第11章 反比例函数-2021年中考数学一轮复习(考点梳理+重难点讲解+过关演练)
- 格式:docx
- 大小:457.13 KB
- 文档页数:20
第11讲反比例函数考纲要求命题趋势1.理解反比例函数的概念,能根据已知条件确定反比例函数的解析式.2.会画反比例函数图象,根据图象和解析式探索并理解其基本性质.3.能用反比例函数解决简单实际问题。
反比例函数是中考命题热点之一,主要考查反比例函数的图象、性质及解析式的确定,也经常与一次函数、二次函数及几何图形等知识综合考查.考查形式以选择题、填空题、解答题都有可能.一、反比例函数的概念一般地,形如y=错误!(k是常数,k≠0)的函数叫做反比例函数.1.反比例函数y=错误!中的错误!是一个分式,所以自变量x≠0,函数与x轴、y轴无交点.2.反比例函数解析式可以写成xy=k(k≠0),它表明在反比例函数中自变量x与其对应函数值y之积,总等于已知常数k.二、反比例函数的图象与性质1.图象反比例函数的图象是双曲线.2.性质(1)当k>0时,双曲线的两支分别在一、三象限,在每一个象限内,y随x的增大而减小;当k<0时,双曲线的两支分别在二、四象限,在每一个象限内,y随x的增大而增大.注意双曲线的两支和坐标轴无限靠近,但永远不能相交.(2)双曲线是轴对称图形,直线y=x 或y=-x是它的对称轴;双曲线也是中心对称图形,对称中心是坐标原点.三、反比例函数的应用1.利用待定系数法确定反比例函数解析式由于反比例函数y=错误!中只有一个待定系数,因此只要一对对应的x,y值,或已知其图象上一个点的坐标即可求出k,进而确定反比例函数的解析式.2.反比例函数的实际应用解决反比例函数应用问题时,首先要找出存在反比例关系的两个变量,然后建立反比例函数模型,进而利用反比例函数的有关知识加以解决.1.关于x的函数y=k(x+1)和y=(k≠0)在同一坐标系中的图象大致是( )A.B.C.D.2.在平面直角坐标系中,直线y=﹣x+2与反比例函数y=的图象有唯一公共点,若直线y=﹣x+b与反比例函数y=的图象有2个公共点,则b的取值范围是()A.b>2 B.﹣2<b<2 C.b>2或b<﹣2 D.b<﹣23.若点A(1,y1),B(2,y2)是双曲线y=错误!上的点,则y1 y2(填“>”“<”或“=”).4.如图,在函数y1=(x<0)和y2=(x>0)的图象上,分别有A、B两点,若AB∥x 轴,交y轴于点C,且OA⊥OB,S△AOC=,S△BOC=,则线段AB的长度= .5.如图,两个反比例函数y=和y=在第一象限的图象如图所示,当P在y=的图象上,PC⊥x轴于点C,交y=的图象于点A,PD⊥y轴于点D,交y=的图象于点B,则四边形PAOB的面积为.6。
反比例函数知识点梳理与总结反比例函数的定义一般地,形如xky =(k 为常数,且0≠k k 为反比例系数. 说明(1)反比例函数的自变量的取值范围是0≠x . (2)反比例函数的函数值0≠y .(3)根据(1)和(2),可以确定反比例函数的图象与两条坐标轴都不会产生交点. (4)因为xx 11=-,所以反比例函数的一般形式可以写为()01≠=-k kx y . (5)反比例函数的分子中不能出现自变量.(6)反比例函数的分母中自变量x 不能加上或减去一个非零常数,如函数21+=x y 就不是反比例函数. (7)因为x x y 2121==,故函数x y 21=也是反比例函数,其21=k . 根据反比例函数的定义确定参数的值对于含参的反比例函数,若给出的反比例函数的一般形式为xky =(0≠k ),则参数的值既要保证系数0≠k ,还要保证分母中自变量的次数为1;若给出的反比例函数的一般形式为()01≠=-k kx y ,则参数的值既要保证系数0≠k ,还要保证自变量的次数为1-. 求反比例函数的关系式以及k 的代数意义求反比例函数xky =(0≠k )的关系式,就是求出k k 的值,所以只需知其图象上一个点的坐标或函数关系式的一对对应值即可.使用的方法仍然是待定系数法.k 的代数意义若点()n m P ,在反比例函数xky =的图象上,则mn k =. 说明根据k 的代数意义,可以判断一个点是否在反比例函数xky =的图象上:若点的横坐标与纵坐标的乘积等于k 的值,则点在反比例函数的图象上.k 的几何意义过反比例函数xky =图象上一点P 作x PA ⊥轴,y PB ⊥轴,则矩形AOBP 的面积等于k ;若作x PA ⊥轴,则2kS AOP Rt =∆.图 1图 2图 3图 4特别强调 在利用面积求反比例函数的解析式时,求得的k 的符号要与函数图象经过的象限保持一致. 反比例函数解析式的确定1. 待定系数法:(1)设反比例函数的解析式为xk y =; (2)把图象上一点()b a P ,的坐标代入xky =,得ab k =; (3)把求得的k 代入解析式.2. 利用k 的几何意义求解,但要注意k 的符号和反比例函数的图象所在的象限要一致.反比例函数的图象的性质 对于反比例函数xky =(0≠k ): (1)若0>k ,函数的图象在第一、三象限,在每个象限内,曲线从左到右下降,也就是说,当0>x (或0<x )时,y 随x 的增大而减小;(2)若0<k ,函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是说,当0>x (或0<x )时,y 随x 的增大而增大.注意:(1)注意与正比例函数的性质的区别:对于正比例函数来说,当0>k 时,函数的图象经过第一、三象限(过原点),图象从左到右是上升的,y 随x 的增大而增大;当0<k 时,函数的图象经过第二、四象限(过原点),图象从左到右是下降的,y 随x 的增大而减小.(2)当0>k 时,正比例函数的图象是经过第一、三象限(过原点),而反比例函数的图象是分布在第一、三象限(不过原点).(3)当k 的符号相同时,正比例函数和反比例函数的图象的升降性正好相反,函数值的变化规律也正好相反.(4)在理解反比例函数的性质时,应注意是在每个象限内.(5)由反比例函数的性质可知,双曲线的升降和所在的象限是由k 的符号决定的.(6)根据反比例函数的性质,我们可以确定字母的取值范围和在每个象限内比较函数值的大小. 反比例函数的图象的对称性反比例函数的图象既是中心对称图形,又是轴对称图形.反比例函数的图象关于原点中心对称.yx图(136)AO图(137)反比例函数的图象有两条对称轴,分别是直线x y =和直线x y -=. 结论 如果正比例函数的图象与反比例函数的图象有两个交点,则这两个交点关于原点对称,即两个交点同名坐标互为相反数. 根据反比例函数和一次函数的图象确定不等式的解集如图5所示,反比例函数xky =与一次函数n mx y +=的图象交于A 、B两点.图 5图 6(1)不等式n mx xk+<的解集为________________; (2)不等式n mx xk+>的解集为________________; (3)方程n mx xk+=的解为____________. 例题讲解例 1. 如图(136)所示,一次函数11+=x y 的图象与反比例函数xky =2()0≠k 的图象都经过点()2,m A . (1)求点A 的坐标及反比例函数的表达式; (2)结合图象直接比较:当0>x 时,21,y y 的大小. 分析:(1)用一次函数的关系式求点A 的坐标.求反比例函数的关系式,需要知道其图象上一个点的坐标,点A 满足要求. (2)以交点为界,注意分类讨论.解:(1)∵点()2,m A 在一次函数11+=x y的图象上 ∴21=+m ∴1=m∴点A 的坐标为()2,1∵点A ()2,1在反比例函数xky =2∴2=k∴该反比例函数的表达式为xy 22=; (2)分为三种情况: ①当10<<x 时,12y y >;②当1=x 时,21y y =;③当1>x 时,21y y <. (参看图137)例2. 如图,反比例函数xky =的图象经过点()4,1A 、()m B ,4. (1)求反比例函数的解析式及点B 的坐标;(2)在x 轴上找一点P ,使PB PA +的值最小,求满足条件的点P 的坐标. 解:(1)把()4,1A 代入xk y =得: 441=⨯=k∴反比例函数的解析式为xy 4=把()m B ,4代入xy 4=得:44=m ,∴1=m ∴()1,4B ;(2)作出点B 关于x 轴的对称点'B ,连结'AB ,与x 轴交于点P ,此时PB PA +的值最小.∵()1,4B ,∴()1,4'-B设直线'AB 的解析式为b ax y +=把()4,1A ,()1,4'-B 分别代入ax y =得:⎩⎨⎧-=+=+144b a b a 解之得:⎪⎪⎩⎪⎪⎨⎧=-=31735b a∴直线'AB 的解析式为31735+-=x y 令0=y ,则031735=+-x 解之得:517=x ∴⎪⎭⎫ ⎝⎛0,517P .。
2024年中考数学一轮复习考点精析及真题精讲—反比例函数反比例函数也是非常重要的函数,年年都会考,总分值为15分左右,预计2024年各地中考一定还会考,反比例函数与一次函数结合出现在解答题中是各地中考必考的一个答题,反比例函数的图象与性质和平面几何的知识结合、反比例函数中|k|的几何意义等也会是小题考察的重点.→➊考点精析←一、反比例函数的概念1.反比例函数的概念:一般地,函数ky x=(k 是常数,k ≠0)叫做反比例函数.反比例函数的解析式也可以写成1y kx -=的形式.自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数.2.反比例函数ky x=(k 是常数,k ≠0)中x ,y 的取值范围自变量x 和函数值y 的取值范围都是不等于0的任意实数.二、反比例函数的图象和性质1.反比例函数的图象与性质(1)图象:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限.由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴.(2)性质:当k >0时,函数图象的两个分支分别在第一、三象限,在每个象限内,y 随x 的增大而减小.当k <0时,函数图象的两个分支分别在第二、四象限,在每个象限内,y 随x 的增大而增大.表达式kyx=(k是常数,k≠0)k k>0k<0大致图象所在象限第一、三象限第二、四象限增减性在每个象限内,y随x的增大而减小在每个象限内,y随x的增大而增大2.反比例函数图象的对称性反比例函数的图象既是轴对称图形,又是中心对称图形,其对称轴为直线y=x和y=-x,对称中心为原点.3.注意(1)画反比例函数图象应多取一些点,描点越多,图象越准确,连线时,要注意用平滑的曲线连接各点.(2)随着|x|的增大,双曲线逐渐向坐标轴靠近,但永不与坐标轴相交,因为反比例函数kyx=中x≠0且y≠0.(3)反比例函数的图象不是连续的,因此在谈到反比例函数的增减性时,都是在各自象限内的增减情况.当k>0时,在每一象限(第一、三象限)内y随x的增大而减小,但不能笼统地说当k>0时,y随x的增大而减小.同样,当k<0时,也不能笼统地说y随x的增大而增大.三、反比例函数解析式的确定1.待定系数法:确定解析式的方法仍是待定系数法,由于在反比例函数kyx=中,只有一个待定系数,因此只需要一对对应值或图象上的一个点的坐标,即可求出k的值,从而确定其解析式.2.待定系数法求反比例函数解析式的一般步骤(1)设反比例函数解析式为kyx=(k≠0);(2)把已知一对x,y的值代入解析式,得到一个关于待定系数k的方程;(3)解这个方程求出待定系数k;(4)将所求得的待定系数k的值代回所设的函数解析式.四、反比例函数中|k|的几何意义1.反比例函数图象中有关图形的面积2.涉及三角形的面积型当一次函数与反比例函数结合时,可通过面积作和或作差的形式来求解.(1)正比例函数与一次函数所围成的三角形面积.如图①,S△ABC=2S△ACO=|k|;(2)如图②,已知一次函数与反比例函数kyx=交于A、B两点,且一次函数与x轴交于点C ,则S △AOB =S △AOC +S △BOC =1||2A OC y ⋅+1||2B OC y ⋅=1(||||)2A B OC y y ⋅+;(3)如图③,已知反比例函数ky x=的图象上的两点,其坐标分别为()A A x y ,,()B B x y ,,C 为AB 延长线与x 轴的交点,则S △AOB =S △AOC –S △BOC =1||2A OC y ⋅–1||2B OC y ⋅=1(||||)2A B OC y y ⋅-.