:已知数列}{n a 的通项为:)1(1+=n n a n ,求前n 和n S例:在等差数列}{n a 中21=a 、83=a ,若nn n a a b +=+11,求数列的}{n b 前n 和n T4、倒序相加法:利用等差数列前n 项和公式的推导方法求解,将数列正着写,倒着写再相加。
例:}{n a 中,已知)30cos(cos ︒-︒︒=n n a n ,求60S 的值5、有关绝对值的问题:例:在等差数列}{n a 中201-=a 、2=d ,(1)求数列}{n a 前n 和n S ;(2)求数列|}{|n a 前n 和n T ;由数列递推关系式求通项公式。
数列求和的常用方法一、公式法1、 差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn例1、设{}n a 是公比大于1的等比数列,n S 为数列{}n a 的前n 项和.已知37S =,且123334a a a ++,,构成等差数列.(1)求数列{}n a 的等差数列.(2)令31ln 12n n b a n +==,,,,求数列{}n b 的前n 项和T .二、倒序相加法若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).例2、设函数222)(+=x x x f 的图象上有两点P 1(x 1, y 1)、P 2(x 2, y 2),若)(2121OP OP +=且点P 的横坐标为21. (I )求证:P 点的纵坐标为定值,并求出这个定值;(II )若;求,),()3()2()1(*n n S N n nn f nf nf nf S ∈+⋯+++=三、裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:(1)n n n n -+=++111(2)111=- (3)])2)(1(1)1(1[21)2)(1(1++-+=++n n n n n n n若数列}{n a 为等差数列,0≠n a ,公差0≠d ,)11(11,11111111++++++-=∴=-=-n n n n n n n n n n n n a a d a a a a d a a a a a a则数列}1{1+n n a a 的前n 项和)11(1)11(1)11(113221+-++-+-=n n n a a d a a d a a d S111111111)11(1++++=-⋅=-=n n n n a a na a a a d a a d 。
数列求和的8种常用方法数列求和是数学中常见的问题,解决数列求和问题有很多方法。
下面将介绍数列求和的8种常用方法。
1.直接相加法:这是最基本的方法,实际上就是将数列中的所有项相加。
例如,对于等差数列1,3,5,7,9,可以直接相加得到1+3+5+7+9=252.偶数项和与奇数项和之和法:对于一些数列,可以将其分解为偶数项和与奇数项和,然后再求和。
例如,对于等差数列1,3,5,7,9,可以分解为偶数项和4+8和奇数项和1+3+5+7+9,再相加得到(4+8)+(1+3+5+7+9)=373.首项与末项和的乘法法:对于等差数列,可以利用首项与末项之和的公式来求和。
首项与末项之和等于和的平均数乘以项数。
例如,对于等差数列1,3,5,7,9,首项与末项之和等于(1+9)*(项数/2)=10*5/2=254.首项与公差与项数的乘法法:对于等差数列,可以利用首项、公差和项数的乘积来求和。
等差数列的和等于首项乘以项数,再加上项数与公差之积的和。
例如,对于等差数列1,3,5,7,9,和等于1*5+(5*4)/2=10+10=20。
5.平均数法:对于一些特殊的数列,可以利用平均数的性质来求和。
平均数等于数列中的第一项与最后一项的平均值。
例如,对于等差数列1,3,5,7,9,平均数等于(1+9)/2=5,然后将平均数乘以项数,得到5*5=256.高斯求和法:高斯求和法是一种数学推导方法,用于求等差数列的和。
首先将数列化为由首项和末项构成的和,然后将数列顺序颠倒,再将之前的和与颠倒后的和相加,得到的结果就是等差数列的和。
例如,对于等差数列1,3,5,7,9,将其化为(1+9)+(3+7)+5,然后将数列颠倒得到5+(7+3)+9,再相加得到257. telescopage法(消去法):telescopage法是一种利用抵消的思想来求和的方法。
可以将数列中相邻的两项之差相消为0,最终得到一个简单的表达式,然后再求值。
例如,对于数列1, 2, 3, 4, 5,可以将(2-1) + (3-2) + (4-3) + (5-4)相加,得到1 + 1 + 1 + 1 = 48.更一般的求和方法:对于一些复杂的数列,可能需要应用更一般的数学方法来求解。
数列的求和1.直接法:即直接用等差、等比数列的求和公式求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)3.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