五、反比例函数与一次函数的综合1.涉及自变量取值范围型当一次函数11y k x b =+与反比例函数22k y x=相交时,联立两个解析式,构造方程组,然后求出交点坐标.针对12y y >时自变量x 的取值范围,只需观察一次函数的图象高于反比例函数图象的部分所对应的x 的范围.例如,如下图,当12y y >时,x 的取值范围为A x x >或0B x x <<;同理,当12y y <时,x 的取值范围为0A x x <<或B x x <.2.求一次函数与反比例函数的交点坐标(1)从图象上看,一次函数与反比例函数的交点由k 值的符号来决定.①k 值同号,两个函数必有两个交点;②k 值异号,两个函数可无交点,可有一个交点,可有两个交点;(2)从计算上看,一次函数与反比例函数的交点主要取决于两函数所组成的方程组的解的情况.六、反比例函数的实际应用解决反比例函数的实际问题时,先确定函数解析式,再利用图象找出解决问题的方案,特别注意自变量的取值范围.→➋真题精讲←考向一反比例函数的定义1.反比例函数的表达式中,等号左边是函数值y ,等号右边是关于自变量x 的分式,分子是不为零的常数k ,分母不能是多项式,只能是x 的一次单项式.2.反比例函数的一般形式的结构特征:①k ≠0;②以分式形式呈现;③在分母中x 的指数为1.1.(山东滨州·中考真题)下列函数:①y =2x ﹣1;②5y=x -;③y =x 2+8x ﹣2;④22y=x;⑤1y=2x ;⑥ay=x中,y 是x 的反比例函数的有▲(填序号)【答案】②⑤.【解析】反比例函数的定义.【分析】根据反比例函数的定义逐一作出判断:①y=2x ﹣1是一次函数,不是反比例函数;②5y=x -是反比例函数;③y=x 2+8x ﹣2是二次函数,不是反比例函数;④22y=x不是反比例函数;⑤1y=2x 是反比例函数;⑥ay=x中,a≠0时,是反比例函数,没有此条件则不是反比例函数.故答案为②⑤.2.(2023·山西·统考中考真题)已知(2,),(1,),(3,)A a B b C c --都在反比例函数4y x=的图象上,则a 、b 、c 的关系是()A .a b c <<B .b a c<<C .c b a<<D .c a b<<【答案】B【分析】先根据反比例函数中0k >判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数4y x=中0k >,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∵20,10,-<-<∴(2,),(1,)A a B b --位于第三象限,∴0,0,a b <<∵210,-<-<∴0.a b >>∵30,>∴点(3,)C c 位于第一象限,∴0,c >∴.b a c <<故选:B .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.3.(2023·湖南永州·统考中考真题)已知点()2,M a 在反比例函数ky x=的图象上,其中a ,k 为常数,且0k >﹐则点M 一定在()A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据反比例函数中的0k >,可知反比例函数经过第一、三象限,再根据点M 点的横坐标判断点M 所在的象限,即可解答【详解】解:0k > ,∴反比例函数ky x=的图象经过第一、三象限,故点M 可能在第一象限或者第三象限,()2,M a 的横坐标大于0,()2,M a ∴一定在第一象限,故选:A .【点睛】本题考查了判断反比例函数所在的象限,判断点所在的象限,熟知反比例函数的图象所经过的象限与k 值的关系是解题的关键.考向二反比例函数的图象和性质当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内,y 随x 的增大而增大.双曲线是由两个分支组成的,一般不说两个分支经过第一、三象限(或第二、四象限),而说图象的两个分支分别在第一、三象限(或第二、四象限).4.(2020·山东威海·中考真题)一次函数y ax a =-与反比例函数(0)ay a x=≠在同一坐标系中的图象可能是()A .B .C .D .【答案】D【分析】根据一次函数与反比例函数图象的性质进行判断即可得解.【解析】当0a >时,0a -<,则一次函数y ax a =-经过一、三、四象限,反比例函数(0)ay a x=≠经过一、三象限,故排除A ,C 选项;当0a <时,0a ->,则一次函数y ax a =-经过一、二、四象限,反比例函数(0)ay a x=≠经过二、四象限,故排除B 选项,故选:D .【点睛】本题主要考查了一次函数与反比例函数图像的性质,熟练掌握相关性质与函数图像的关系是解决本题的关键.5.(2023·内蒙古通辽·统考中考真题)已知点()()1122,,,A x y B x y 在反比例函数2y x=-的图像上,且120x x <<,则下列结论一定正确的是()A .120y y +<B .120y y +>C .120y y -<D .120y y ->【答案】D【分析】把点A 和点B 的坐标代入解析式,根据条件可判断出1y 、2y 的大小关系.【详解】解:∵点()11,A x y ,()22,B x y )是反比例函数2y x=-的图像上的两点,∴11222x y x y ==-,∵120x x <<,∴210y y <<,即120y y ->,故D 正确.故选:D .【点睛】本题主要考查反比例函数图像上点的坐标特征,掌握图像上点的坐标满足函数解析式是解题的关键.6.(2023·山西·统考中考真题)已知(2,),(1,),(3,)A a B b C c --都在反比例函数4y x=的图象上,则a 、b 、c 的关系是()A .a b c <<B .b a c<<C .c b a<<D .c a b<<【答案】B【分析】先根据反比例函数中0k >判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【详解】解:∵反比例函数4y x=中0k >,∴函数图象的两个分支分别位于一、三象限,且在每一象限内y 随x 的增大而减小.∵20,10,-<-<∴(2,),(1,)A a B b --位于第三象限,∴0,0,a b <<∵210,-<-<∴0.a b >>∵30,>∴点(3,)C c 位于第一象限,∴0,c >∴.b a c <<故选:B .【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.(2020·湖北武汉·中考真题)若点()11,A a y -,()21,B a y +在反比例函数(0)ky k x=<的图象上,且12y y >,则a 的取值范围是()A .1a <-B .11a -<<C .1a >D .1a <-或1a >【答案】B【分析】由反比例函数(0)ky k x=<,可知图象经过第二、四象限,在每个象限内,y 随x 的增大而增大,由此分三种情况①若点A 、点B 在同在第二或第四象限;②若点A 在第二象限且点B 在第四象限;③若点A 在第四象限且点B 在第二象限讨论即可.【解析】解:∵反比例函数(0)ky k x=<,∴图象经过第二、四象限,在每个象限内,y随x 的增大而增大,①若点A 、点B 同在第二或第四象限,∵12y y >,∴a-1>a+1,此不等式无解;②若点A 在第二象限且点B 在第四象限,∵12y y >,∴1010a a -⎧⎨+⎩<>,解得:11a -<<;③由y 1>y 2,可知点A 在第四象限且点B 在第二象限这种情况不可能.综上,a 的取值范围是11a -<<.故选:B .【点睛】本题考查反比例函数的图象和性质,熟练掌握反比例函数的图象和性质是解题的关键,注意要分情况讨论,不要遗漏.8.已知点A(m ,2)、B(2,n )都在反比例函数xm y 3+=的图象上.(1)求m 、n 的值;(2)若直线y mx n =-与x 轴交于点C ,求C 关于y 轴对称点C′的坐标.【解析】解:(1)将点A(m ,2)、B(2,n )的坐标代入xm y 3+=得:32m m +=,解得3m =;333322m n ++===,所以3m n ==.(2)直线为33y x =-,令01y x ==,,所以该直线与x 轴的交点坐标为C (1,0),C 关于y 轴对称点C′的坐标为(-1,0).考向三反比例函数解析式的确定1.反比例函数的解析式ky x=(k ≠0)中,只有一个待定系数k ,确定了k 值,也就确定了反比例函数,因要确定反比例函数的解析式,只需给出一对x ,y 的对应值或图象上一个点的坐标,代入ky x=中即可.2.确定点是否在反比例函数图象上的方法:(1)把点的横坐标代入解析式,求出y 的值,若所求值等于点的纵坐标,则点在图象上;若所求值不等于点的纵坐标,则点不在图象上.(2)把点的横、纵坐标相乘,若乘积等于k ,则点在图象上,若乘积不等于k ,则点不在图象上.9.(2020·陕西中考真题)在平面直角坐标系中,点A (﹣2,1),B (3,2),C (﹣6,m )分别在三个不同的象限.若反比例函数y =kx(k ≠0)的图象经过其中两点,则m 的值为_____.【答案】-1.【分析】根据已知条件得到点(2,1)A -在第二象限,求得点(6,)C m -一定在第三象限,由于反比例函数(0)k y k x =≠的图象经过其中两点,于是得到反比例函数(0)ky k x=≠的图象经过(3,2)B ,(6,)C m -,于是得到结论.【解析】解: 点(2,1)A -,(3,2)B ,(6,)C m -分别在三个不同的象限,点(2,1)A -在第二象限,∴点(6,)C m -一定在第三象限,(3,2)B 在第一象限,反比例函数(0)ky k x=≠的图象经过其中两点,∴反比例函数(0)ky k x=≠的图象经过(3,2)B ,(6,)C m -,326m ∴⨯=-,1m ∴=-,故答案为:1-.【点睛】本题考查了反比例函数图象上点的坐标特征,正确的理解题意是解题的关键.10.当k 为何值时22(1)k y k x-=-是反比例函数?【点拨】根据反比例函数解析式(0)ky k x=≠,也可以写成1(0)y kx k -=≠的形式,后一种表达方法中x 的次数为-1,由此可知函数是反比例函数,要具备的两个条件为221k -=-且10k -≠,二者必须同时满足,缺一不可.【解析】解:令221,10,k k ⎧-=-⎨-≠⎩①②由①得,k =±1,由②得,k ≠1.综上,k =-1,即k =-1时,22(1)k y k x-=-是反比例函数.【总结】反比例函数解析式的三种形式:①k y x=;②1y kx -=;③.(0)xy k k =≠.11.已知2(3)m y m x -=-的图象是双曲线,且在第二、四象限,(1)求m 的值.(2)若点(-2,1y )、(-1,2y )、(1,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:(1)由已知条件可知:此函数为反比例函数,且2130m m -=-⎧⎨-≠⎩,∴1m =.(2)由(1)得此函数解析式为:2y x=-.∵(-2,1y )、(-1,2y )在第二象限,-2<-1,∴120y y <<.而(1,3y )在第四象限,30y <.∴312y y y <<考向四反比例函数中k 的几何意义三角形的面积与k 的关系:(1)因为反比例函数ky x=中的k 有正负之分,所以在利用解析式求矩形或三角形的面积时,都应加上绝对值符号.(2)若三角形的面积为12|k |,满足条件的三角形的三个顶点分别为原点,反比例函数图象上一点及过此点向坐标轴所作垂线的垂足.12.(2023·湖南·统考中考真题)如图,平面直角坐标系中,O 是坐标原点,点A 是反比例函数()0ky k x=≠图像上的一点,过点A 分别作AM x ⊥轴于点M ,AN y ⊥轴于直N ,若四边形AMON 的面积为2.则k 的值是()A .2B .2-C .1D .1-【答案】A【分析】证明四边形ANOM 是矩形,根据反比例函数的k 值的几何意义,即可解答.【详解】解:AM x ⊥ 轴于点M ,AN y ⊥轴于直N ,90MON ∠=︒,∴四边形AMON 是矩形,四边形AMON 的面积为2,2k ∴=,反比例函数在第一、三象限,2k ∴=,故选:A .【点睛】本题考查了矩形的判定,反比例函数的k 值的几何意义,熟知在一个反比例函数图像上任取一点,过点分别作x 轴,y 轴的垂线段,与坐标轴围成的矩形面积为k 是解题的关键.13.(2023·广西·统考中考真题)如图,过(0)k y x x=>的图象上点A ,分别作x 轴,y 轴的平行线交1y x=-的图象于B ,D 两点,以AB ,AD 为邻边的矩形ABCD 被坐标轴分割成四个小矩形,面积分别记为1S ,2S ,3S ,4S ,若23452S S S ++=,则k 的值为()A .4B .3C .2D .1【答案】C【分析】设(),A a b ,则1,B b b ⎛⎫- ⎪⎝⎭,1,D a a ⎛⎫- ⎪⎝⎭,11,C b a ⎛⎫-- ⎪⎝⎭,根据坐标求得1S ab k ==,241S S ==,推得31211S b a ⎛⎫⎛⎫=-⨯- ⎪ ⎝⎭⎝=⎭,即可求得.【详解】设(),A a b ,则1,B b b ⎛⎫- ⎪⎝⎭,1,D a a ⎛⎫- ⎪⎝⎭,11,C b a ⎛⎫-- ⎪⎝⎭∵点A 在(0)k y x x=>的图象上则1S ab k ==,同理∵B ,D 两点在1y x=-的图象上,则241S S ==故3511122S --==,又∵31211S b a ⎛⎫⎛⎫=-⨯- ⎪ ⎝⎭⎝=⎭,即112ab =,故2ab =,∴2k =,故选:C .【点睛】本题考查了反比例函数的性质,矩形的面积公式等,熟练掌握反比例函数的性质是解题的关键.14.(2023·内蒙古·统考中考真题)如图,在平面直角坐标系中,OAB 三个顶点的坐标分别为(0,0),O A B OAB '△与OAB 关于直线OB 对称,反比例函数(0,0)ky k x x=>>的图象与A B '交于点C .若A C BC '=,则k 的值为()A .BC D 【答案】A【分析】过点B 作BD x ⊥轴,根据题意得出1,BD OD ==腰三角形的判定和性质得出2OB AB ==,30BOA BAO ∠∠==︒,利用各角之间的关系180OBA OBD '∠+∠=︒,确定A ',B ,O 三点共线,结合图形确定)2C,然后代入反比例函数解析式即可.【详解】解:如图所示,过点B 作BD x ⊥轴,∵(0,0),O A B ,∴1,BD OD ==∴AD OD ==,tan BD BOA OD ∠==∴2OB AB ===,30BOA BAO ∠∠==︒,∴60OBD ABD ∠∠==︒,120OBA ∠=︒,∵OA B ' 与OAB 关于直线OB 对称,∴120OBA '∠=︒,∴180OBA OBD '∠+∠=︒,∴A ',B ,O 三点共线,∴2A B AB '==,∵A C BC '=,∴1BC =,∴2CD =,∴)2C,将其代入(0,0)k y k x x=>>得:k =,故选:A .【点睛】题目主要考查等腰三角形的判定和性质,特殊角的三角函数及反比例函数的确定,理解题意,综合运用这些知识点是解题关键.15.(2023·湖北鄂州·统考中考真题)如图,在平面直角坐标系中,直线11y k x b =+与双曲线22k y x=(其中120k k ⋅≠)相交于()2,3A -,(),2B m -两点,过点B 作BP x ∥轴,交y 轴于点P ,则ABP 的面积是___________.【答案】152【分析】把()2,3A -代入到22k y x=可求得2k 的值,再把(),2B m -代入双曲线函数的表达式中,可求得m 的值,进而利用三角形的面积公式进行求解即可.【详解】∵直线11y k x b =+与双曲线22k y x=(其中120k k ⋅≠)相交于()2,3A -,(),2B m -两点,∴2232k m =-⨯=-∴263k m =-=,,∴双曲线的表达式为:26y x=-,()3,2B -,∵过点B 作BP x ∥轴,交y 轴于点P ,∴3BP =,∴1153(32)22ABP S =⨯⨯+= ,故答案为:152.【点睛】本题是一次函数与反比例函数的交点问题,考查了待定系数法求反比例函数,反比例函数图象上点的坐标特征,三角形的面积,数形结合是解答此题的关键.考向五反比例函数与一次函数的综合反比例函数与一次函数综合的主要题型:(1)利用k 值与图象的位置的关系,综合确定系数符号或图象位置;(2)已知直线与双曲线表达式求交点坐标;(3)用待定系数法确定直线与双曲线的表达式;(4)应用函数图象性质比较一次函数值与反比例函数值的大小等.解题时,一定要灵活运用一次函数与反比例函数的知识,并结合图象分析、解答问题.16.(2023·湖北荆州·统考中考真题)如图,点()2,2A 在双曲线(0)ky x x=>上,将直线OA 向上平移若干个单位长度交y 轴于点B ,交双曲线于点C .若2BC =,则点C 的坐标是___________.【答案】【分析】求出反比例函数解析式4(0)y x x=>,证明45DOA ∠=︒,过点A 作x 轴的垂线段交x 轴于点E ,过点C 作y 轴的垂线段交y 轴于点D ,通过平行线的性质得到45DBC ∠=︒,解直角三角形求点C 的横坐标,结合反比例函数解析式求出C 的坐标,即可解答.【详解】解:把()2,2A 代入(0)k y x x=>,可得22k=,解得4k =,∴反比例函数解析式4(0)y x x=>,如图,过点A 作x 轴的垂线段交x 轴于点E ,过点C 作y 轴的垂线段交y 轴于点D ,()2,2A ,AE OE ∴=,45AOE ∴∠=︒,9045AOD AOE ∴∠=︒-∠=︒,将直线OA 向上平移若干个单位长度交y 轴于点B ,45CBD ∴∠=︒,在Rt CBD △中,sin 452CD CB =︒=,2CD ∴==即点C把x =4(0)y x x=>,可得y =,C∴,故答案为:.【点睛】本题考查了等腰三角形的判定和性质,一次函数的平移,解直角三角形,熟练求得点C 的横坐标是解题的关键.17.(2023·湖南常德·统考中考真题)如图所示,一次函数1y x m =-+与反比例函数2ky x=相交于点A 和点()3,1B -.(1)求m 的值和反比例函数解析式;(2)当12y y >时,求x 的取值范围.【答案】(1)2m =,3y x=-;(2)1x <-或03x <<【分析】(1)根据一次函数1y x m =-+的图象与反比例函数2ky x=的图象交于()3,1A -、B 两点可得m 的值,进而可求反比例函数的表达式;(2)观察函数图象,写出一次函数图象在反比例函数图象上方所对应的自变量的范围即可.【详解】(1)将点()3,1B -代入1y x m =-+得:31m -+=-解得:2m =将()3,1B -代入2ky x=得:()313k =⨯-=-∴23y x=-(2)由12y y =得:32x x--+=,解得121,3x x =-=所以,A B 的坐标分别为()()1,3,3,1A B --由图形可得:当1x <-或03x <<时,12y y >【点睛】本题考查了反比例函数与一次函数的交点问题,解决本题的关键是掌握反比例函数与一次函数的性质.18.(2023·浙江杭州·统考中考真题)在直角坐标系中,已知120k k ≠,设函数11k y x=与函数()2225y k x =-+的图象交于点A 和点B .已知点A 的横坐标是2,点B 的纵坐标是4-.(1)求12,k k 的值.(2)过点A 作y 轴的垂线,过点B 作x 轴的垂线,在第二象限交于点C ;过点A 作x 轴的垂线,过点B 作y 轴的垂线,在第四象限交于点D .求证:直线CD 经过原点.【答案】(1)110k =,22k =;(2)见解析【分析】(1)首先将点A 的横坐标代入()2225y k x =-+求出点A 的坐标,然后代入11k y x=求出110k =,然后将点B 的纵坐标代入110y x =求出5,42B ⎛⎫-- ⎪⎝⎭,然后代入()2225y k x =-+即可求出22k =;(2)首先根据题意画出图形,然后求出点C 和点D 的坐标,然后利用待定系数法求出CD 所在直线的表达式,进而求解即可.【详解】(1)∵点A 的横坐标是2,∴将2x =代入()22255y k x =-+=∴()2,5A ,∴将()2,5A 代入11k y x=得,110k =,∴110y x =,∵点B 的纵坐标是4-,∴将4y =-代入110y x =得,52x =-,∴5,42B ⎛⎫-- ⎪⎝⎭,∴将5,42B ⎛⎫-- ⎪⎝⎭代入()2225y k x =-+得,254252k ⎛⎫-=--+ ⎪⎝⎭,∴解得22k =,∴()222521y x x =-+=+;(2)如图所示,由题意可得,5,52C ⎛⎫- ⎪⎝⎭,()2,4D -,∴设CD 所在直线的表达式为y kx b =+,∴55224k b k b ⎧-+=⎪⎨⎪+=-⎩,解得20k b =-⎧⎨=⎩,∴2y x =-,∴当0x =时,0y =,∴直线CD 经过原点.【点睛】此题考查了反比例函数和一次函数综合,待定系数法求函数表达式等知识,解题的关键是熟练掌握以上知识点.考向六反比例函数的应用用反比例函数解决实际问题的步骤(1)审:审清题意,找出题目中的常量、变量,并理清常量与变量之间的关系;(2)设:根据常量与变量之间的关系,设出函数解析式,待定的系数用字母表示;(3)列:由题目中的已知条件列出方程,求出待定系数;(4)写:写出函数解析式,并注意解析式中变量的取值范围;(5)解:用函数解析式去解决实际问题.19.心理学家研究发现,一般情况下,一节课40分钟中,学生的注意力随教师讲课的变化而变化.开始上课时,学生的注意力逐步增强,中间有一段时间学生的注意力保持较为理想的稳定状态,随后学生的注意力开始分散.经过实验分析可知,学生的注意力指标数y随时间x(分钟)的变化规律如下图所示(其中AB、BC分别为线段,CD为双曲线的一部分):(1)开始上课后第五分钟时与第三十分钟时相比较,何时学生的注意力更集中?(2)一道数学竞赛题,需要讲19分钟,为了效果较好,要求学生的注意力指标数最低达到36,那么经过适当安排,老师能否在学生注意力达到所需的状态下讲解完这道题目?【点拨】(1)先用代定系数法分别求出AB和CD的函数表达式,再分别求第五分钟和第三十分钟的注意力指数,最后比较判断;(2)分别求出注意力指数为36时的两个时间,再将两时间之差和19比较,大于19则能讲完,否则不能.【解析】解:(1)设线段AB 所在的直线的解析式为y 1=k 1x+20,把B (10,40)代入得,k 1=2,∴y 1=2x+20.设C 、D 所在双曲线的解析式为y 2=x k 2,把C (25,40)代入得,k 2=1000,∴xy 10002=当x 1=5时,y 1=2×5+20=30,当31003010003022===y x 时,,∴y 1<y 2∴第30分钟注意力更集中.(2)令y 1=36,∴36=2x+20,∴x 1=8令y 2=36,∴x 100036≈,∴8.273610002≈=x ∵27.8﹣8=19.8>19,∴经过适当安排,老师能在学生注意力达到所需的状态下讲解完这道题目.【总结】主要考查了函数的应用.解题的关键是根据实际意义列出函数关系式,从实际意义中找到对应的变量的值,利用待定系数法求出函数解析式,再根据自变量的值求算对应的函数值.20.如图,是药品研究所所测得的某种新药在成人用药后,血液中的药物浓度y (微克/毫升)用药后的时间x (小时)变化的图象(图象由线段OA 与部分双曲线AB 组成).并测得当y=a 时,该药物才具有疗效.若成人用药4小时,药物开始产生疗效,且用药后9小时,药物仍具有疗效,则成人用药后,血液中药物浓则至少需要多长时间达到最大度?【点拨】利用待定系数法分别求出直线OA 与双曲线的函数解析式,再令它们相等得出方程,解方程即可求解.