常见拆项公式:111)1(1+-=+n n n n ;1111()(2)22n n n n =-++ )121121(21)12)(12(1+--=+-n n n n !)!1(!n n n n -+=⋅5.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
6.合并求和法:如求22222212979899100-++-+-Λ的和。
7.倒序相加法:8.其它求和法:如归纳猜想法,奇偶法等 (二)主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式; 2.求和过程中注意分类讨论思想的运用; 3.转化思想的运用; (三)例题分析:例1.求和:①321ΛΛ个n n S 111111111++++=②22222)1()1()1(n n n xx x x x x S ++++++=Λ ③求数列1,3+4,5+6+7,7+8+9+10,…前n 项和n S 思路分析:通过分组,直接用公式求和。
解:①)110(9110101011112-=++++==kkk k a Λ321Λ个])101010[(91)]110()110()110[(9122n S n n n -+++=-++-+-=ΛΛ8110910]9)110(10[911--=--=+n n n n②)21()21()21(224422+++++++++=nnn x x x x x x S Λ n xx x x x x n n 2)111()(242242++++++++=ΛΛ(1)当1±≠x 时,n x x x x n x x x x x x S n n n n n n 2)1()1)(1(21)1(1)1(22222222222+-+-=+--+--=+--- (2)当n S x n 4,1=±=时 ③kk k k k k k k k k a k 23252)]23()12[()]1()12[()12(2)12(2-=-+-=-+-+++++-=Λ2)1(236)12)(1(25)21(23)21(2522221+-++⋅=+++-+++=+++=n n n n n n n a a a S n n ΛΛΛ)25)(1(61-+=n n n 总结:运用等比数列前n 项和公式时,要注意公比11≠=q q 或讨论。
几种常见数列求和方法的归纳1.公式法:即直接用等差、等比数列的求和公式求和。
主要适用于等差,比数列求和。
(1)等差数列的求和公式:d n n na a a n S n n 2)1(2)(11-+=+=(等差数列推导用到特殊方法:倒序相加)(2)等比数列的求和公式⎪⎩⎪⎨⎧≠--==)1(1)1()1(11q qq a q na S nn (切记:公比含字母时一定要讨论)(3)222221(1)(21)1236nk n n n k n =++=++++=∑L (不作要求,但要了解)例:(1)求=2+4+6+ (2)(2)求=x+++…+(x )2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。
例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2)1(2)(11-+=+=(2)2222sin 1sin 2sin 3sin 89++++ooooL L .3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。
例:(1)求和:(1)321ΛΛ个n n S 111111111++++=81109101--+n n(2)22222)1()1()1(n n n x x x x x x S ++++++=Λ当1±≠x 时,n x x x x S n n n n 2)1()1)(1(22222+-+-=+当n S x n 4,1=±=时4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。
(分式求和常用裂项相消)常见的拆项公式:111)1(1+-=+n n n n ,)121121(21)12)(12(1+--=+-n n n n , 1111()(2)22n n n n =-++,)12)(12(11)12)(12()2(2+-+=+-n n n n n ,2=例:(1)求和:1111,,,,,132435(2)n n ⨯⨯⨯+L L.(2)求和)12)(12()2(534312222+-++⋅+⋅=n n n S n Λ12)1(2++=n n n S n5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++Λ(适用于:等差数列乘以等比数列的通项求和)例:求和:23,2,3,,,na a a na L L当1a =时,123n S =+++ (1)2n n n ++=, 当1a ≠时,212(1)(1)n n n na n a aS a ++-++=-6.合并求和法:如求22222212979899100-++-+-Λ的和。
数列求和五种方法论文摘要:转化思想,即将一般数列转化为等差或等比数列,这一思想方法往往利用通项分解或错位相减法求解,不能转化为等差、等比数列形式的数列,往往利用裂项相消法、错位相减法、倒序相加法等来求解。