【解析】解:设直线OA 的解析式为y=kx ,把(4,a )代入,得a=4k ,解得k=4a ,即直线OA 的解析式为y=4a x .根据题意,(9,a )在反比例函数的图象上,则反比例函数的解析式为y=xa 9.当4a x=x a 9时,解得x=±6(负值舍去),故成人用药后,血液中药物则至少需要6小时达到最大浓度.【总结】本题考查了反比例函数的应用,直线与双曲线交点的求法,利用待定系数法求出关系式是解题的关键.考向七反比例函数与平面几何综合类型一最值问题21.(2023·四川宜宾·统考中考真题)如图,在平面直角坐标系xOy 中,等腰直角三角形ABC的直角顶点()30C ,,顶点A 、()6B m ,恰好落在反比例函数k y x=第一象限的图象上.(1)分别求反比例函数的表达式和直线AB 所对应的一次函数的表达式;(2)在x 轴上是否存在一点P ,使ABP 周长的值最小.若存在,求出最小值;若不存在,请说明理由.【答案】(1)6y x =,142y x =-+;(2)在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是【分析】(1)过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,证明()AAS ACE CBD ≌,则3,CD AE BD EC m ====,由3OE m =-得到点A 的坐标是()3,3m -,由A 、()6B m ,恰好落在反比例函数k y x=第一象限的图象上得到()336m m -=,解得1m =,得到点A 的坐标是()2,3,点B 的坐标是()6,1,进一步用待定系数法即可得到答案;(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP ,利用轴对称的性质得到AP A P '=,()2,3A '-,则AP PB A B '+=,由AB =AB 是定值,此时ABP 的周长为AP PB AB AB A B '++=+最小,利用待定系数法求出直线A B '的解析式,求出点P 的坐标,再求出周长最小值即可.【详解】(1)解:过点A 作AE x ⊥轴于点E ,过点B 作BD x ⊥轴于点D ,则90AEC CDB ∠=∠=︒,∵点()30C ,,()6B m ,,∴3,6,OC OD ==BD m =,∴3CD OD OC =-=,∵ABC 是等腰直角三角形,∴90,ACB AC BC ∠=︒=,∵90ACE BCD CBD BCD ∠+∠=∠+∠=︒,∴ACE CBD ∠=∠,∴()AAS ACE CBD ≌,∴3,CD AE BD EC m ====,∴3OE OC EC m =-=-,∴点A 的坐标是()3,3m -,∵A 、()6B m ,恰好落在反比例函数k y x=第一象限的图象上.∴()336m m -=,解得1m =,∴点A 的坐标是()2,3,点B 的坐标是()6,1,∴66k m ==,∴反比例函数的解析式是6y x =,设直线AB 所对应的一次函数的表达式为y px q =+,把点A 和点B 的坐标代入得,2361p q p q +=⎧⎨+=⎩,解得124p q ⎧=-⎪⎨⎪=⎩,∴直线AB 所对应的一次函数的表达式为142y x =-+,(2)延长AE 至点A ',使得EA AE '=,连接A B '交x 轴于点P ,连接AP,∴点A 与点A '关于x 轴对称,∴AP A P '=,()2,3A '-,∵AP PB A P PB A B ''+=+=,∴AP PB +的最小值是A B '的长度,∵AB =AB 是定值,∴此时ABP 的周长为AP PB AB AB A B '++=+最小,设直线A B '的解析式是y nx t =+,则2361n t n t +=-⎧⎨+=⎩,解得15n t =⎧⎨=-⎩,∴直线A B '的解析式是5y x =-,当0y =时,05x =-,解得5x =,即点P 的坐标是()5,0,此时AP PB AB AB A B '++=+==+,综上可知,在x 轴上存在一点()5,0P ,使ABP 周长的值最小,最小值是【点睛】此题考查了反比例函数和一次函数的图象和性质、用到了待定系数法求函数解析式、勾股定理求两点间距离、轴对称最短路径问题、全等三角形的判定和性质等知识,数形结合和准确计算是解题的关键.类型二存在性22.(2023·四川眉山·统考中考真题)如图,在平面直角坐标系xOy 中,直线y kx b =+与x 轴交于点()4,0A ,与y 轴交于点()0,2B ,与反比例函数m y x =在第四象限内的图象交于点()6,C a .(1)求反比例函数的表达式:(2)当m kx b x+>时,直接写出x 的取值范围;(3)在双曲线m y x =上是否存在点P ,使ABP 是以点A 为直角顶点的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)6y x=-;(2)<2x -或06x <<;(3)()32-,或()16-,【分析】(1)将()4,0A ,()0,2B 代入y kx b =+,求得一次函数表达式,进而可得点C 的坐标,再将点C 的坐标代入反比例函数即可;(2)将一次函数与反比例函数联立方程组,求得交点坐标即可得出结果;(3)过点A 作AP BC ⊥交y 轴于点M ,勾股定理得出点M 的坐标,在求出直线AP 的表达。
教学主题 一轮复习反比例函数教学目标掌握反比例函数题型重 要 知识点 1.反比例函数 2. 3. 易错点教学过程反比例函数考点1:反比例函数的图象和性质 1、一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数,其图象是叫双曲线。
2、当k >0时,图象的两个分支分别在第一、三象限。
在每个象限内,y 随x 的增大而减小。
当k <0时,图象的两个分支分别在第二、四象限。
在每个象限内,y 随x 的增大而增大。
3、对于双曲线上的点A 、B ,有两种三角形的面积(S △AOB)要会求(会表示),如图所示.考点1、反比例函数图像与性质1、函数2y x =与函数1y x-=在同一坐标系中的大致图像是 ( )【答案】B2、如图是我们学过的反比例函数图象,它的函数解析式可能是 ( )【答案】 BA .2y x =B .4y x=C .3y x=-D .12y x =3、若点12(1,),(2,)A y B y 是双曲线3y x=上的点,则1y 2y (填“>”,“<”“=”). 【答案】> 4、如图,反比例函数ky x=的图象经过点A (-1,-2).则当x >1时,函数值y 的取值范围是( )A.y >1B.0<y <1C. y >2D.0< y <2【答案】D6.如图,已知直线12y x =-经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并直接写出当y 2<2时自变量x 的取值范围.【答案】(1)∴P ′(2,4).(2) k =8,自变量x 的取值范围x <0或x >4. 考点3:反比例函数解析式中k 的几何意义 相关知识:设()P x y ,是反比例函数ky x=图象上任一点,过点P 作x 轴、y 轴的垂线,垂足为A ,则(1)△OPA 的面积111222OA PA xy k ===g .(2)矩形OAPB 的面积OA PA xy k ===g 。
专题四 图形与坐标、函数及图象000,0k y x k y x k b k b ⎧⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎨⎩⎪⎧⎧⎪⎪⎪⎪⎨⎪⎪⎨⎪⎪⎩⎪⎪⎪⎪⎩⎩>⎧⎨<⎩>>⇔有序数对平面直角坐标系点的对称用坐标确定位置图形与坐标图形的运动与坐标函数基础知识函解析式法数函数的表示列表法函数基图象法:函数的图象础自变量的取值范围知,随增大而增大一次函数的增减性识,随增大而减小、图象过第一、二、三象限一次一函数一次函数图象与,的关系函数及反比例函数0,00,00,000k b k b k b k y x k <⎧⎪⎪⎪⎧⎪⎪⎪><⇔⎪⎨⎨<>⇔⎪⎪⎪⎪<<⇔⎩⎪⎪⎪⎩>图象过第一、三、四象限图象过第一、二、四象限图象过第二、三、四象限一次函数解析式的确定:待定系数法反比例函数图象及画法:列表、描点、连线,双曲线,中心对称图形,轴对称图形反当时,函数图象的两个分支分别位于第一、三象限,在每个比象限内,随的增大而减小例反比例函数图象性质当时,函数图象的两个分支函数y x ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎩⎪⎪⎩分别位于第二、四象限,在每个、象限,随的增大而增大待定系数法:先设出函数解析式,然后根据所给条件确定解析反比例函数解析式的确定式中未知系数的方法第23讲 函数基础知识知识能力解读知能解读(一)有序数对我们把有顺序的两个数与组成的数对, 叫作有序数对, 记作.注意对“有序”要理解准确, 即两个数的位置不能随意交换, 与中字母顺序不同, 含义就不同, 表示的位置也就不同.知能解读(二)平面直角坐标系(1)如图所示, 在平面内画两条互相垂直、原点重合的数轴, 组成平面直角坐标系.水平的数轴称为横轴或轴, 习惯上取向右方向为正方向;竖直的数轴称为纵轴或轴, 取向上方向为正方向.两坐标轴的交点为平面直角坐标系的原点.(2)建立了平面直角坐标系以后, 坐标平面就被两条坐标轴分成四个部分, 每个部分称为象限, 按逆时针顺序依次叫第一象限、第二象限、第三象限、第四象限, 如图1-23-1所示. 注意(1)两条坐标轴上的点不属于任何一个象限.(2)如果平面直角坐标系具有实际意义, 那么要在表示横轴、纵轴的字母后附上单位. 知能解读(三)点的坐标如图所示, 在平面直角坐标系中, 从点分别向轴和轴作垂线, 垂足分别为点和点.这时, 点在轴上对应的数为3, 称为点的横坐标;点在轴上对应的数为2, 称为点的纵坐标, 依次写出点的横坐标和纵坐标得到一对有序实数对, 该有序实数对称为点的坐标, 这时点可记作. 注意(1)在建立了平面直角坐标系后, 平面内的点便可与有序实数对—对应.也就是说, 对于坐标平面内的一个点, 总能找到一个有序实数对与之对应;反之, 对于任意一个有序实数对, 总可以在坐标平面内找出一个点与之对应.(2)在表示点的坐标时, 横坐标应写在纵坐标的前面, 中间用逗号隔开, 横、纵坐标的顺序不能颠倒, 如与是两个不同点的坐标.知能解读(四)不同位置的点的坐标特征)(1)点在轴上, 则点的纵坐标为0, 横坐标为任意实数;(2)点在轴上, 则点的横坐标为0, 纵坐标为任意实数.3象限角的平分线上的点的坐标特征设为象限角的平分线上一点, 则当点在第一、三象限角平分线上时, ;当点在第二、四象限角平分线上时, .4与坐标轴平行的直线上点的坐标特征平行于x轴的直线上的各点的纵坐标相同;平行于y轴的直线上的各点的横坐标相同.5关于轴, 轴、原点对称的点的坐标特征一般地, 若点与点关于轴(横轴)对称, 则横坐标相同, 纵坐标互为相反数;若点与点关于轴(纵轴)对称, 则纵坐标相同, 横坐标互为相反数;若点与点关于原点对称, 则横坐标互为相反数, 纵坐标互为相反数.简单记为“关于谁谁不变, 关于原点都改变”.知能解读(五)平面直角坐标系内的点到x轴、y轴、原点的距离(拓展)如图所示, (1)点到轴的距离为, 到轴的距离为, 到原点的距离为;(2)同一坐标轴上的两点之间的距离为;(3)在不同坐标轴上的两点之间的距离为 .知能解读(六)函数的相关概念1变量与常量在一个变化过程中, 我们称数值发生变化的量为变量, 数值始终不变的量为常量.注意常量与变量不是绝对的, 而是对“某一变化过程”而言的, 同一个量在某一个变化过程中是常量, 而在另一个变化过程中可能是变量.如在汽车: 行驶的过程中, 有路程、行驶时间、速度三个量, 当速度—定时, 路程与时间是变量, 速度是常量;当汽车行驶的时间一定时, 路程与速度是变量, 时间为常量;当路程—定时, 速度与时间是变量, 路程为常量.2自变量与函数一般地, 在一个变化过程中, 如果有两个变量与, 并且对于的每一个确定的值, 都有唯一确定的值与其对应, 那么我们就说是自变量, 是的函数.