数列求和是历年高考的必考内容,重点要熟练掌握等差数列、等比数列的求和公式,其中错位相减法和裂项相消法也是考查的重点。
除了一些特殊数列(如等差数列、等比数列),有些数列求和通过我们的转化变形是可以转化成可求和的特殊数列的。
本文主要结合实例介绍了五种常见的数列求和的方法。
一、基本公式法如果一个数列是符合以下某种形式,如等差、等比数列或通项为自然数的平方、立方的,那么可以直接利用以下数列求和的公式求和。
常用公式有(1)等差数列求和公式:Sn=na1+n(n-1)2d=n(a1+an)2(2)等比数列求和公式:Sn=na1a1(1-qn)1-q=a1-anq1-q(q=1)(q≠1)(3)1+2+3+…+n=n(n+1)2(4)1+3+5+…+2n-1=n2(5)2+4+6+…+2n=n(n+1)(6)12+22+32+…+n2=16n(n+1)(2n+1)(7)13+23+33+…+n3=14n2(n+1)2例1:已知等比数列an的通项公式是an=12n-1,设Sn是数列an 的前n项和,求Sn。
解:∵an=12n-1∴a1=1,q=12∴Sn=1+12+14+…+12n-1=1·(1-12n)1-12=2-12n-1一、分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。
一般步骤是:拆裂通项——重新分组——求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和解由和式可知,式中第n项为an=n(3n+1)=3n2+n∴Sn=1×4+2×7+3×10+…+n(3n+1)=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)=3(12+22+32+…+n2)+(1+2+3+…+n)=3×16n(n+1)(2n+1)+n(n+1)2=n(n+1)2二、奇偶分析求和法求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。
数列求和常用的五种方法在数学学科中,数列是指一系列按照一定规律排列的数字。
数列求和是数学中常见的问题之一,有多种求解方法可以帮助我们计算数列的和。
在本文中,我将介绍五种常见的数列求和方法。
1.等差数列求和公式:等差数列是指数列中的每个元素与前一个元素之差保持不变的数列。
如果数列的首项为a,公差为d,一共有n项,则其求和公式如下:Sn=n/2×(2a+(n-1)d)其中Sn表示数列的和。
这个公式可以通过首项、末项和项数来快速求出数列的和。
2.等比数列求和公式:等比数列是指数列中的每个元素与前一个元素之比保持不变的数列。
如果数列的首项为a,公比为r,一共有n项,则其求和公式如下:Sn=a×(1-r^n)/(1-r)其中Sn表示数列的和。
这个公式可以通过首项、末项和项数来快速求出数列的和。
3.平方和公式:平方和公式用于求解平方数列的和。
平方数列是指数列中的每个元素是前一个元素的平方。
如果数列的首项为a,一共有n项,则其和为:Sn=(2a^3-a-n)/6这个公式可以帮助我们计算平方数列的和,避免了逐个相加的繁琐过程。
4.等差数列求和的几何解释:我们可以将等差数列的求和问题用几何的方法解释。
对于等差数列,每个元素与前一个元素之差保持不变,可以将数列中的元素排列成一个等差数列。
我们可以将等差数列首尾相接,形成一个首项为1,公差为d的数列。
则等差数列的和可以看作是这个等差数列形成的图形的面积。
利用等差数列的几何解释,我们可以得到等差数列求和的公式:Sn=n/2×(a+l),其中l为数列的末项。
5.积数列求和公式:积数列是指数列中的每个元素是前一个元素与公比之积。
如果数列的首项为a,公比为r,一共有n项,则其和为:Sn=a×(1-r^n)/(1-r)这个公式类似于等比数列求和公式,但是是针对积数列而用的。
以上是数列求和的五种常见方法。
每种方法都适用于不同类型的数列,可以根据数列的特点选择合适的方法来求解数列的和。
数列专题:数列求和的6种常用方法一、几种数列求和的常用方法1、分组转化求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和后相加减.2、裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.3、错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.4、倒序相加法:如果一个数列{}n a 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.