注意函数体现的是一个变化的过程, 在这一变化过程中, 要着重把握以下两点:(1)只能有两个变量;(2)对于自变量的每一个确定的值, 都有唯一的函数值与之对应.知能解读(七)函数的解析式像这样, 用关于自变量的数学式子表示函数与自变量之间的关系, 是描述函数的常用方法, 这种式子叫作函数的解析式.知能解读(八)函数自变量的取值范围及函数值函数自变量的取值范围是指使函数有意义的自变量的取值的全体.求自变量的取值范围通常从两个方面考虑:一是要使函数的解析式有意义;二是要符合客观实际.下面给出一些简单函数解析式中自变量取值范围的确定方法:(1)当函数的解析式是整式时, 自变量取任意实数(即全体实数);(2)当函数的解析式是分式时, 自变量取值是使分母不为零的任意实数;(3)当函数的解析式是二次根式时, 自变量取值是使被开方式为非负数;(4)当函数解析式中自变量出现在零次幂或负整数次幕的底数中时, 自变量取值是使底数不为零的实数对于自变量在取值范围内的每一个值, 如当时, 函数有唯一确定的值与之对应, 这个值就是当时的函数值.知能解读(九)函数的图象一般地, 对于一个函数, 如果把自变量与函数的每对对应值分别作为点的横、纵坐标, 那么坐标平面内由这些点组成的图形, 就是这个函数的图象.描点法画函数图象的一般步骤如下:第一步, 列表——在表中给出一些自变量的值及其对应的函数值;第二步, 描点——在平面直角坐标系中, 以自变量的值为横坐标, 相应的函数值为纵坐标, 描出表中数值对应的各点;第三步, 连线——按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来.方法技巧(一)利用平面直角坐标系相关知识解决问题的方法1由点的位置确定点的坐标, 由点的坐标确定点的位置根据平面直角坐标系内点的坐标与点的位置的关系, 我们可以根据点的坐标确定点的位置, 反过来, 也可以根据点的位置确定点的坐标.2建立适当的平面直角坐标系, 解决数学问题根据已知条件, 建立适当的平面直角坐标系, 是确定点的位置的必经过程, 在建立平面直角坐标系时, 我们一般以图形的某边所在直线为坐标轴, 或使图形的顶点大部分在坐标轴上.方法技巧(二)求函数自变量的取值范围的方法函数自变量的取值范围首先要使函数解析式有意义, 当函数解析式表示实际问题或几何问题时, 自变量的取值范围还必须符合实际意义或几何意义.方法技巧(三)列函数解析式(建立函数模型)的方法1求几何图形问题中的函数解析式2求实际问题中的函数解析式方法技巧(四)用图象法表示函数关系的方法1实际问题的函数图象2动点问题的函数图象易混易错辨析易混易错知识1.由点到坐标轴的距离确定点的坐标时, 因考虑不周而出错.由点求坐标时, 容易将横、纵坐标的位置弄错, 还容易忽略坐标的符号而出现漏解的情况, 如点到轴的距离是4, 到轴的距离是3, 此时点的坐标不只是一种情况, 求解时考虑问题要全面.2.由实际问题的函数解析式画图象时, 易忽视自变量的取值范围而导致图象错误.实际问题中自变量的取值范围大部分都是非负数, 画图象时应加以注意.易混易错(一)求自变量的取值范围时, 因考虑不周而出错易混易错(二)由点到坐标轴的距离求点的坐标时出错中考试题研究中考命题规律函数自变量的取值范围、函数的图象及平面直角坐标系的应用、确定物体位置的方法是近几年中考的常见考点.特别是根据提供的图象解决实际问题的一类信息题因具有时代气息、贴近生活, 是中考热点之一.题型有选择题、填空题和解答题.中考试题(一)确定点的位置中考试题(二)确定点的坐标中考试题(三)利用函数自变量的取值范围解决问题中考试题(四)根据情景描述函数图象中考试题(五)由函数图象获取信息第24讲一次函数知识能力解读知能解读(一)正比例函数和一次函数的概念(1)正比例函数:一般地, 形如(是常数, )的函数, 叫作正比例函数, 其中叫作比例系数.(2)一次函数:一般地, 形如(是常数, )的函数, 叫作一次函数.当时, 即, 所以说正比例函数是一种特殊的一次函数.注意(1)一次函数的表达式是一个等式, 其左边是因变量, 右边是关于自变量的整式.(2)自变量的次数为1, 且系数不等于0.(3)自变量的取值范围:一般情况下, 一次函数中自变量的取值范围是全体实数.知能解读(二)正比例函数和一次函数的图象(1)一般地, 正比例函数(是常数, )的图象是一条经过原点的直线, 我们称它为直线, 当时, 直线经过第一、三象限, 从左向右上升, 即随着的增大也增大;当时, 直线经过第二、四象限, 从左向右下降, 即随着的增大反而减小.一般地, 过原点和点(是常数, )的直线, 即正比例函数的图象.(2)一次函数(是常数, )的图象可以由直线平移个单位长度得到(当时, 向上平移;当时, 向下平移).一次函数(是常数, )的图象也是一条直线, 我们称它为直线.—次函数具有如下性质:当时, 随的增大而增大;当时, 随的增大而减小.点拨为了方便, 我们通常利用一次函数的图象与坐标轴的交点和来画图象.=+中的系数,k b的理解(拓展点)知能解读(三)对一次函数y kx b(2)两直线与的位置关系:①当时, 两直线平行;②当时, 两直线重合;③当时, 两直线交于轴上一点;④(供参考)当时, 两直线垂直.知能解读(四)待定系数法先设出函数解析式, 再根据条件确定解析式中未知的系数, 从而得出函数解析式的方法, 叫作待定系数法.用待定系数法求一次函数解析式的一般步骤:(1)设出含有待定系数的函数解析式(为常数, );(2)把已知条件(自变量与对应的函数值)代入解析式, 得到关于待定系数的方程;(3)解方程, 求出待定系数;(4)将求出的待定系数的值代回所设的函数解析式, 即得出所求的函数解析式.知能解读(五)一次函数与方程(组)、不等式之间的关系1一次函数与一元一次方程一般地, 因为任何一个以为未知数的一元一次方程都可以变形为的形式, 所以解一元一次方程相当于求与之对应的一次函数的函数值为0时, 自变量的值.点拨求直线与轴的交点, 可令得方程, 解方程得是直线与轴交点的横坐标.反之, 由函数的图象也能求出与之对应的一元一次方程的解.2一次函数与二元一次方程(组)一般地因为每个含有未知数和的二元一次方程, 都可以变为(是常数, )的形式, 所以每个这样的方程都对应一个一次函数, 于是也对应一条直线.这条直线上每个点的坐标都是这个二元一次方程的解.由上可知, 由含有未知数和的两个二元一次方程组成的每个二元一次方程组, 都对应两个一次函数, 于是也对应两条直线.从“数”的角度看, 解这样的方程组, 相当于求自变量为何值时相应的两个函数值相等, 以及这个函数值是多少;从“形”的角度看, 解这样的方程组, 相当于确定两条相应直线交点的坐标.因此, 我们可以用画一次函数图象的方法得到方程组的解.3—次函数与一元一次不等式一般地, 因为任何一个以为未知数的一元一次, 不等式都可以变为或的形式, 所以解一元一次不等式相当于求与之对应的一次函数的函数值大于0或小于0时, 自变量的取值范围. 注意通常我们可用解方程组的方法求两直线的交点坐标, 也可以通过画图象, 利用两直线的交点坐标得出方程组的解, 即:既可以用“数”的方法解决;“形”的问题, 也可以用“形的方蜂解决“数”的问题, 这种方法上的互通性体现了数形结合的思想.方法技巧归纳方法技巧(一)一次函数的判别方法一次函数的判别依据有如下三点: (1)关于自变量的表达式是整式;(2)自变量的次数是1;(3)自变量的系数不为零.特别地, 当常数项为零时, 是正比例函数.方法技巧(二)一次函数()0y kx b k =+≠图象位置的确定方法的符号决定直线的倾斜方向: 当时, 直线自左向右上升;当是时, 直线自左向右下降.的符号决定直线与轴的交点位置: 当时, 直线与轴交于正半轴;当时, 直线过原点;当时, 直线与轴交于负半轴.方法技巧(三)利用一次函数的性质解决问题的方法一次函数的性质主要是指函数的增减性, 即随的变化情况, 它只和的符号有关, 与的符号无关.若, 则随的增大而增大;若, 则随的增大而减小, 反之, 若随的增大而增大, 则;若随的增大而减小, 则.方法技巧(四)用待定系数法求一次函数解析式的方法由于一次函数的解析式中有和两个待定系数, 因此用待定系数法时需要根据两个条件列二元一次方程组(以和为未知数), 解方程组后便可求得这个一次函数的解析式.方法技巧(五)利用一次函数求方程(组)的解、不等式(组)的解或解集的方法一次函数的图象与方程(组)、不等式(组)有着密切的联系:(1)关于x 的一元一次方程()00kx b k +=≠的解是直线y kx b =+与x 轴交点的横坐标.(2)关于的一元一次不等式的解集是以直线和轴的交点为分界点, 轴上(下)方的图象所对应的值的集合.(3)关于,x y 的二元一次方程组1122,k x b y k x b y +=⎧⎨+=⎩的解是直线11y k x b =+和22y k x b =+的交点坐标.方法技巧(六)用一次函数解决实际问题的方法在研究一个实际问题时, 应首先从问题中抽象出特定的函数关系, 将其转化为“函数模型”, 然后再利用函数的性质得出结论, 最后把结论应用到实际问题中去, 从而得到实际问题的研究结果.易混易错辨析易混易错知识正比例函数和一次函数的区别.正比例函数是一种特殊的一次函数, 一次函数包括正比例函数.也就是说, 如果一个函数是正比例函数, 那么它一定是一次函数.但是, 如果一个函数是一次函数, 那么它不一定是正比例函数.易混易错(一)因忽视隐含条性而致错易混易错(二)因考虑问题不全面而致错易混易错(三)因对图象表示的实际意义理解错误而致错中考试题研究中考命题规律一次函数解析式的确定, 一次函数的图象与性质, 一次函数与方程、不等式的联系, 以及运用一次函数的知识解决实际问题都是近年来中考的热点内容, 特别是根据提供的图象解决有关的实际问题更是中考的热点.题型有选择题、填空题、解答题.中考试题(一)对一次函数的图象和性质的理解中考试题(二)用待定系数法求函数解析式中考试题(三)一次函数与方程(组)、不等式的关系中考试题(四)利用一次函数解决实际问题中考试题(五)利用图象获取信息第25讲 反比例函数知识能力解读知能解读(一)反比例函数的定义一般地, 形如(是常数, )的函数叫作反比例函数, 其中叫作比例系数.注意(1)反比例函数的左边是函数, 右边是分母为自变量的分式.也就是说, 分母不能是多项式, 只能是的一次单项式.如等都是关于的反比例函数, 但就不是关于的反比例函数.(2)反比例函数()0k y k x=≠可以写成1y kx -=或()0xy k k =≠的形式. (3)反比例函数中, 两个变量成反比例关系. (4)反比例函数()0k y k x =≠的自变量x 是不等于0的任意实数. 知能解读(二)反比例函数的图象 反比例函数()0k y k x=≠的图象是双曲线. 注意(1)反比例函数的图象是双曲线, 它有两个分支, 它的两个分支是断开的.(2)当时, 两个分支分别位于第一、三象限;当时, 两个分支分别位于第二、四象限.(3)反比例函数()0k y k x=≠的图象的两个分支关于原点对称. (4)反比例函数的图象与轴、轴都没有交点, 即图象的两个分支无限接近坐标轴, 但永远不与坐标轴相交, 这是因为.注意(1)反比例函数图象的位置和函数的增减性都是由比例系数的符号决定的, 反过来, 由双曲: 线所在的位置或函数的增减性也可以判断出的符号.(2)反比例函数的增减性只能在其图象所在的某个象限内讨论.不能说当时, 随的增大而减小;当时, 随的增大而增大.)知能解读(四)反比例函数解析式的确定因为在反比例函数的解析式中, 只有一个系数, 所以确定了的值, 也就确定了反比例函数, 因此只需利用一组的对应值或图象上一点的坐标, 利用待定系数法, 即可确定反比例函数的解析式.知能解读(五)反比例函数()0k y k x=≠中比例系数k 的几何意义反比例函数中比例系数的几何意义: 如图所示, 过双曲线上任一点作轴、轴的垂线, 所得矩形的面积即过双曲线上任意一点作轴、轴的垂线, 所得矩形的面积均为.同时, 的面积均为. 注意(1)应用反比例函数 (为常数, )中的几何意义, 可把反比例函数与直角三角形、矩形联系在一起_(2)应用面积不变性可以解决一些实际问题, 逆用其面积不变性还可以直接求出值, 这样可以简化反比例函数解析式的求法.知能解读(六)反比例函数在实际生活中的应用反比例函数模型是实际生活和生产中的一类问题的数学模型, 解决这类问题时, 需要先列出符合题意的函数解析式, 再利用反比例函数的性质、方程、方程组、不等式等相关知识求解.根据实际问题, 利用反比例函数模型来刻画某些实际问题中变量之间的关系式或利用数形结合来分析实际问题时, 要特别注意以下几点:⑴在实际问题的函数解析式中, 因变量和自变量都有自己代表的实际意义, 不仅要学会利用变量的实际意义解答问题, 还要学会把从实际中得到的数据转化为解析式中所需的数据;(2)实际问题中函数图象上的每一点都有自己所代表的实际意义;(3)作实际问题的图象时, 要注意两个变量的取值范围;(4)在解决实际问题时, 经常要应用数形结合思想.方法技巧归纳方法技巧(一)反比例函数概念的应用根据反比例函数的定义:反比例函数的形式主要有()()()10,0,0k y k y kx k xy k k x-=≠=≠=≠. 方法技巧(二)反比例函数的图象与性质的应用反比例函数的图象位置可根据的符号来确定, 当时, 同号, 图象的两个分支分别位于第一、三象限, 在每一个象限内, 随的增大而减小;当时, 异号, 图象的两个分支分别位于;第二、四象限, 在每一个象限内, 随的增大而增大.方法技巧(三)反比例函数中比例系数k 的几何意义的应用 利用反比例函数()0k y k x=≠中比例系数k 的几何意义解答即可. 方法技巧(四)反比例函数与一次函数的综合应用一次函数图象与反比例函数图象的交点的坐标, 既适合一次函数的解析式, 也适合反比例函数的解析式, 可以利用一次函数、反比例函数的图象与性质的综合应用解决一些问题.易混易错辨析易混易错知识1.对反比例函数的定义理解不透.在识别反比例函数时, (1)容易忽略条件导致出错;(2)易忽视等号右边的关于的分式中分母是关于的单项式而出错, 例如, 认为是反比例函数.2.对反比例函数的性质理解出错.反比例函数的性质: 当时, 在每一个象限内, 随的增大而减小.在理解时, 易忽视“在每一个象限内”这个条件, 而理解为时, 随的增大而减小.易混易错(一)因忽视反比例函数k y x=中的条件0k ≠而致错 易混易错(二)因忽视题目图象中的隐含信息而致错.易混易错(三)研究反比例函数性质时, 因忽视前提条件而致错中考试题研究中考命题规律反比例函数的定义、性质、解析式的确定方法及结合图象对实际问题进行分析是中考必考点, 而利用图象及其性质解决问题是中考的热点, 题型设计较新颖, 有反映时代特点的应用题、图表信息题及与几何面积有关的综合题.中考试题(一)反比例函数的解析式中考试题(二)反比例函数的图象与性质中考试题(三)反比例函数中比例系数的几何意义中考试题(四)反比例函数与一次函数的图象交点问题中考试题(五)反比例函数的综合应用。
反比例函数重点一反比例函数的图象与性质1.如果两个变量 x、y 之间的关系可以表示为① y =xk(k≠0,且k为常数),那么称y是x的反比例函数.它的图象叫双曲线.反比例函数的另两种表示方式:xy= k(k≠0),y=kx-1(k≠0). 2.反比例函数的图象与性质表达式:y = xk(k≠0,k为常数)k>0 图像在第一、三象限 在每个象限内,y随x的增大而减小 k<0 图像在第二、四象限 在每个象限内,y随x的增大而增大 (1)k>0 时,当 x1 x2>0,x1<x2 时,y1>y2 ; (2)当 x1<0<x2 时,y1<0<y2 .(3)k<0 时,当 x1x2>0,x1<x2 时,y1<y2 ;当x1<0<x2 时,y1>0>y2 .3.反比例函数解析式的确定常用待定系数法.重点二反比例函数与一次函数的综合应用1.利用函数图象确定不等式ax+>x k 或ax+b<xk的解集的方法 如图,过交点A、B分别作x轴的垂线,它们连同y轴把平面分为四部分,相应标为Ⅰ、Ⅱ、Ⅲ、Ⅳ.从图象可以看出,在Ⅰ、Ⅲ部分,反比例函数图象位于一次函数图象上方,所以不等式ax+b<xk的解集为x<xB或 0<x<xA .在Ⅱ、Ⅳ部分,反比例函数图象位于一次函数图象下方,所以不等式 ax+b> xk的解集为xB<x<0或x>xA .重点三求k的值和反比例函数解析式的方法1.由k的几何意义直接得出反比例函数解析式.2.根据图象特征求出图象上某个点的坐标,然后用待定系数法求反比例函数解析式.特别是当图象上有两个未知坐标的点时,常设一个参数,根据几何图形的特征,用参数把图象上两个点的坐标表示出来,然后根据xy=k列方程,求出参数,得两个点的坐标,即可得出反比例函数解析式.重点四反比例函数的性质在几何中的应用反比例函数常和一次函数、三角形、四边形等联系起来综合考查,比如用点的坐标表示线段的长度,结合几何图形的特征,列方程,求出点的坐标,进而求出函数解析式,或用点的坐标表示线段的长度来探究几何图形的某些特征.基础训练1.若函数y=(m2-3m+2)x|m|-3是反比例函数,则m 的值是( B ) A .1 B .-2 C .±2 D .22.若y=(5+m )x2+n 是反比例函数,则m 、n 的取值是( B )A .m=-5,n=-3B .m ≠-5,n=-3C .m ≠-5,n=3D .m ≠-5,n=-4 3.在xy+2=0中,y 是x 的( B ) A .一次函数 B .反比例函数 C .正比例函数D .即不是正比例函数,也不是反比例函数 4.下列命题错误的是( D )A .如果y 是x 的反比例函数,那么x 也是y 的反比例函数.B .如果y 是z 的反比例函数,z 是x 的正比例函数,且x ≠0,那么y 是x 的反比例函数C .如果y 是z 的正比例函数,z 是x 的反比例函数,且x ≠0,那么y 是x 的反比例函数D .如果y 是z 的反比例函数,z 是x 的反比例函数,那么y 是x 的反比例函数5.函数y =(1)m m x 是反比例函数,则m 必须满足( D )A .m ≠0B .m ≠-1C .m ≠-1或m ≠0D .m ≠-1且m ≠06.下列等式中y 是x 的反比例函数的是( D )A .y=4xB .yx =3 C .y=6x+1 D .xy=2提升训练1.下列选项中,能写成反比例函数的是( D )A .人的体重和身高B .正三角形的边长和面积C .速度一定,路程和时间的关系D .销售总价不变,销售单价与销售数量的关系2.若y =2x m -5为反比例函数,则m =( C ) A .-4 B .-5 C .4 D .5 93.下列函数不是反比例函数的是( B ) A .y =3x -1 B .y =-3x C .xy =5 D .y =12x4.若y 与x 成反比例,x 与z 成反比例,则y 是z 的( A ) A .正比例函数 B .反比例函数 C .一次函数 D .不能确定5.下列关系中,两个量之间为反比例函数关系的是( D ) A .正方形的面积S 与边长a 的关系 B .正方形的周长l 与边长a 的关系C .矩形的长为a ,宽为20,其面积S 与a 的关系D .矩形的面积为40,长a 与宽b 之间的关系6.下列关于y 与x 的表达式中,反映y 是x 的反比例函数的是( C ) A .y =4x B .xy=-2 C .xy =4 D .y =4x -3 7.如果直角三角形的面积一定,那么下列关于这个直角三角形边的关系中,正确的是( B ) A .两条直角边成正比例 B .两条直角边成反比例 C .一条直角边与斜边成正比例 D .一条直角边与斜边成反比例8.若函数y =(m +1)x |m |-2是反比例函数,则m 等于( C ) A .2 B .-2 C .1 D .±19.若y 是x 的反比例函数,那么x 是y 的( C )A .正比例函数B .一次函数C .反比例函数D .二次函数举一反三1.M 、N 两点都在同一反比例函数图象上的是( C )A. M (2,2),N (-1,-1)B. M (-3,-2),N (9,6)C. M (2,-1),N (1,-2)D. M (-3,4),N (4,3)2.已知反比例函数的图象过(2,-2)和(-1,n ),则n 等于( B ) A. 3 B. 4 C. 6 D. 123.已知广州市的土地总面积约为7434 km2, 人均占有的土地面积S (单位:km2/人)随全市人口n (单位:人)的变化而变化,则S 与n 的函数关系式为( B )A. S=7434nB. S=7434nC. n=7434SD. S=7434n4.若()3m m y x-=是反比例函数,则m 必须满足( D )A. 3m ≠B. 0m ≠C. 0m ≠或3m ≠D. 0m ≠且3m ≠5.函数是反比例函数,则m的值为(A)A. 0 B. -1 C. 0或-1 D. 0或16.下列关系中,两个量之间为反比例函数关系的是(D)A. 正方形的面积S与边长a的关系B. 正方形的周长L与边长a的关系C. 长方形的长为a,宽为20,其面积S与a的关系D. 长方形的面积为40,长为a,宽为b,a与b的关系。
【初中数学】2021中考数学考试知识点反比列函数每一门功课都有它自身的规律,有它自身的特点,数学当然也不例外。
下面是有关2021中考数学考试知识点:反比列函数的内容,供你学习参考!反比例函数的定义定义:形如函数y=k/x(k为常数且k0)叫做反比例函数,其中k叫做比例系数,x是自变量,y是自变量x的函数,x的取值范围是不等于0的一切实数。
反比例函数的性质函数y=k/x 称为反比例函数,其中k0,其中X是自变量,1.当k0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。
2.k0时,函数在x0上同为减函数、在x0上同为减函数;k0时,函数在x0上为增函数、在x0上同为增函数。
3.x的取值范围是: xy的取值范围是:y0。
4..因为在y=k/x(k0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。
但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=xy=-x(即第一三,二四象限角平分线),对称中心是坐标原点。
反比例函数的一般形式(k为常数,k0)的形式,那么称y是x的反比例函数。
其中,x是自变量,y是函数。
由于x在分母上,故取x0的一切实数,看函数y的取值范围,因为k0,且x0,所以函数值y也不可能为0。
补充说明:1.反比例函数的解析式又可以写成: (k是常数,k0).2.要求出反比例函数的解析式,利用待定系数法求出k即可.反比例函数解析式的特征⑴等号左边是函数,等号右边是一个分式。
分子是不为零的常数(也叫做比例系数),分母中含有自变量,且指数为1。
⑵比例系数⑶自变量的取值为一切非零实数。
⑷函数的取值是一切非零实数。
编辑老师为各位考生准备的2021中考数学考试知识点就到这里了,祝大家考试顺利!感谢您的阅读,祝您生活愉快。
中考数学第11讲反比例函数复习教案(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(中考数学第11讲反比例函数复习教案(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为中考数学第11讲反比例函数复习教案(新版)北师大版的全部内容。
课题:第十一讲反比例函数教学目标:1.理解反比例函数的概念,会求反比例函数解析式;2.理解并掌握反比例函数图象与性质,能运用反比例函数图象与性质解决有关函数值比较大小问题;3。
会用反比例函数解决某些实际问题,体会函数的应用价值;4。
在解决问题过程中,体会数形结合思想在解决函数问题中作用,提高利用函数思想探究问题的积极性.教学重点:反比例函数的图象性质与数形结合思想。
教学难点:反比例函数增减性的理解,反比例函数的应用.※枣考解读:教法与学法指导:本节课主要采用题组复习学生通过自主学习,小组合作,展开互动性学习,让学生体会到学习数学的成就感.把全班分成6个小组(每小组6人)进行小组竞学,合作交流,培养学生的探究能力与合作交流意识,提高分析问题、解决问题的能力.教学准备:教师准备导学案、多媒体课件学生准备:(提前两天布置)①预习新课程初中复习指导丛书(枣庄版)50~51页反比例函数,完成填空;②完成新课程初中复习指导丛书(枣庄版)52~54页反比例函数的强化训练。