二、公式法求和常用公式公式法主要适用于等差数列与等比数列.1、等差数列{}n a 的前n 项和11()(1)22++==+n n n a a n n S na d 2、等比数列{}n a 的前n 项和111(1)11,,=⎧⎪=-⎨≠⎪-⎩n n na q S a q q q 3、一些常见的数列的前n 项和:①112123(1)==++++=+∑nk k n n n ;122462(1)==++++=+∑nk k n n n ②21(21)135(21)=-=++++-=∑n k k n n ;③22222116123(1)(21)==++++=++∑nk k n n n n ;④3333321(1)2123[]=+=++++=∑nk n n k n 三、裂项相消法中常见的裂项技巧1、等差型裂项(1)111(1)1=-++n n n n (2)1111()()=-++n n k k n n k(3)21111()4122121=---+n n n (4)1111(1)(2)2(1)(1)(2)⎡⎤=-⎢⎥+++++⎣⎦n n n n n n n (5)211111()(1)(1)(1)2(1)(1)==---+-+n n n n n n n n n(6)22111414(21)(21)⎡⎤=+⎢⎥-+-⎣⎦n n n n (7)1111(1)(2)(3)3(1)(2)(1)(2)(3)⎡⎤=-⎢⎥++++++++⎣⎦n n n n n n n n n n (8)2222211111)(()+=-++n n n n n (9)222211112)42)((⎡⎤+=-⎢⎥++⎣⎦n n n n n 2、根式型裂项=1=-k12=(1)1111(1)1++=+-++n n n n n n 3、指数型裂项(1)11112(21)(21)11(21)(21)(21)(21)2121++++---==-------n n n n n n n n n (2)113111()(31)(31)23131++=-----n nn n n (3)122(1)21111(1)2(1)2122(1)2-++-⎛⎫==-⋅=- ⎪+⋅+⋅+⋅+⋅⎝⎭n n n n nn n n n n n n n n n n (4)1111(41)31911333(2)2(2)22-+--⎛⎫⎡⎤-⋅=-⋅=- ⎪⎢⎥+++⎣⎦⎝⎭n n n n n n n n n n n (5)11(21)(1)(1)(1)(1)++⋅---=-++n n n n n n n n (6)222111(1)2(1)(1)(42)2(1)(42)2(1)2(1)2(1)2+++-++++-++-++==⋅⋅+⋅+⋅+⎡⎤⎣⎦n n n n n n n n n n n n n n n n n n n n n n 1111(1)1111(1)(1)(1))22(1)2222(1)2++++⎡⎤⎡⎤---=+-+=-+⎢⎥⎢⎥⋅+⋅⋅+⋅⎣⎦⎣⎦n n n n n n n n nn n n n n 4、对数型裂项11log log log ++=-n a n aa a n na a a 四、错位相减法求和步骤形如n n n A B C =⋅,其中{}n B 为等差数列,首项为1b ,公差为d ;{}n C 为等比数列,首项为1c ,公比为q .对数列{}n A 进行求和,首先列出n S ,记为①式;再把①式中所有项同乘等比数列{}n C 的公比q ,即得n q S ⋅,记为②式;然后①②两式错开一位作差,从而得到{}n A 的前n 项和。
数列求和的常用方法1、拆项分组法:即把每一项拆成几项,重新组合分成几组,转化为特殊数列求 和。
例:求数列n {223}n +-的前n 项和n S .2、错项相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
例:若数列{}n a 的通项n n n a 3)12(⋅-=,求此数列的前n 项和n S3.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于数列11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)。
可裂项为:111111()n n nn a a d a a ++=-⋅1d=-例:求和:S=1+n++++++++++ 321132112114.倒序相加法:n n n a a a a S ++++=-121121a a a a S n n n ++++=- 把这两个式子相加: ()()()11212a a a a a a S n n n n ++++++=- 例:设221)(xxx f +=,求:⑴)4()3()2()()()(213141f f f f f f +++++; ⑵).2010()2009()2()()()()(21312009120101f f f f f f f ++++++++数列求和练习题:1. 求和12321-++++n nx x x (0≠x )2. 求和)12)(12(1751531311+-++⨯+⨯+⨯n n3. 求和n n +++++++++113212311214. 数列,1614,813,412,211的前n 项和5. 已知数列}{n a 的前n 项和12-=n n S ,则22221na a a ++6.等比数列}{n a 同时满足下列条件:①3361=+a a ,②3243=a a ,③三个数432,2,4a a a 依次成等差数列.(1)求数列}{n a 的通项公式; (2)记nn a n b =,求数列}{n b 的前n 项和T n .7.等差数列}{n a 各项均为正整数,31=a ,前n 项和为n S ,在等比数列}{n b 中,11=b 且6422=S b ,公比为8。