设计意图:意在让学生提前预习(枣庄版初中复习指导丛书),提前做课后强化训练(枣庄版初中复习指导丛书),提高课堂教学效率,拒绝低效课堂.活动注意事项:落实“三讲三不讲”,即“学生不看书(枣庄版初中复习指导丛书)不讲;学生不做习题(枣庄版初中复习指导丛书)不讲,学生自己能学会的不讲”,只规范解题过程;稍加点拨学生就会做的习题,教师不讲,只启发诱导。
2021年中考数学一轮复习(通用版)第11章反比例函数考点梳理考点一反比例函数的概念、图象和性质1.反比例函数的概念一般地,函数y=(k为常数,且k≠0)叫做反比例函数.【点拨】(1)函数y=kx-1或xy=k都是反比例函数;(2)反比例函数中自变量的取值范围是x≠0. 2.反比例函数的图象和性质(1)反比例函数y=kx(k为常数,且k≠0)的图象是.(2)反比例函数的图象无限接近,但永不与相交.(3)反比例函数的图象和性质第一、三象限第二、四象限一象限,再结合每个象限内反比例函数图象的增减性来比较,解决这种问题的一个有效办法是画出草图,标上各点,再比较大小.3.确定反比例函数的表达式(1)求反比例函数的表达式可用待定系数法.由于反比例函数的表达式中只有一个待定系数,因此只需已知一组对应值即可.(2)求反比例函数表达式的一般步骤:①设反比例函数的表达式;①把已知的一组对应值代入函数表达式,建立方程;①解方程求得待定系数的值.4.反比例函数的系数k的几何意义如图,设点P(x,y)是反比例函数y=kx图象上任一点,过点P作x轴的垂线,垂足为A,则①OP A的面积=12OA·P A=12|xy|=12|k|,这就是反比例函数的系数k的几何意义.【点拨】根据比例系数k的几何意义,求k值时,要根据双曲线所在的象限正确确定k的符号.考点二反比例函数的应用1.反比例函数与一次函数的综合应用(1)求函数解析式一般先通过一个已知点求出反比例函数解析式,再由反比例函数的解析式求出另一个交点的坐标,再将这两点的坐标代入一次函数的解析式中,解方程(组)即可.(2)求交点坐标将一次函数的解析式与反比例函数的解析式联立成方程组求解即可;对于正比例函数与反比例函数,其均关于原点对称,只要知道一个交点的坐标,就可以求出其关于原点对称的另一个交点的坐标.(3)求面积①当有一边在坐标轴上时,通常将坐标轴上的边作为底边,再利用点的坐标求得底边上的高,然后利用面积公式求解;①当两边均不在坐标轴上时,一般可采用割补法将其转化为一边在坐标轴上的两个三角形面积的和或差来求解.此外,求面积时要充分利用“数形结合”的思想,即用“坐标”求“线段”,用“线段”求“坐标”.(4)比较两个函数值的大小,求自变量的取值范围2.反比例函数的实际应用利用反比例函数解决实际问题,首先要建立反比例函数的数学模型,这也是关键一步,一般地,建立反比例函数模型有两种思路:(1)题目中明确指出变量间存在反比例函数关系,在这种情况下,可利用待定系数法求反比例函数的解析式.(2)题目中未指出变量间存在反比例函数关系,在这种情况下可利用基本数量关系求反比例函数的关系式,反比例函数模型建立后,进一步地可利用反比例函数的图像及性质解决问题.重难点讲解考点一正确理解反比例函数的概念,会求k值和反比例函数的解析式方法指导:因为反比例函数的解析式y=kx(k≠0)中只有一个待定系数k,确定了k的值,也就确定了反比例函数的解析式,因而只需给出一组x,y的值或图象上一点的坐标,代入y=kx(k≠0)中即可求出k的值,从而确定反比例函数的解析式.另外,反比例函数解析式y=kx(k≠0)也可以变形为k=xy(k≠0),所以要求的k值就等于双曲线上任意一点的横坐标与纵坐标之积.进一步理解得到反比例函数解析式y=kx(k≠0)中,比例系数k的几何意义是过双曲线上任意一点作x轴、y轴的垂线,所得的矩形面积为|k|.经典例题1 (2020•安徽滁州模拟)如图,在平面直角坐标系中,反比例函数y=kx(x>0)经过矩形ABOC的对角线OA的中点M,已知矩形ABOC的面积为16,则k的值为()A.2B.4C.6D.8【解析】设A(a,b),则ab=16,∵点M是OA的中点,∴M(12a,12b),∵反比例函数y=kx(x>0)经过点M,∴k=12a﹒12b=14ab=14×16=4.【答案】B考点二一次函数与反比例函数的综合方法指导:这类问题常有以下四种主要题型:(1)利用k值与图象的位置关系,综合确定系数符号或图象位置.解题策略:分k>0和k<0两种情况考虑.(2)已知直线与双曲线的表达式求交点坐标.解题策略:联立直线与双曲线的方程组成方程组求解.(3)用待定系数法确定直线与双曲线的表达式.解题策略:待定系数法.(4)应用函数图象的性质比较一次函数值与反比例函数值的大小.解题策略:看图象,以两个图象的交点为界,图象在上方的函数值比图象在下方的要大.经典例题2 (2020•黑龙江大庆模拟)如图,一次函数y=-x+5的图象与反比例函数y=kx(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积.【解析】(1)利用待定系数法求出点A坐标即可解决问题.(2)构建方程组求出交点B坐标,直线y=-x +5交y轴于E(0,5),根据S△AOB=S△OBE-S△AOE计算即可.解:(1)∵A(1,n)在直线y=-x+5上,∴n=-1+5=4,∴A(1,4),把A(1,4)代入y=kx得到k=4,∴反比例函数的解析式为y=4x.(2)由45y xy x ⎧=⎪⎨⎪=-+⎩,,解得14x y =⎧⎨=⎩,或41x y =⎧⎨=⎩,, ∴B (4,1),直线y =-x +5交y 轴于E (0,5), ∴S △AOB =S △OBE -S △AOE =12×5×4-12×5×1=7.5.考点三 反比例函数的应用 方法指导:利用反比例函数解决实际问题,我们应抽象概括出反比例函数关系,建立反比例函数模型.根据已知条件写出反比例函数的解析式,并能把实际问题反映在函数的图象上,结合图象和性质解决实际问题.因此,利用反比例函数解决实际问题的关键是建立反比例函数模型,即求出反比例函数解析式.一般地,建立反比例函数模型有以下两种常用方法:(1)待定系数法:若题目提供的信息中明确此函数为反比例函数,则可设反比例函数解析式为y =kx(k ≠0),然后求出k 的值即可.(2)列方程法:若题目信息中变量之间的函数关系不明确,在这种情况下,通常是列出关于函数(y )和自变量(x )的方程,进而解出函数,得到函数解析式.经典例题3 (2020·江西模拟)小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热[此过程中水温y (℃)与开机时间x (分)满足一次函数关系],当加热到100℃时自动停止加热,随后水温开始下降[此过程中水温y (℃)与开机时间x (分)成反比例关系],当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题: (1)当0≤x ≤10时,求水温y (℃)与开机时间x (分)的函数关系式; (2)求图中t 的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为y=kx+b,依据题意,得2010100 bk b⎧⎨⎩=,+=,解得820kb⎧⎨⎩=,=,故此函数解析式为y=8x+20.(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为y=mx,依据题意,得100=10m,即m=1000,故y=1000x,当y=20时,20=1000t,解得t=50.(3)∵57-50=7<10,∴当x=7时,y=8×7+20=76.答:小明散步57分钟回到家时,饮水机内的温度约为76℃.过关演练1.(2020·河南一模)已知点A(2,a),B(-3,b)都在双曲线y=-6x上,则()A.a<b<0B.a<0<b C.b<a<0 D.b<0<a2.(2020•山东德州中考)函数y=kx和y=-kx+2(k≠0)在同一平面直角坐标系中的大致图象可能是()A B C D 3.(2020•贵州黔西南州中考)如图,在菱形ABOC中,AB=2,①A=60°,菱形的一个顶点C在反比例函数y═kx(k≠0)的图象上,则反比例函数的解析式为()A .y =-x B .y =-x C .y =-3xD .y =x4.(2020·湖南长沙模拟)若点A (3,4)是反比例函数y =kx图象上一点,则下列说法正确的是( ) A .图象分別位于二、四象限 B .当x <0时,y 随x 的增大而减小 C .点(2,-6)在函数图象上 D .当y ≤4时,x ≥3 5.(2020·安徽合肥模拟)在同一坐标系中,函数y =kx和y =-kx +3的大致图象可能是( )A B C D6.(2020·安徽合肥一模)如图,若反比例函数y =k x (x <0)的图象经过点(-12,4),点A 为图象上任意一点,点B 在x 轴负半轴上,连接AO ,AB ,当AB =OA 时,①AOB 的面积为( )A .1B .2C .4D .无法确定7. (2020•湖北孝感中考)已知蓄电池的电压为定值,使用蓄电池时,电流I (单位:A)与电阻R (单位:Ω)是反比例函数关系,它的图象如图所示,则这个反比例函数的解析式为( )A.I=24RB.I=36RC.I=48RD.I=64R8. (2020•湖南长沙中考)2019年10月,《长沙晚报》对外发布长沙高铁西站设计方案.该方案以“三湘四水,杜娟花开”为设计理念,塑造出“杜娟花开”的美丽姿态.该高铁站建设初期需要运送大量土石方.某运输公司承担了运送总量为106m3土石方的任务,该运输公司平均运送土石方的速度v(单位:m3/天)与完成运送任务所需时间t(单位:天)之间的函数关系式是()A.v=610tB.v=106t C.v=6110t2D.v=106t29.(2020·河北一模)已知反比例函数y=mx与一次函数y=kx+b的图象相交于点A(4,1),B(a,2)两点,一次函数的图象与y轴交于点C,点D在x轴上,其坐标为(1,0),则①ACD的面积为()A.12B.9C.6D.510.(2020·广东广州一模)如图所示,已知A(13,y1),B(3,y2)为反比例函数y=1x图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(13,0) B.(43,0) C.(23,0) D.(103,0)11.(2020·湖北十堰一模)已知反比例函数y=24kx+(k是常数,且k≠-2)的图象有一支在第二象限,则k的取值范围是.12.(2020•江苏无锡模拟)如果反比例函数y=3ax-(a是常数)的图象在第一、三象限,那么a的取值范围是.13.(2020•山东滨州中考)若正比例函数y=2x的图象与某反比例函数的图象有一个交点的纵坐标是2,则该反比例函数的解析式为.14.(2020•四川甘孜州中考)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2 x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且①ABP的面积是①AOB的面积的2倍,则点P的横坐标为.15.(2020·安徽阜阳模拟)如图,菱形ABCD的顶点A,B的横坐标分别为1,4,BD①x轴,双曲线y=5 x (x>0)经过A,B两点,则菱形ABCD的面积为.16.(2020•山东青岛)如图所示,点A是反比例函数y=kx(x<0)的图象上一点,过点A作AB⊥y轴于点B,点P在x轴上,若△ABP的面积是2,则k=.17.(2020•浙江台州中考)小明同学训练某种运算技能,每次训练完成相同数量的题目,各次训练题目难度相当.当训练次数不超过15次时,完成一次训练所需要的时间y(单位:秒)与训练次数x(单位:次)之间满足如图所示的反比例函数关系.完成第3次训练所需时间为400秒.(1)求y与x之间的函数关系式;(2)当x的值为6,8,10时,对应的函数值分别为y1,y2,y3,比较(y1-y2)与(y2-y3)的大小:y1-y2y2-y3.18.