一.数列求和的常用方法:1. 公式法(1) 直接用等差、等比数列求和公式等差数列的求和公式为 11()(1)22n n n a a n n S na d +-==+ 等比数列的求和公式为 1q 1n S na ==当时,11(1)q 111n n n a a q a q S q q--≠==--当时, (2) 掌握一些常用的数列的前n 项和 ①2)1(.....54321+=++++++n n n ②2)12(...7531n n =-+++++③ )1(2..108642+=++++++n n n ④6)12)(1(....432122222++=+++++n n n n 2. 倒序相加法如果一个数列, 与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒叙相加法来求,如等差数列的前n 项和公式即是用此法推导的。
3. 错位相减法由等比数列的前n 项和公式的推导方法延展而来。
可适用于一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的数列。
4. 裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和。
5. 分组转化法把数列的每一项分成多个项或把数列的项重新组合,是其转化成已知数列,然后由已知数列求和公式求解。
6. 并项求和法一个数列的前n 项和中,可两项相结合求解,则称之为并项求和,形如)()1(n f a n n -=.二. 易错的地方1. 公式法 公式没记准确而用错2. 倒序相加法 没有看出来求和方法3. 错位相减法 剩余哪些项写错,中间指数运算错,合并出错等4. 裂项相消法 不会裂项,不知道中间量消去后剩余的项有哪些5. 分组转化法 不知道或没看出来怎么分组6. 并项求和法 看到题没思路。
数列求和的方法(共8种)1.公式法:1)等差数列求和公式;2)等比数列求和公式;3)可转化为等差、等比数列的数列;4)常用公式:(1)1n k k ==∑12123(1)n n n ++++=+;(2)21n k k ==∑222216123(1)(21)n n n n ++++=++;(3)31n k k ==∑33332(1)2123[]n n n +++++=;(4)1(21)n k k =-=∑2n1)-(2n ...531=++++2.分组求和法:把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解。
3.倒序相加法:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
如:等差数列的前n 项和即是用此法推导的。
4.裂项相消法:即把每一项都拆成正负两项,使其正负抵消,只余有限几项,可求和。
适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
如:1)11n n a a +⎧⎫⎨⎬⋅⎩⎭和⎧⎫(其中{}n a 等差)可裂项为:111111(n nn n a a da a ++=-⋅;2)1d =。
(根式在分母上时可考虑利用分母有理化,因式相消求和)常见裂项公式:(1)111(1)1n n n n ++=-;(2)1111()()n n k k n n k ++=-;(3)1111(1)(1)2(1)(1)(2)[]n n n n n n n -++++=-;(4)11(1)!!(1)!nn n n++=-(5)常见放缩公式:=<=.5.错位相减法:适用于差比数列(如果{}n a 等差,{}n b 等比,那么{}n n a b 叫做差比数列)即把每一项都乘以{}n b 的公比q ,向后错一项,再对应同次项相减,转化为等比数列求和。
数列求和的基本方法数列是高中数学的重要内容,又是学习高等数学的基础,在高考中占有重要的地位。
近年来高考中的数列题难度有降低的趋势,主要以考查等差数列和等比数列为主,解答题则主要考查求数列通项与求和为主,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。
下面,具体谈谈数列求和的基本方法和技巧.一、公式法求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例1] 已知5log 1log 25-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 分析,先由已知等式求出x 的值,再利用等比数列的求和公式进行求和。