(2020•山东济宁中考)在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2.(1)y关于x的函数关系式是,x的取值范围是;(2)在平面直角坐标系中画出该函数图象;(3)将直线y=-x+3向上平移a(a>0)个单位长度后与上述函数图象有且只有一个交点,请求出此时a的值.19.(2020·安徽合肥三模)如图,一次函数y=-x+b的图象与反比例函数y=kx(x<0)的图象交于点A(-3,m),与x轴交于点B(-2,0).(1)求一次函数和反比例函数的表达式;(2)若直线y=3与直线AB交于点C,与双曲线交于点D,求CD的长;(3)根据图象,直接写出不等式-x+b<kx<3的解集.20.(2020·浙江金华模拟)如图,一次函数y1=-x+4的图象与反比例函数y2=kx(k为常数,且k≠0)的图象交于A(1,a),B两点,与y轴和x轴分别交于C,D两点,AM①y轴,BN①x轴,垂足分别为M,N两点,且AM与BN交于点E.(1)求反比例函数的表达式及点B的坐标;(2)直接写出反比例函数图象位于第一象限且y1<y2时自变量x的取值范围;(3)求①OAB与①ABE的面积的比.21.(2020•四川成都中考)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若①AOB的面积为①BOC的面积的2倍,求此直线的函数表达式.22.(2020•山东聊城中考)如图,已知反比例函数y=kx的图象与直线y=ax+b相交于点A(-2,3),B(1,m).(1)求出直线y=ax+b的表达式;(2)在x轴上有一点P使得①P AB的面积为18,求出点P的坐标.23.(2020·江西南昌模拟)制作某种金属工具要进行材料煅烧和锻造两个工序,即需要将材料烧到800①,然后停止煅烧进行锻造操作,经过8min时,材料温度降为600①.煅烧时温度y(①)与时间x(min)成一次函数关系;锻造时,温度y(①)与时间x(min)成反比例函数关系(如图).已知该材料初始温度是26①.(1)分别求出材料煅烧和锻造时y与x的函数关系式,并且写出自变量x的取值范围;(2)根据工艺要求,当材料温度低于400①时,须停止操作,那么锻造的操作时间有多长?参考答案考点梳理考点一 1.kx2. (1)双曲线 (2)坐标轴 坐标轴 (3)减小 增大 中心 过关演练1. B 【解析】①双曲线y =6x,k =-6<0,①双曲线在第二、四象限,①2>0,-3<0,①点A (2,a )在第四象限,点B (-3,b )在第二象限,①a <0<b .2. D 【解析】在函数y =k x 和y =-kx +2(k ≠0)中,当k >0时,函数y =kx的图象在第一、三象限,函数y =-kx +2的图象在第一、二、四象限,故选项A 、B 错误,选项D 正确;当k <0时,函数y =kx的图象在第二、四象限,函数y =-kx +2的图象在第一、二、三象限,故选项C 错误.3. B 【解析】①在菱形ABOC 中,①A =60°,菱形边长为2,①OC =2,①COB =60°,①点C 的坐标为(-1,,①顶点C 在反比例函数y ═k x 的图象上,=1k,得k y =-x .4. B 【解析】①点A (3,4)是反比例函数y =kx图象上一点,①k =xy =3×4=12,①此反比例函数的解析式为y =12x.①k =12>0,①此函数的图象位于一、三象限,故选项A 错误;①k =12>0,①在每一象限内y 随x 的增大而减小,故选项B 正确;①2×(-6)=-12≠12,①点(2,-6)不在此函数的图象上,故选项C 错误;当y ≤4时,即y =12x≤4,解得x <0或x ≥3,故选项D 错误. 5. D 【解析】由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项A 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k >0,则k <0,故选项B 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k <0,根据一次函数图象可得-k <0,则k >0,故选项C 错误;由反比例函数图象得函数y =kx(k 为常数,k ≠0)中k >0,根据一次函数图象可得-k <0,则k >0,故选项D 正确.6. B 【解析】①反比例函数y =k x (x <0)的图象经过点(-12,4),①k =-12×4=-2,过A 点作AC ①OB于点C,①①ACO的面积为12×2=1,①AO=AB,①OC=BC,①S①AOB=2S①AOC=2.7. C 【解析】设I=kR,把(8,6)代入得:k=8×6=48,故这个反比例函数的解析式为I=48R.8. A 【解析】①运送土石方总量=平均运送土石方的速度v×完成运送任务所需时间t,①106=vt,①v=6 10t.9. D 【解析】①点A(4,1)在反比例函数y=mx上,①m=xy=4×1=4,①y=4x.把B(a,2)代入y=4x得2=4a,①a=2,①B(2,2).①把A(4,1),B(2,2)代入y=kx+b.①1422k bk b⎧⎨⎩=+,=+,解得123kb⎧⎪⎨⎪⎩=-,=,①一次函数的解析式为y=12x+3,①点C在直线y=12x+3上,①当x=0时,y=3,①C(0,3).过A作AE①x轴于点E.①S①ACD=S梯形AEOC-S①COD-S①DEA=(13)42+⨯-12×1×3-12×1×3=5.10. D 【解析】把A(13,y1),B(3,y2)代入反比例函数y=1x得y1=3,y2=13,①A(13,3),B(3,13).连接AB,在①ABP中,由三角形的三边关系定理得:|AP-BP|<AB,①延长AB交x轴于P′,当P在P′点时,P A-PB=AB,即此时线段AP与线段BP之差达到最大,设直线AB的解析式是y=ax+b(a≠0),把点A,B的坐标代入得133133a ba b⎧⎪⎪⎨⎪⎪⎩=+,=+,解得1103ab⎧⎪⎨⎪⎩=-,=,①直线AB的解析式是y=-x+103,当y=0时,x=103,即P(103,0).11. k<-2 【解析】①反比例函数y=24kx+的图象有一支在第二象限,①2k+4<0,解得k<-2.12. a>3 【解析】∵反比例函数y=3ax-(a是常数)的图象在第一、三象限,∴a-3>0,∴a>3.13. y=2x【解析】当y=2时,即y=2x=2,解得x=1,故该点的坐标为(1,2),将(1,2)代入反比例函数表达式y=kx,解得k=2,故该反比例函数的解析式为y=2x.14. 2【解析】①当点P在AB下方时作AB的平行线l,使点O到直线AB和到直线l的距离相等,则①ABP的面积是①AOB的面积的2倍,直线AB与x轴交点的坐标为(-1,0),则直线l与x轴交点的坐标C(1,0),设直线l的表达式为y=x+b,将点C的坐标代入上式并解得:b=-1,故直线l的表达式为y=x-1①,而反比例函数的表达式为y=2x①,联立①①并解得x=2或-1(舍去);①当点P在AB上方时,同理可得,直线l的函数表达式为:y=x+3①,联立①①并解得x舍去负值).15. 452【解析】连接AC,与BD交于点M,①菱形对角线BD①x轴,①AC①BD,①点A,B横坐标分别为1和4,双曲线y=5x(x>0)经过A,B两点,①AM=5-54=154,BM=4-1=3,①AC=152,BD=6,①菱形ABCD的面积12AC·BD=452.16. -4 【解析】设反比例函数的解析式为y=kx.∵△AOB的面积=△ABP的面积=2,△AOB的面积=12|k|,∴12|k|=2,∴k=±4;又反比例函数的图象的一支位于第二象限,∴k<0.∴k=-4.17. 解:(1)设y与x之间的函数关系式为y=kx,把(3,400)代入y=kx得,400=3k,解得k=1200,①y与x之间的函数关系式为y=1200x;(2)>提示:把x=6,8,10分别代入y=1200x得,y1=12006=200,y2=12008=150,y3=120010=120,①y1-y2=200-150=50,y2-y3=150-120=30,①50>30,①y1-y2>y2-y3.18. 解:(1)y=4xx>0 提示:①在①ABC中,BC边的长为x,BC边上的高为y,①ABC的面积为2,①12xy=2,①xy=4,①y关于x的函数关系式是y=4x,x的取值范围为x>0.(2)在平面直角坐标系中画出该函数图象如图所示;(3)将直线y =-x +3向上平移a (a >0)个单位长度后解析式为y =-x +3+a ,解34y x a y x =-++⎧⎪⎨=⎪⎩,, 整理得,x 2-(3+a )x +4=0,①平移后的直线与上述函数图象有且只有一个交点,①①=(3+a )2-16=0,解得a =1,a =-7(不合题意舍去),故此时a 的值为1.19. 解:(1)由点B (-2,0)在一次函数y =-x +b 上,得b =-2,①一次函数的表达式为y =-x -2;由点A (-3,m )在y =-x -2上,得m =1,①A (-3,1),把A (-3,1)代入数y =kx(x <0)得k =-3,①反比例函数的表达式为y =-3x. (2)y =3,即y C =y D =3,当y C =3时,-x C -2=3,解得x C =-5,当y D =3时,3=-3Dx ,解得x D =-1,①CD =x D -x C =-1-(-5)=4. (3)不等式-x +b <kx<3的解集为-3<x <-1. 20. 解:(1)当x =1时,a =-x +4=3,①点A 的坐标为(1,3).将点A (1,3)代入y =kx中,①k =1×3=3,①反比例函数的表达式为y =3x ,联立34y xy x ⎧⎪⎨⎪⎩=,=-+,解得13x y ⎧⎨⎩=,=,或31x y ⎧⎨⎩=,=, ①B (3,1). (2)反比例函数图象位于第一象限且y 1<y 2时自变量x 的取值范围为0<x <1或x >3. (3)①A (1,3),B (3,1),①E (3,3),AE =2,BE =2,①S ①ABE =12×2×2=2,①S ①OAB =S 四边形ONEM -S ①ABE -S ①AOM -S ①BON =3×3-2-12×3×1-12×3×1=4,①①OAB 与①ABE 的面积的比是4①2=2①1.21. 解:(1)①反比例函数y=mx(x>0)的图象经过点A(3,4),①k=3×4=12,①反比例函数的表达式为y=12x;(2)①直线y=kx+b过点A,①3k+b=4,①过点A的直线y=kx+b与x轴、y轴分别交于B,C两点,①B(-b k ,0),C(0,b),①①AOB的面积为①BOC的面积的2倍,①12×4×|-bk|=2×12×|-bk|×|b|,①b=±2,当b=2时,k=23,当b=-2时,k=2,①直线的函数表达式为y=23x+2,y=2x-2.22. 解:(1)将点A(-2,3)的坐标代入反比例函数表达式y=kx,解得k=-2×3=-6,故反比例函数表达式为y=-6x,将点B的坐标代入上式,解得m=-6,故点B(1,-6),将点A,B的坐标代入一次函数表达式得326=a ba b=-+⎧⎨-+⎩,,解得3=3ab=-⎧⎨-⎩,,故直线的表达式为y=-3x-3;(2)设直线与x轴的交点为E,当y=0时,x=-1,故点E(-1,0),分别过点A,B作x轴的垂线AC,BD,垂足分别为C,D,则S①P AB=12PE•CA+12PE•BD=32PE+62PE=92PE=18,解得PE=4,故点P的坐标为(3,0)或(-5,0).23. 解:(1)材料锻造时,设y=kx(k≠0),由题意得600=8k,解得k=4800,当y=800时,4800x=800,解得x=6,①点B的坐标为(6,800).材料煅烧时,设y=ax+26(a≠0),由题意得800=6a+26,解得a=129,①材料煅烧时,y与x的函数关系式为y=129x+26(0≤x≤6).4800÷26=184.6,①锻造操作时y与x的函数关系式为y=4800x(6<x<184.6).(2)把y=400代入y=4800x,得x=12,12-6=6(分).答:锻造的操作时间为6分钟.。