解:由212log log 5log 1log 5525=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) 法一 ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当88=n ,即n =8时,501)(max =n f法二∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++501346421=+⨯≤nn 当且仅当n n 64=,即n=8时,501)(max =n f 二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:1322)12(2725231-∙-+⋅⋅⋅+⨯+⨯+⨯+=n n n S ………………………①解:由题可知,{12)12(-∙-n n }的通项是等差数列{2n -1}的通项与等比数列{12-n }的通项之积①式两边都乘以2得2nn n S 2)12(.........................252321.....32∙-++⨯+⨯+⨯=……. ② (错位) ①-②得 nn n n S 2)12()2222(21)21(132∙--+⋅⋅⋅++++=-- (相减)再利用等比数列的求和公式得:n n n n S 2)12(21)21(22111∙----⋅+=-- ∴ nn n S 2)32(3∙-+=[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=………………………………........…①143222262422.......21++⋅⋅⋅+++=n n nS ………………………………② (错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (相减)1122212+---=n n n∴ 1224-+-=n n n S三、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1)111)1(1+-=+=n n n n a n (2))121121(21)12)(12(1+--=+-=n n n n a n (3)))(11(1)(1k n n k k n n a n +-=+=(4)n n n n a n -+=++=111(5)若{n a }为等差数列,且公差为d, 0≠n a ,则)11(1111nn n n n a a d a a b -=∙=--[例5] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n=)1()23()12(n n -++⋅⋅⋅+-+- (裂项求和) =11-+n [例6] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又11+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(42121+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(4+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(4+-n = 14+n n 四、倒序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(倒序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例7] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (倒序)又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89 (相加)∴ S =44.5五、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例8] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- 以上五种数列求和的基本方法,在高考中时有出现,特别是公式法,错位相减法,裂项相消法,分组求和法更是考查的重点。
数列求和常用的五种方法
一、利用常用求和公式求和
利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、
等差数列求和公式:d n n na a a n S n n 2
)
1(2)(11-+=+=
2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)
1(11)1()1(111
q q q a a q
q a q na S n n
n 3、
)1(21
1
+==∑=n n k S n
k n
4、)12)(1(6
11
2++==∑=n n n k S n
k n
5、
21
3)]1(21
[+==∑=n n k S n
k n
例1. 已知3
log 1
log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由2
1
2log log 3log 1log 3323=⇒-=⇒-=
x x x , 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32=x x x n --1)1(=2
11)21
1(2
1--n =1-n 21 二、错位相减法求和
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.
例2. 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ……………………① 解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积
当时1=x ,()()[]22
121127531n n n n S n =-+=-+++++=
当时1≠x
设
n
n x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………②
(设制错位)
①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)
再利用等比数列的求和公式得:
n n n x n x x x S x )12(1121)1(1
----⋅+=--
∴ 2
1)1()
1()12()12(x x x n x n S n n n -+++--=+
例3.已知1,0≠>a a ,数列{}n a 是首项为a ,公比也为a 的等比数列,令
)(lg N n a a b n n n ∈⋅=,求数列{}n b 的前n 项和n S 。
解析:
a
na a a a aS a na a a a S a
a n
b a a n n n n n n n n lg )32(lg )32(lg ,143232+++++=++++=∴⋅== ①-②得:a na a a a S a n n n lg )()1(12+-+++=-
[]
n n a na n a a
a S )1(1)
1(lg 2
-+--=
∴。
点评:设数列{}n a 的等比数列,数列{}n b 是等差数列,则数列
{}n n b a
的前n 项和n S 求解,均可用错位相减法。
三、反序相加法求和
这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.
例4.函数)(x f 对任意R x ∈,都有2
1
)1()(=-+x f x f 。
(1)求)2
1(f 和
)1()1(n
n f n f -+ 的值;(2)数列{}n a 满足:)1()1
()2()1()0(f n
n f n f n f f a n +-++++= ,数列{}n a 是
等差数列吗请给与证明。
(3)1
44-=
n n a b ,n
S n 16
32-
=,2
2221n n b b b T +++= 试比较n T 与n S 的大小。
解:(1)令2
1
=x ,可得41)21(=f ,21
)11()1()1(
)1(=-+=-+n f n f n n f n f
(2) )1()1
()2()1()0(f n n f n f n f f a n +-++++=
∴)0()1
()2()2()1()1(f n
f n f n n f n n f f a n ++++-+-+=
∴)1(2
1
)0()1()1()1()1()0(2+=+++-+++=n f f n n f n f f f a n
∴4
1
+=n a n
(3)n b n 4=,))1(13212111(16)131211(162
22n n n T n ⨯-++⨯+⨯+≤++++
=
n S n
=-
=16
32
有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.
例5.求数列的前n 项和:231
,,71,
41,111
2-+⋅⋅⋅+++-n a a a n ,…
解:设)231
()71()41()11(12-++⋅⋅⋅++++++=-n a
a a S n n
将其每一项拆开再重新组合得
)23741()1
111(12-+⋅⋅⋅+++++⋅⋅⋅+++
=-n a
a a S n n (分组)
当a =1时,2)13(n n n S n -+
==2
)13(n
n + (分组求和)
当1≠a 时,2)13(111
1n
n a
a S n n -+--
==2)13(11n n a a a n -+---
例6. 求数列{n(n+1)(2n+1)}的前n 项和.
解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n
k n k k k S 1
)12)(1(=)32(231
k k k n
k ++∑=
将其每一项拆开再重新组合得
S n =k k k n
k n
k n
k ∑∑∑===++1
2
1
3
1
32 (分组)
=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++
=2)1(2)12)(1(2)1(22++++++n n n n n n n =2
)
2()1(2++n n n
这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:
(1))()1(n f n f a n -+= (2)
n n n n tan )1tan()1cos(cos 1sin -+=+ (3)1
1
1)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=
n n n n n a n (5)])
2)(1(1
)1(1[21)2)(1(1++-+=+-=n n n n n n n a n
(6)n
n
n n n n n n S n n n n n n n n n a 2)1(1
1,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=
-则 例7. 求数列⋅⋅⋅++⋅⋅⋅++,1
1,
,3
21,
211n n 的前n 项和.
解:设n n n n a n -+=++=111
(裂项)
则 1
13
212
11+++
⋅⋅⋅+++
+=
n n S n (裂项求和)
=)1()23()12(n n -++⋅⋅⋅+-+-=11-+n 例8. 在数列{a n }中,1
1211++
⋅⋅⋅++++=n n
n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解:
∵ 2
11211n
n n n n a n =++⋅⋅⋅++++=
∴
)11
1(82
122+-=+⋅=
n n n n b n ∴ 数列{b n }的前n 项和)]1
1
1()4131()3121()211[(8+-
+⋅⋅⋅+-+-+-=n n S n =)111(8+-n = 1
8+n n。